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A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial 

role in stress tolerance and plant development. Melatonin (MT) is a unique 

molecule with multiple phenotypic expressions and numerous actions within 

the plants. It has been extensively studied in crop plants under different abiotic 

stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT 

role is appraised as an antioxidant molecule that deals with oxidative stress 

by scavenging reactive oxygen species (ROS) and modulating stress related 

genes. It improves the contents of different antioxidant enzyme activities and 

thus, regulates the redox hemostasis in crop plants. In this comprehensive 

review, regulatory effects of melatonin in plants as melatonin biosynthesis, 

signaling pathway, modulation of stress related genes and physiological role 

of melatonin under different heavy metal stress have been reviewed in detail. 

Further, this review has discussed how MT regulates different genes/enzymes 

to mediate defense responses and overviewed the context of transcriptomics 

and phenomics followed by the metabolomics pathways in crop plants.
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Introduction

Heavy metals (HMs) stress has emerged as a major problem in a variety of terrestrial 
habitats around the globe. Due to heavy metals, widespread industrialization negatively 
influences the crop and soil productivity (Shahid et al., 2015). Metals presence in the soil 
disturbed the texture of soil, pH, reduces plant growth directly and/or indirectly by 
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interfering with various molecular and physiological activities in 
crop plants (Hassan et al., 2017; Wang et al., 2019). Metals like Fe, 
Mn, Cu, Ni, Co, Cd, Zn, Hg, and As have been accumulating in 
soils for a long time as a result of anthropogenic activities like the 
waste of different industries, application of fertilizer, sewage 
disposal and smelting (Zhang and Wang, 2020). Metals are leached 
into groundwater or accumulated on the soil surface because of 
these activities (Dağhan and Ozturk, 2015; Hakeem et al., 2015; 
Basheer, 2018). Toxic metals cannot be  removed from the 
atmosphere by natural processes; so, these metals are 
non-biodegradable. Some are static, unable to leave the area where 
they have gathered, while others are mobile and easily absorbed 
by plant roots (Ali et  al., 2015b, 2018; Dehghani et  al., 2016; 
Burakova et al., 2018).

Bioactive metals are classified into two classes based on their 
physicochemical properties: redox metals such as Mn, Cu, Fe, and 
Cr, and non-redox metals such as Zn, Cd, Al, Ni, and Hg 
(Jozefczak et al., 2012). By undergoing Haber-Weiss and Fenton 
reactions, redox metals can directly cause oxidative injury in 
plants, breakage of DNA strands, destruction of cell homeostasis, 
defragmentation of protein, photosynthetic pigment damage and, 
damage of cell membrane which can lead to death of cell (Flora, 
2009). Non-redox active metals, on the other hand, trigger 
oxidative stress indirectly through a variety of mechanisms, 
including glutathione depletion, protein sulfhydryl group binding 
(Jozefczak et  al., 2012), antioxidative enzymes inhibition, and 
induction of ROS-producing enzymes such as NADPH oxidases 
(Bielen et al., 2013). Plants use a variety of mechanisms to protect 
themselves from different sources of metals by developing 
tolerance. The cutting edge “omic tools” are an excellent model for 
understanding plants molecular mechanism of tolerance/
susceptibility under the impact of various stresses, especially 
under HMs (Wang et al., 2020). Omic approaches used for HMs 
stress mainly include transcriptomics, proteomics, metabolomics 
and ionomics (Liu et al., 2020). Another mechanism is exclusive, 
meaning plants are only enabled when a certain level of metal 
toxicity is present. All responses fall into two categories: avoidance 
or tolerance (Krzesłowska, 2011; Shahid et  al., 2015). 
Metabolomics, proteomics, and transcriptomics are common 
omics approaches used to interpret regulatory networks involved 
in responding to HMs tolerance in plants (Singh et al., 2016). The 
above-mentioned omics approaches, when combined with various 
functional genomic approaches, help to produce such verities 
which have the ability to tolerate against various abiotic stress 
conditions (Mosa et  al., 2017). Plant growth regulators are 
chemical substances that control all aspects of plant production 
and growth (Ali et  al., 2013a, 2013b). Several different plant 
growth-promoting rhizobacteria (PGPRs) have been used in the 
past to try to achieve efficient plant growth under abiotic stress 
(Ali et al., 2013a, 2013c).

Plant hormones (phytohormones) work as a messenger which 
can be either natural or synthetic chemicals, that control growth 
and development in response to environmental cues and are much 
effective even at very low absorptions (Rubio et  al., 2009). 

Phytohormones work in various forms and activate various 
processes, including cell division (cytokinins) and cell 
development (auxins). Interestingly, plants have evolved several 
signaling pathways to overcome various stresses. One of them is 
mitogen-activated protein kinase (MAPK) synthesis (Arnao and 
Hernández-Ruiz, 2015, 2020). MAPK production regulates several 
critical stress-related hormones, genes, and chemicals that 
ultimately defend plants to survive against abiotic stresses (Arnao 
and Hernández-Ruiz, 2015). Plant hormones have been shown to 
promote the growth of non-plant microorganisms such as bacteria 
and fungi in many studies (Chatterjee et al., 2008; Levy et al., 2018; 
Kunkel and Johnson, 2021). They significantly affect on different 
physiological processes such as plant growth, development, and 
movement. Despite extensive research on the topic, no major 
breakthroughs have been made until now. The most well-known 
and essential phytohormones are melatonin, indole-3-acetic acid, 
gibberellic acid, kinetin, 1-triacontanol and abscisic acid.

