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The activity of extracellular phosphatases is a dynamic process controlled by both plant

roots and microorganisms, which is responsible for the mineralization of soil phosphorus

(P). Plants regulate the availability of soil P through the release of root mucilage and

the exudation of low-molecular weight organic acids (LMWOAs). Mucilage increases soil

hydraulic conductivity as well as pore connectivity, both of which are associated with

increased phosphatase activity. The LMWOAs, in turn, stimulate the mineralization of soil

P through their synergistic effects of acidification, chelation, and exchange reactions. This

article reviews the catalytic properties of extracellular phosphatases and their interactions

with the rhizosphere interfaces. We observed a biphasic effect of root metabolic products

on extracellular phosphatases, which notably altered their catalytic mechanism. In

accordance with the proposed conceptual framework, soil P is acquired by both plants

and microorganisms in a coupled manner that is characterized by the exudation of their

metabolic products. Due to inactive or reduced root exudation, plants recycle P through

adsorption on the soil matrix, thereby reducing the rhizosphere phosphatase activity.

The two-phase conceptual framework might assist in understanding P-acquisition

(substrate turnover) and P-restoration (phosphatase adsorption by soil) in various

terrestrial ecosystems.

Keywords: phosphatase-soil interactions, substrate catalysis, root exudation, mucilage, LMWOAs, phosphatase

adsorption

INTRODUCTION

The total soil phosphorus (P) pool (e.g., 224–6,725 kg per ha) consists of organic and inorganic
forms of P, of which 80% are immobile and not readily available to plants (Menezes–Blackburn
et al., 2013). The organic fraction (Po) of soil P consists of dead plant and animal residues,
representing 30–65% of the total soil P (Lu et al., 2020). The Po is not bioavailable unless
it is mineralized to orthophosphate (PO3−

4 or its protonated forms) (Wang et al., 2021). The
remaining 35–70% of soil P pool is inorganic P (Pi) and is found as insoluble forms of
primary (e.g., apatite, smectite, and variscite) and secondary phosphate minerals of calcium
(Ca), iron (Fe), and aluminum (Al) that cannot be absorbed by plants until mobilized
(Richardson et al., 2009; Pizzeghello, 2011). The availability of P in the rhizosphere is greatly
affected by several biophysical processes, including the catalysis of soil Po by extracellular
phosphatases, which releases Pi (Oehl et al., 2001; Nannipieri et al., 2011). Phosphatase
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activity can be considered a dynamic process that responds
to both root and soil microbial activities, as well as abiotic
environmental conditions such as temperature, moisture, and
soil adsorption characteristics (Schachtman et al., 1998; Dalling
et al., 2016; Tang and Riley, 2021). The root penetration and
rhizodeposition processes during nutrient uptake alter both the
spatial and temporal distributions of pore spaces in the soil
(Crawford et al., 2005; Hill et al., 2015). The altered soil pore
space geometry also affects soil porosity and the pathways for
transporting nutrients, water, and metabolic products (Hinsinger
et al., 2008; Peth et al., 2008; Pettridge and Firestone, 2017).
The volumetric water content and structural heterogeneity of the
soil influence enzyme activity (Reed et al., 2015; Benard et al.,
2019a). As volumetric water content increases in soil, tortuosity
and fragmentation of the liquid phase are reduced, facilitating the
diffusion of both enzymes and substrates; thus, both molecules
can meet, and the substrate is enzymatically catalyzed (Allison
et al., 2011; Ali et al., 2015; Ahmed et al., 2018).

On an ecosystem scale, plants acquire soil P through complex
interactions with biotic (e.g., soil microorganisms) and abiotic
(e.g., soil mineral surfaces) competitors. It has been demonstrated
that plant roots and soil microorganisms (e.g., mycorrhizal fungi
and their bacterial partners) form a symbiotic relationship that
facilitates the hydrolysis of soil Po by soil phosphatases (Haque
and Dave, 2005). The rhizosphere’s physicochemical conditions
are influenced by root exudation of metabolic products [e.g.,
mucilage and low-molecular weight organic acids (LMWOAs)],
affecting the P availability (Araujo et al., 2012). For example,
mucilage secretion facilitates root P uptake by modifying
soil physical characteristics, such as increasing soil hydraulic
conductivity and decreasing Pi adsorption to soil surfaces
(Zarebanadkouki et al., 2019). Mucilage also affects phosphatase
activity by establishing amoist biofilm-like environment (Ahmed
et al., 2018; Bilyera et al., 2022). Similarly, LMWOAs have been
shown to enhance the desorption of sparingly soluble phosphate
monoesters via acidification, chelation, and exchange reactions,
thus acting synergistically with phosphatases in mineralizing soil
Po (Lambers et al., 2015; Koester et al., 2021).

Until now, the microbiology and biochemistry of the root–
soil interface have not been sufficiently discussed in relation
to root architecture and the physicochemical properties of
zones adjacent to the roots. This review aimed to analyze
the effects of root exudates and soil abiotic environment on
phosphatase dynamics and provide answers to the following
research questions (RQs).

RQ1: How do plants and microorganisms acquire soil P by
releasing their metabolic products, which in addition to their
direct role indirectly contribute to the acquisition of soil P by
altering soil structure and structure-dependent processes?
RQ2: How do soil physicochemical properties influence
phosphatase activity (e.g., by adsorption, immobilization, and
inhibition), which lead to considerable changes in phosphatase
catalytic properties?
RQ3: How can phosphatase activity be incorporated into
a conceptual framework for quantifying P cycling in soil
via processes, such as soil Po hydrolysis and phosphatase
adsorption to soil matrix?

In order to address these questions, we described the effects of
root and microbial exudates on phosphatase activity, examined
the interaction of phosphatases