Melatonin (MT, N-acetyl-5-methoxytryptamine) is a multi-
regulatory chemical involved in seed germination, root growth, 
fruit ripening, senescence, yield, circadian rhythm, and stress 
response. Practically, it is found in all plant species (Hernández 
et al., 2015; Sun et al., 2015; Hardeland, 2016) and it is known as 
growth promoter and rooting agent (Chen et al., 2009a; Sarrou 
et al., 2014; Zhang et al., 2021). It plays a significant role in plant 
stress defense in addition to its role in plant growth. Plants can 
be exposed to stressful environmental conditions regularly. Plant 
species high in MT have been shown to have a higher stress 
tolerance ability. Exogenous therapy or ectopic overexpression of 
MT biosynthesis genes may also improve tolerance to a range of 
stressors, such as high temperatures, dehydration, salinity, 
radiation, and chemical challenges, all of which can produce the 
reactive oxygen species (Zhang et al., 2015). In this review, we have 
tried to compile all the knowledge about melatonin regulatory 
effects in plants and physiological functions of MT under different 
heavy metal stresses. Keeping in mind the importance of MT and 
its role in alleviating heavy metal stress in plants, recent knowledge 
about how MT regulates different genes/enzymes in response to 
abiotic stress, as well as the transcriptomics and phenomics 
background of MT in crop plants under stressful conditions, is 
presented in a trendy manner.

Role of phytomelatonin in plants: 
An overview

Melatonin is a low molecular weight indole molecule found in 
all kingdoms of life, from prokaryotes to eukaryotes, from animals 
to plants (Arnao and Hernández-Ruiz, 2014). It was first 
discovered as an essential animal hormone involved in antioxidant 
acts, reproduction, circadian cycles, and innate immunity, among 
other biological processes (Shi et al., 2015). Since, the discovery of 
MT in Japanese morning glory (Pharbitis nil) in 1993, much 
progress has been made in understanding the function of 
melatonin in plants (Sun et  al., 2021). Different studies have 
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indicated that melatonin has unique physiological properties in 
plants, such as growth promotion and rhizogenesis induction, 
functioning similarly to indolyl-3-acetic acid (IAA) and auxin 
(Arnao and Hernández-Ruiz, 2014). Melatonin protects plants 
from abiotic stimuli such as HMs, UV radiation, salt, drought, and 
ambient temperature and contributes to the aging of leaves (Reiter 
et al., 2015). Melatonin is thought to have a primary role in plants 
as it operates as the first line of defense against internal and 
external oxidative stress by scavenging the ROS (Park et al., 2013; 
Arnao and Hernández-Ruiz, 2015; Altaf et  al., 2021a). The 
nitrogen in the phytomelatonin molecule’s carbonyl group triggers 
the development of a new five-membered ring after it interacts 
with ROS (Kaur et al., 2015). Further, it enhances plant resilience 
to environmental challenges such drought, salt, cold, and oxidative 
stress, as well as delaying leaf senescence, whether exogenously 
administered or endogenously created (Arnao and Hernández-
Ruiz, 2014; Zhang et al., 2014). It has also been considered as a 
broad-spectrum antioxidant and an endogenous free radical 
scavenger. It eliminates a variety of free radicals and ROS, such as 
nitric oxide (NO), peroxynitrite anion (NO3

−), hydroxyl radical 
(OH−), and singlet oxygen (O2

−). One of the most attractive 
features of this molecule, which sets it apart from most 
antioxidants, is its metabolites can also scavenge ROS and nitrogen 
species (Kwon et al., 2021).

Exogenously applied MT has various effects, from substantial 
improvement to ineffectiveness or toxicity. The disagreement 
among researchers is due to the concentration used. At low and 
high doses, MT can have diverse roles in controlling plant growth 
and development in the same species. A low dose of MT (0.1 mM) 
promotes the root growth in wild leaf mustard (Brassica juncea), 
whereas a high dose (100 mM) inhibits its growth (Chen et al., 
2009b). At low quantities, it promotes roots in cherry tissue 
culture, but at higher doses, it inhibits the root development 
(Sarropoulou et al., 2012). The high concentrations employed, 
specifically, 100 mM, could never be achieved in any plant because 
plant MT levels range from picograms to micrograms per gram of 
tissue. These values are several orders of magnitude higher than 
those in the human body. The toxic effects can occur when 
concentrations are too high. Melatonin levels were found to have 
a varied effect at low and high levels. However, high MT did not 
control any of the genes regulated by low MT (Weeda et al., 2014). 
This implies that MT can have various effects at low and high 
concentrations. At high concentrations, melatonin can drastically 
suppress ROS in cells, affecting ROS-dependent signaling and 
inhibiting cell development (Afreen et al., 2006). Figure 1 shows 
the graphical presentation of how MT alleviates abiotic stress 
in plants.

Phenomics

Since, MT is soluble in both water and lipids and rapidly flows 
throughout the body to any watery area, it is largely employed as 
an antioxidant (Tan et al., 2013). However, many scientists have 

suggested that MT promotes plant growth in general (Arnao and 
Hernandez, 2019a). It has been found to increase the coleoptile 
length in canary grass, barley, and wheat (Hernández-Ruiz et al., 
2005). Previously, maize seeds treated with MT showed greater 
seed vigor and quality and increased seed storage proteins 
(Kołodziejczyk et al., 2016). Another study found that coating 
soybean seeds with MT substantially boosted leaf development, 
plant height, number of pod plants−1, and number of seeds pod−1 
(Wei et al., 2014). Melatonin has been demonstrated to play a 
comparable role in the promotion of vegetative growth and the 
regeneration of lateral and adventitious roots in etiolated Lupinus 
albus (Hernandez-Ruiz et al., 2004; Arnao and Hernández-Ruiz, 
2007). While, treatment with MT resulted in increased seedling 
development, enhanced nutrient uptake efficiency, and improved 
nitrogen metabolism in cucumber plants, particularly under salt 
stress conditions (Zhang et  al., 2017). According to recent 
investigations, MT administration also boosted photosynthetic 
activity, redox homeostasis, root growth and development, and 
seminal root elongation in barley, wheat, sweet cherry, and rice (Li 
et al., 2016; Liang et al., 2017; Zuo et al., 2017). Another potential 
element of MT application is its positive influence on 
photosynthesis and other growth-related parameters among 
different crops under various abiotic stress conditions (Meng 
et  al., 2014; Wang et  al., 2016a). Auxin, ethylene, cytokinin, 
gibberellins, IAA (indole 3-acetic acid), and brassinosteroids are 
all plant hormones that play an important role in maintaining 
growth and development of crop plants (Denancé et al., 2015). 
However, exogenous MT application can be used to modulate the 
effects of these plant hormones (Arnao and Hernández-Ruiz, 
2017). Under salt conditions, exogenous MT dramatically 
increased the levels of endogenous abscisic acid (ABA) and 
gibberellic acid (GA) in cucumber seedlings, resulting in better 
salinity resistance (Zhang et al., 2014). The amount of cytokinin is 
steadily degraded in plants subjected to heat stress. However, once 
the plants treated with exogenous MT, an increase in the level of 
cytokinin biosynthesis can be  detected, and therefore the 
increased cytokinin level in the melatonin-treated plants results in 
enhanced resilience to heat stress (Zhang et  al., 2017). In a 
nutshell, the mechanistic principal of melatonin is to boost the 
antioxidant defense system; while, also increasing photosynthetic 
activity. Furthermore, several experts have claimed that MT has a 
major impact on total plant growth in the face of abiotic challenges 
with the least amount of impact on the environment (Tiryaki and 
Keles, 2012; Fan et al., 2015; Zhang et al., 2017; Ali et al., 2021).

Indole acetic acid is comparable in structure and function to 
the others (Hernández-Ruiz et  al., 2005; Pelagio-Flores et  al., 
2012). In line with this, exogenous MT therapy boosts IAA 
synthesis (Wang et al., 2016b). On the other hand, both MT and 
IAA have been shown to enhance root development in a combined 
and similar manner (Yang et al., 2021). Exogenously administered 
MT increased IAA levels in Brassica juncea plants, resulting in 
improved root activity (Chen et al., 2009a). In Mimosa pudica, it 
showed a favorable effect on root organogenesis (Sun et al., 2021). 
Hence, MT is thought to play a significant role in plant’s 
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physiological and biological processes. To summarize, MT can 
be considered a biological plant growth regulator that boosts a 
plant’s production capability. The concise plant growth alterations 
by MT in response to HMs stress are given in Table 1.

Ionomics

Ionomics is the study of accumulating metalloids, non-metals 
and metals in living organisms, regarding the accumulated 
minerals, could be essentials and nonessential (Ayub et al., 2021). 
Plant ionomics has applied for various kinds of research, such as 
physiological, evolutionary, and ecological. Furthermore, the 
elemental analogs measuring can improve data quality with 
ionomic approaches (Watanabe et al., 2007; Chen et al., 2009b; 
Campos et al., 2021).

Macro and micro elements

The macro and micro elements present in the plants which 
efficaciously promoted plants growth and many others boosted 
plant’s activities at metabolic and physiological levels. Various 
biotic and abiotic stress conditions can disturb plant behaviors 
physiologically and genetically. Therefore, these macro and micro 

elements should be affected by these changes. Thus, ionomics 
study has provide a reliable presumption regarding the ion 
concentration changes and various other pathways which control 
the elements in plant’s body. This accomplished that ionomics can 
be categorized as a superior tool for distinguishing amendments 
in the plants physiology with interrelation of environment 
(Kanwar et  al., 2018). Besides that, plant ionomics can 
be  associated to the difference of phylogenetic relationships 
(Watanabe et al., 2007). The ionomics application (use of mutants) 
has focused on isolation and gene characterization which were 
responsible for homeostasis and transmission of different plant 
elements (Chao et al., 2011; Duan et al., 2017). However, the most 
important benefit of ionomics implementation in plants has to 
enhance acomprehensive perception of elemental dynamics.

To reduce the toxicity of HMs, ionome (mineral nutrients) 
plays a major role, including N, P, K, Ca, S and Mg; along with 
some trace metals such as Fe, Cu, Mn, Mo, Co, and Zn. Nitrogen 
(N) is the main essential nutrient, composed of hormones, 
nucleic acids, proteins, and vitamins. It can alleviate the toxicity 
of heavy metals by promoting the photosynthetic competency 
by increasing the chlorophyll synthesis, boosting N-comprised 
metabolites such as GSH, proline and by increasing of 
antioxidant enzymatic activities (Lin et al., 2011). The other 
essential nutrient is phosphorus (P), comprised of nucleic acids 
and cell membrane, and especially imperative for reaction of 

FIGURE 1

Graphical chart depicts the role of melatonin under abiotic stress conditions.
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TABLE 1 Ameliorative effects of MT supplementation on growth, physiological, and biochemical attributes of plants grown under heavy metals 
toxicity.

Heavy metals HMs dose Plant species Melatonin 
doses

Experiment 
type

Protective effect References

Cadmium 10 mg/l Cyphomandra 

betacea

0, 50, 100, 150, and 

200 μmol/l

Nutrient solution 

cultivation

Low levels of MT (50 μmol/l) 

promoted the growth, while others 

behaved oppositely.

Lin et al. (2018)

Cadmium 200 mM Triticum aestivum 50 mM Petri dish experiment MT caused an increment in 

reduced glutathione content and 

the oxidized glutathione ratio.

Ni et al. (2018)

Copper 80 μmol/l Cucumis sativus 10 μmol/l Hydroponic culture MT improved Cu sequestration, 

carbon metabolism and ROS 

scavenging ability.

Cao et al. (2019)

Chromium 50 μM Brassica napus 10 μM Sand culture Promoted ROS scavenging and 

chlorophyll stability, and 

modulated PSII stability.

Ayyaz et al. (2021)

Lead 800 mg/l Exophilic pisciphila 

(isolated from the 

roots of Arundinella 

bengalensis)

50, 100, and 200 μM Fungus growth 

medium

Significant reduction in 

malondialdehyde and oxygen free 

radicals; while, enhanced the 

activity of SOD.

Yu et al. (2021a)

Vanadium 40 mg/l Solanum 

lycopersicum

100 μM Hydroponic 

conditions

Restricted the production of ROS, 

improved photosynthesis, yield 

production, redox balance, 

mineral nutrients uptake and 

regulation of enzymes.

Altaf et al. (2021b)

Boron 50, 200 μM Triticum aestivum 100 μM Modified nutrient 

media

Scavenged ROS, improved 

contents of N, P, total soluble 

carbohydrates, enzymatic and 

non-enzymatic antioxidants.

Al-Huqail et al. (2020)

Nickel 50 μM Solanum 

lycopersicum

100 μM Hydroponics culture Reduced Ni-induced growth 

damage and ROS production, 

boosted root architecture, nutrient 

uptake, and gas exchange 

attributes, and reduced Ni-

accumulation.

Altaf et al. (2021a)

Iron low-Fe (1/10th of 

normal supply) 

and High-Fe 

(3-times of 

normal supply)

Cucumis sativus 100 μM Hydroponics MT played dual role in iron uptake 

by increasing the levels of FRO2 

and IRT1 under low and high Fe 

stress, respectively.

Ahammed et al. 

(2020)

Selenium 50, 100 and 

200 μM

Brassica napus 50 and 100 μM Nutrient solution MT improved biomass gain, 

pigment contents, PSII 

photochemical efficiency (Fv/Fm), 

boosted enzymatic antioxidants, 

proline, and free amino acids.

Ulhassan et al. (2019)

Cadmium 35 μM Solanum 

lycopersicum

100 μM Nutrient solution MT application effectively reduced 

the cadium-induced phytotoxicity 

by enhancing root activity, growth 

attributes, and root morphological 

features.

Altaf et al. (2021c)

Arsenic 25 μM Camellia sinensis 100 μM Nutrient solution Melatonin reduced As 

accumulation, ameliorated 

oxidative stress, boosted 

biosynthesis of anthocyanin.

Li et al. (2021)

(Continued)
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phosphorylation. Phosphorus (P) can alleviate metal toxicity by 
diluting and decreasing metal mobility through metal phosphate 
complex (Sarwar et  al., 2010). Additionally, P can also 
contribute in the prevention of membrane damage and increase 
the level of GSH content, thus conferring plant tolerance against 
metal stress (Wang et al., 2009a). On the other hand, calcium 
(Ca) has been involved in regulating metabolic activities as well 
as the intracellular and channel-based Ca-binding sites of Cd2+ 
and Ca2+ (Lauer Júnior et al., 2008). Further, Ca can take the 
place of the Cd that is present in the outside medium. Hence, 
plant development has been influenced, although Ca has shown 
a reduction in heavy metal-induced deficiencies (Farzadfar 
et al., 2013). In another study, Khan et al. (2009) reported that 
AsA–GSH cycle enhanced by 40 mg. S. Kg−1, thereby in mustard 
plant Cd toxicity reduction was obtained by Anjum et al. (2008). 
The accumulator plant species were more competitive against 
the stressed caused by Na, Ni and As based on the different 
adaptation strategies for excessive stress of these elements, 
which might form an enlarge variations of their concentration 
between various kinds of species (Pollard et al., 2014; White 
et  al., 2017). Researchers have revealed that endogenous/
exogenous application of MT could contribute in various plant 
species under salinity environment to enhance K+/Na+ 
homeostasis (Li et al., 2012). Most of scholars have investigated 
the strong correlation among salt tolerance and cellular K+ 
retention of the different kinds of plants, namely sweet potato 
(Yu et al., 2016), wheat (Cuin et al., 2008), halophytes (Bose 
et al., 2015), Brassica (Chakraborty et al., 2016), and poplar 
(Sun et al., 2009b).

Influence of MT on ionomics

The influence of MT on ionomics has been reported in a 
recent study (Yu et al., 2018a). It was determined that depletive salt 
effect on the contents of Mg2+, K+, and Ca2+ in the different tissues 
reversed as MT exogenous application (root/leaf: 0.5/100 mM). 
Interestingly, MT distinctly reduced the Na+ significantly in the 
leaf tissues of Xu-32 under the salinized conditions but in the stem 
and root tissues Na+ content was increased and, MT in the absence 
of NaCl stress did not show any modifications of elemental levels 
(Yu et al., 2018b). Additionally, in sweet potato, MT maintained 
the K+/Na+ homeostasis, contributed to PM HC–ATPase activity 
and enhanced the energy state.

The effect of water deficits was evaluated on enzymes activities 
and genes transcriptional abundance included in N metabolism 
(Meng et al., 2016; Huang et al., 2018a,b). However, MT effect on 
the regulation of transcriptional genes in terms of N metabolism, 
uptake, and reduction under the drought stress thoroughly has not 
been studied. Previously, Dijkstra et al. (2015) investigated the 
absorption and transformation of N by implementing the 15N 
tracers. Therefore, Liang et al. (2018) applied some tracers under 
drought conditions to estimate MT impact on the nutrients uptake 
in plants. The exogenous MT has a modulating effect on the 
elements of plants and stress mitigation with the help of regulating 
those elements. For example, MT improved the reductions in Zn, 
Mg, Fe, Cu, Mn, K, P, and S concentrations. Meanwhile, it further 
increased the concentration of Ca and B in maize seedlings at low 
temperature conditions (Turk and Erdal, 2015). Thus, MT could 
be the most important hormone which can be helpful for plants 

TABLE 1 (Continued)

Heavy metals HMs dose Plant species Melatonin 
doses

Experiment 
type

Protective effect References

Lead 50 μM Carthamus tinctorius 100, 150, 200 and 

300 μM

Nutrient solution MT reduced translocation roots 

and Pb uptake to above-ground 

parts of safflower seedling.

Chamanara et al. 

(2019)

Cadmium and 

Aluminum

Cd (25 μM), and 

Al (25 μM)

Brassica napus 50, 100 μM Nutrient solution MT protectEthe photosynthetic 

apparatus from Al and Cd induced 

harms and limits the transfer of Al 

and Cd.

Sami et al. (2020)

Cadmium 100 μM Solanum 

lycopersicum

100 μM Hydroponic 

conditions

MT encouraged the biosynthesis 

of downstream sulfur metabolites 

such as γ-EC, cysteine, -EC, 2-CP, 

GSH, 2-CP, and PCs under Cd 

stress.

Hasan et al. (2019)

Copper 100 μM Brassica napus 100 μM Nutrient solution MT reduced the levels of CuSO4-

induced proline content and 

oxidative stress.

Kholodova et al. 

(2018)

Copper 80 μM Cucumis satvus 10 μM Nutrient solution MT reduced copper toxicity by 

enhancing carbon metabolism, 

copper sequestration, and ROS 

scavenging.

Cao et al. (2019)

https://doi.org/10.3389/fpls.2022.936747
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2022.936747

Frontiers in Plant Science 07 frontiersin.org

to improve the drought tolerance by uptake process of mineral 
elements. This review proposes that the positive effect of MT 
prefers more opportunities related to agriculture, plants can 
be developed with higher drought tolerance and promotes an 
adaptation capacity for future environmental problems.

Transcriptomics

Plant functional genetics provides new horizons for studying 
the molecular mechanisms behind the production of critical 
regulatory molecules (Thao and Tran, 2016; Abdelrahman et al., 
2018). Transcriptomic approaches involve the study of the 
“transcriptome” of an organism. The transcriptome is a set of 
entire RNA molecules expressed under a particular circumstance 
spatially and temporally (Milward et al., 2016). Understanding the 
plant functional genetics by post-translational studies is getting 
routine research after the high-throughput sequencing 
technologies became approachable and much cheaper than before. 
These studies have a great promise to provide critical information 
about the molecular mechanism of synthesis, regulation, and 
metabolic pathways of action of products, by-products, and 
various critical regulatory molecules in plants (Pang et al., 2021). 
Transcriptomic approaches are one of the main pillars of 
molecular genetics, by the wealth of which scientists can 
determine real-time changes happening after the translation of 
genetic information imprinted in the plant cells (McGowan and 
Fitzpatrick, 2020).

Transcriptomic studies cover all aspects of RNA transcripts, 
their synthesis, expression, and their regulation. These studies also 
include their trafficking, structures, splicing patterns (mediated by 
spliceosome), and modifications at the post-transcriptional level 
(Liang, 2013). There are several types of transcripts; out of them, 
messenger RNA (mRNA), small RNA (sRNA), long noncoding 
RNA (lncRNA), and micro-RNA (miRNA) are remarkable 
(Milward et  al., 2016). With the advent of cheap sequencing 
technologies, we can use these high-throughput methods for the 
expression analysis of transcripts under the particular conditions 
(Wang et  al., 2009b). This knowledge is prime for linking 
phenotype to genotype. Several studies are available that reports 
transcriptional changes in plants under the specific physiological 
or pathological circumstance.

Plants are consistently encountered by various biotic and 
abiotic stresses (Małkowski et al., 2019). Some of these stresses are 
natural, while some result from anthropogenic activities. Heavy 
metals (HMs), the prime source of toxicity in plants, are being 
prolonged accumulated in soils through various activities (Chai 
et  al., 2019). These activities include improper disposal of 
industrial waste, extensive fertilizers, non-treated sewage disposal 
to agricultural soil (Chai et  al., 2019; Lominchar et  al., 2019). 
These activities result in immobile, non-biodegradable, and toxic 
levels of HMs on the soil surface and ground water (Ahmad et al., 
2016). Plants can take heavy metals and lead to toxicity in them 
(Mustafa and Komatsu, 2016). Plants can uptake HMs by different 

biological processes by their roots, using either diffusion, 
endocytosis, or metal transporters for this task (Zhao et al., 2021). 
Plants are also appreciated as bio-accumulators of HMs (Chaffai 
and koyama, 2011; Nawaz et al., 2016). Nevertheless, some metals 
are essential for plants, but their accumulation, when exceeding a 
specific limit, causes toxicity (Zhao et al., 2019). If animals eat 
these plants, toxicity can also be carried to their bodies, which can 
be  poisonous in several ways. Effects and symptoms of HMs 
toxicity in plants include chlorosis, reduced growth, root death 
(browning), and plant wilting (Varma, 2021).

Ever since discovering melatonin in plants, research related to 
its role in plant homeostasis and regulation of stress-related 
signals is going on in many laboratories of the world (Kanwar 
et al., 2018). Its exogenous application is also remedial against 
infection from various pathogens. There are direct and indirect 
references that MT involvement in disease resistance in plants. 
However, its synthesis and regulation at the transcriptomic level 
is rarely summarized (Hoang et al., 2017; Abou-Elwafa et al., 2019; 
Liu et al., 2019). Here, this article will present a comprehensive 
overview of transcriptomic approaches used to understand the 
molecular genetics of phytomelatonin production, its regulation 
and involvement in plant regulatory mechanisms.

The cutting edge “omic tools” are an excellent model for 
understanding plants molecular mechanism of tolerance/
susceptibility under the impact of various stresses, especially 
under HMs (Wang et al., 2020). Omic approaches used for HMs 
stress mainly include transcriptomics, proteomics, metabolomics 
and ionomics (Liu et al., 2020). The transcriptome is an entire set 
of transcripts, transcripted primarily in the form of mRNA, form 
the genome of an organism under certain conditions. Proteomics 
is the study of expressed proteins, their modification after 
translation, their localization, mode of action and their docking, 
translated from the transcriptome of an organism under a defined 
environmental condition (Abou-Elwafa et al., 2019). Metabolomic 
studies include identification, characterization, and quantification 
of metabolites (produced by cellular regulation, under the effect 
of external stimuli) and all metabolomic activities, and due to 
translated proteins, in the effect of conditions provided to plants, 
likewise economics is the quantitative measurement of production, 
accumulation of ions in an organism under the effect of external 
stimuli (Mustafa and Komatsu, 2016). Several biochemical 
pathways are directly and indirectly activated/suppressed after 
signal transduction of HMs in plants (Mustafa and Komatsu, 
2016; Yu et al., 2021b).

RNA sequencing and HMs tolerance: A 
prospective of MT-related genes

Plants produce differential expression of a set of the 
transcriptome under the abiotic stress of HMs, which is of 
significant interest for determining the genes involved in HMs 
tolerance and susceptibility (Duhan, 2021). RNA sequencing 
(RNA-seq) is an essential investigation to elucidate the regulation 

https://doi.org/10.3389/fpls.2022.936747
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2022.936747

Frontiers in Plant Science 08 frontiersin.org

of gene expression at the molecular level. RNA-seq provides data 
about differential expression of genes and exposes critical 
biological processes involved in tolerance mediated by plants for 
HMs (Shahid et al., 2014; Lee and Back, 2017a). Several studies 
reported that the large set of genes were involved directly or 
indirectly in tolerance of HMs. These genes are either directly 
involved in signal transduction to produce metabolites that result 
in tolerance or indirectly regulate the production of other 
transcripts (Lee and Back, 2017b; Duhan, 2021). In broad terms, 
HMs stress-induced genes (transcripts) can be classified based on 
their functionality and two distinct groups can be  made; one 
includes the functional genes, and the other is regulatory genes. 
The functional group of the transcript as a single or whole 
(without inducing the effect of another gene) encodes important 
compounds which play a critical role in the tolerance against HMs 
(Nawaz et al., 2016; Wilson et al., 2019). The functional group 
includes transcripts that mainly encode sugars, alcohols, and 
several amines. The second class of transcripts includes the stress-
related gene involved in the regulatory network of different 
transcription factors (TFs) which work in groups or individually 
and involved in the regulation that led to HMs stress tolerance 
(Table 2; Wilson et al., 2019). Hence it comprises of gene network 
and has much more importance in understanding the broader 
picture. These TFs are often found in clusters in the plant genome 
and belongs to the multi-gene family (Table 2). These genetic 
regulators have unique expressional control of a single to several 
genes by binding at a specific site in promotor, acting as a 
cis-acting binding element to induce transcription. Otherwise, the 
gene is not expressed anyway (Cheng et  al., 2018). This DNA 
binding class has a unique protein domain that acts as a 
cis-regulatory element via protein-to-protein interaction, which 
ultimately results in oligomerization of these transcriptional 
factors with several other regulatory genes (Wilson et al., 2019). 
This transcriptional complex-conjugate system is often referred as 
“regulon.”

A strong connection exists between raised MT levels and HMs 
stress tolerance (Zhang et al., 2022). MT greatly scavenges the 
reactive nitrogen species (RNS) along with reactive oxygen species 
(ROS; Gao et al., 2020), that produced excessively during routine 
photosynthesis process and respiration, as a prime functionality 
of plants. Plants critically utilize raised melatonin levels for 
scavenging elevated levels of RNS and ROS, hence providing 
tolerance to HMs stress otherwise which causes severe damage 
(Aslam et al., 2017; Lominchar et al., 2019; Zhang et al., 2020). The 
production of MT is also consistent with the upregulation of genes 
that produce stress-tolerant enzymes. These enzymes include 
serotonin N-acetyltransferase (SNAT), tryptophan hydroxylase 
(TPH), N-acetylserotonin O-methyltransferase (ASMT) and 
tryptophan decarboxylase (TDC), that are constantly produced in 
HMs stress tolerant plants. Fungal specie, i.e., Exophiala pisciphila, 
highly tolerant to HMs stress was isolated from smelting site of old 
mine in China. Yu et al. (2015) also reported that this specie’s 
transcriptomic analysis proved MTs involvement in the Salinity 
stress. ASMT, SANT and TDC are the enzymes regulating the 

biosynthesis of MT, were significantly upregulated under the stress 
of HMs like Cd (Chandramouli and Qian, 2009), indicating direct 
evidence of the connection of melatonin in HMs stress tolerance. 
It strongly suggests that melatonin has positive involvement with 
the enhanced HMs stress in plants. Figure  2 shows the MTs 
structure and signal transduction of HMs for its production using 
SNAT, TPH, ASMT, and TDC enzymes.

Several transcriptional families (TF) families are 
characterized in response to abiotic stresses in plants like HMs 
stress (Table 2). Here we provide a critical link between the 
production of MT and the contribution of these TFs families in 
response to HMs stress. Several TFs families are involved in MT 
production as a stress reliever in the plants under HMs stress 
(Liu et al., 2020). The transcriptional families that are greatly 
influenced by HMs stress are AREB/ABF, MYB, AP2/EREBP, 
WRKY, bHLH, bZIP, MYC, HSF, DREB1/CBF, NAC, HB, ARID, 
EMF1, CCAAT-HAP2, CCAATDR1, CCAAT-HAP3, 
CCAAT-HAP5, C2H2, C3H, C2C2-Dof, C2C2-YABBY, C2C2-
CO-like, C2C2-Gata, E2F-DP, ABI3VP1, ARF, AtSR, CPP, E2F-
DP, SBP, MADS, and TUB (Liu et al., 2020). These TFs are also 
famous for other abiotic stress inductive, and some of them also 
play a significant role in biotic stress tolerance. These TFs are 
regulon of various transcriptional activities in the broader 
picture after HMs stress induction in plants. In addition, these 
transcriptional activities lead to stress tolerance or stress 
resistance in plants. Table 2 represents the summary of TFs 
involved in the regulation of HMs stress in plants.

Genomic approaches for HMs stress 
tolerance and MT synthesis

Comparative genomic approaches have provided critical 
inputs for crop improvement, especially by identifying biotic 
and abiotic stress related genes, quantitative trait loci (QTLs) 
and figuring out metabolic pathways (Frukh et  al., 2020). 
Melatonin synthesis is directly related to heavy metals stress 
tolerance and critical for plant survival. Severe loss to crop 
yield was observed due to HMs stress and, more importantly, 
cause serious health issues when HMs accumulated plants 
were eaten up by animals or humans. Genomic approaches use 
various tools to identify key regulatory genes that are more or 
less associated with plant melatonin synthesis under the 
devastating stress of HMs, hence play an important role in 
plant physiology (Rajasundaram and Selbig, 2016). These 
approaches are also helpful in understanding the underlying 
molecular and physiological mechanisms of HMs tolerance. 
Genomics involve genome-scale studies of genetically  
diverse plants, using several genome wide transcriptomic 
approaches, gene expression analysis at the whole genome 
level, and discovery of novel genes related to various stresses 
like HMs.

Melatonin synthesis at genome level is controlled by a 
complex network of enzymes (Singh et al., 2016). Tryptophan, 
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which is an essential amino acid, is responsible for melatonin 
production using six enzymes. These critical enzymes are 
tryptophan decarboxylase (TDC), TPH, tryptamine 
5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), 
acetylserotonin-Omethyltransferase (ASMT), and caffeic acid 
O-methyltransferase (Tripathi and Poluri, 2021). The genes 
responsible to produce these enzymes have been characterized 
and cloned for several plants. Very first SNAT gene was mapped 
in rice, which is also a model plant besides Arabidopsis. Several 
studies reported that SNAT was the penultimate enzyme and 
involved in final steps of melatonin production (Zhan et al., 

2019). As many plants are whole genome sequenced, and 
researchers have benefited from the availability of high-quality 
genomic data to find homologs of these enzymes. SNAT 
homolog was also reported in other species, including alga 
laver, cyanobacteria, apple, Arabidopsis, grapevine (Tripathi 
et al., 2021). Furthermore, genome-wide studies have revealed 
that presence of these enzymes is diversified, with varied in 
frequency of existence in different plants.

Serotonin N-acetyltransferase is a regulatory enzyme for 
MT production as it maintains the production level of MT in 
response to stress (Reiter et al., 2015). Comparative genomic 

TABLE 2 TFs in response to heavy metal stresses (Li et al., 2022).

Family Gene Heavy metal Function References

WRKY AtWRKY12 Cadmium It represses GSH1 expression to 

negatively regulates Cd tolerance in 

Arabidopsis

Han et al. (2019)

AtWRKY13 Cadmium It activates PDR8 expression to 

positively regulate Cd tolerance in 

Arabidopsis.

Sheng et al. (2019)

AtWRKY13 Cadmium It activates DCD during cadmium 

stress.

Zhang et al. (2020)

AtWRKY47 Aluminum It confers aluminum tolerance via 

regulation of cell wall modifying genes.

Li et al. (2020)

AtWRKY6 Arsenic It restricts arsenate uptake and 

transposon activation in Arabidopsis.

Castrillo et al. (2013)

MYB OsMYB45 Cadmium It is highly expressed under Cd stress. 

Mutation of OsMYB45 resulted in 

hypersensitivity to Cd treatment

Hu et al. (2017)

SbMYB15 Cadmium, Nickel It confers Cd and Ni tolerance in 

transgenic tobacco.

Sapara et al. (2019)

AtMYB4 Cadmium It regulates Cd-tolerance via the 

coordinated activity of improved anti-

oxidant defense systems.

Agarwal et al. (2020)

AtMYB72 Zinc and Iron It is more sensitive to excess Zn or Fe 

deficiency than wild-type

Van de Mortel et al. (2010)

DwMYB2 Iron The translocation of iron from root to 

shoot is affected by the DwMYB2.

Chen et al. (2006)

bZIP GubZIP Cadmium It is expressed specifically in different 

tissues under Cd stress

Han et al. (2021)

bZIP19,23 Zinc It controls the plant zinc status Lilay et al. (2018, 2021)

RsbZIP010 Lead It downregulates the expression under 

Pb stress.

Fan et al. (2019)

HSF VuNAR1 Aluminum It regulates Al resistance by regulating 

cell wall pectin metabolism.

Lou et al. (2020)

ZAT6 Cadmium It activates PC–related gene expression 

and directly targets GSH1 to positively 

regulate Cd accumulation in 

Arabidopsis.

Chen et al. (2016)

PvERF15 Cadmium It forms a Cd-stress transcriptional 

pathway.

Lin et al. (2017)

HIPP22 Cadmium It binds to the promote the regions of 

the HIPP22 and HIPP44.

Zhang et al. (2019)
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FIGURE 2

Overview of signaling pathways of melatonin and its metabolites (Back, 2021). MT activates MAPK cascade through OXI1/MAPKKK3–
MAPKK4/5/7/9–MAPK3/6. MAPK activation induces translocation of the SA receptor NPR1 into the nucleus to interact with several transcription 
factors, resulting in abiotic stress tolerance. Exogenously applied MT attenuates endoplasmic reticulum stress damage by increasing the 
expression of BIP2, BIP3 and CNX1 genes through the bZIP60 transcription factor. Kinase (RLK) works as a MT receptor responsible for further 
activation of the MAPK cascade. ROS burst occurs from RBOH under stress conditions. Thus, ROS are powerful inducers of de novo melatonin 
biosynthesis. MT further metabolizes into AFMK, AMK, 5-MT, 2-OHM, 3-OHM, which are potent antioxidants. Melatonin and its metabolites 
efficiently scavenge a range of ROS/RNS to maintain cellular ROS balance. Unlike ROS-mediated MAPK activation upon stress (Jalmi and Sinha, 
2015), melatonin-mediated MAPK activation is independent of ROS, indicating that melatonin functions downstream of the ROS burst (Lee and 
Back, 2017a). In this figure, solid arrows indicate confirmed functions; dashed arrows indicate steps not yet demonstrated.

approaches revealed that different species have varied modular 
activities of SNAT, and it has distinct thermophilic properties. 
SNAT is primarily regarded as heat resistant enzyme having 
different temperatures for its catalytic activity in different plant 
species. Thus, it is anticipated that its part in heat stress 
tolerance, providing evidence of the role of melatonin in abiotic 
stress tolerance. Furthermore, ectopic overexpression of 
MzSNAT5 in Arabidopsis reported increased melatonin 
concentration and improve drought tolerance. Moreover, when 
the SNAT production in rice was suppressed, the adverse effects 
were observed on plant growth, and low melatonin levels 
(Tripathi et al., 2021). It was certain that low melatonin levels 
have penalty of increased susceptibility to abiotic stresses and 
ultimately low yield levels. Melatonin, not only involved in 
abiotic stress tolerance but also correlated with biotic stresses. 
Bio-synthetic inhibition of GhSANT1 and other melatonin 
related genes have compromised the resistance conferred by 
cotton against phytopathogenic bacteria. Thus, SNAT is an 
essential compound controlling melatonin synthesis in plants 
and has a significant role in abiotic stress and biotic stresses 
(Jayarajan and Sharma, 2021).

Proteomics

Proteomics emerged as cutting-edge tool for understanding 
the synthesis, functionality, and expressional characterization 
of proteins at whole genome level (Yu et al., 2018a; Wang et al., 
2018). Proteomic studies elucidate differential expression of 
proteins under various stresses like HMs and characterize them 
at cell, organ and tissue level as well as provide insights into 
network modulation of related proteins. Hence, emulating 
structural models identify HMs stress-tolerant material in other 
species (Pardo-hernández et  al., 2021). Using proteomic 
approach is one of the prime studies for understanding the fate 
of a compound and its molecular mechanism of action, 
interaction at post translational level (Pardo-hernández et al., 
2021). This involves whole protein level research related to our 
molecule of interest. Although genomic analyses significantly 
contributed to our understanding of basic gene functionality 
and how genes are translated to proteins, many puzzles for 
protein fate remained a challenge until we  started to study 
whole proteins at genome level. This is because although the 
gene is transcribed and translated into protein, but the protein 
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stability, folding, interaction with other proteins, and 
localization are critical for its functionality. Hence, in depth 
proteomic studies elucidate the target proteins (Rajasundaram 
and Selbig, 2016; Tripathi and Poluri, 2021) that directly or 
indirectly take part in melatonin production, provide 
interaction pathways, and provide better understanding on 
HMs stress tolerance.

Direct involvement of proteins in HMs stress tolerance/
susceptibility is well known, as tolerance involves proteomic 
changes in plants. Therefore, with the use of proteomic 
approaches in plants, we  exploited proteins involved in 
regulating HMs stress (Sage and Kubien, 2007). Furthermore, 
these studies helped a lot for deciphering the proteomic signals 
for perception of stress and initiation of signaling cascade that 
ultimately, with help of network changes at transcriptional and 
metabolomic level, provides tolerance against HMs-induced 
phytotoxicity (Mateos-Naranjo et al., 2008; Zhan et al., 2019). 
It has been categorized as indoleamine compound, synthesized 
as derivate of tryptophan (Yu et al., 2018a; Kanwar et al., 2018). 
Tryptophan is dominantly found in almost all higher plants. 
Besides providing tolerance against HM stress, melatonin also 
provides tolerance against various other abiotic stresses, like 
salinity, chilling, and osmatic stresses (Borges et  al., 2019; 
Peharec Štefanić et al., 2019). Many researchers are working on 
for elucidating the molecular biochemistry of melatonin at 
proteomic level for its mitigation potential against HMs stress. 
Melatonin has been reported to improve antioxidant levels in 
diverse plants like wheat, tomato, and apple, hence reducing 
the ROS damage, providing tolerance to various stresses 
(Yu  et  al., 2018). This review offers insights how melatonin 
provides tolerance against HMs stress at proteomic level.

Reactive oxygen species (ROS)-scavenging proteins are 
critical for inducing tolerance against HMs stress. It was 
observed that under HMs stress, tolerant plants have an 
abundance of ROS scavenging proteins that performs series of 
chain reactions to MT homeostasis (Borges et  al., 2019). 
Several metabolic pathways are significantly modulated under 
HMs stress like rate of respiration, metabolism of sulfur and 
nitrogen, and rate of photosynthesis. Under HMs stress, the 
plant power producing apparatus boosts the production of 
reducing agents like FADH2, NADPH and NADH, which lead 
to higher production of ATP (energy molecule of plants) to 
provide HMs stress tolerance. ROS scavenging is also 
correlated with higher production of reducing agents and 
increased melatonin production. For example, exogenous 
application of MT to HMs stressed plants have improved 
osmoregulation and increment in photosynthetic rate, 
antioxidants, and carotenoids compounds (Yu et al., 2018b). 
Heavy metals stress tolerance has evolved many key regulatory 
processes due to the elevation of MT in planta. These 
compounds like 1, 2 oxygen enhancer protein (OEP), large 
subunit binding proteins of RUBISCO, NADPH oxidoreductase 
and I  and II-photosystem proteins were found with a 
significantly different expression during the HMs toxicity. 

Interestingly, these proteins are also regulatory to produce MT 
(Yu et al., 2018,b; Pardo-hernández et al., 2021).

Conclusion and future perspective

Phytomelatonin has been found to be present in all plants, 
which has an important role in plants as a biostimulator that 
improves plant tolerance to both biotic and abiotic stress. The first 
layer of tolerance in HMs stress tolerance is the signal reception 
of HMs toxicity then transduction to other cells for HMs stress 
response. This fundamental communication in response to HMs 
stress is mediated by protein cipher, which plays a prime role in 
intracellular signal transduction, and activating signaling cascade. 
Proteomic analyses of various plants under HMs stress 
deciphered several molecular mechanisms underlying this 
cascade in the form of variation in protein level that enable or 
unable plant species for stress tolerance This work is of critical 
importance for developing stress-tolerant plants. However, a 
detailed study involving antioxidant mechanism, metals-
regulated differential gene expression, and mineral transporters 
is needed to understand complex plant responses to metal toxicity.
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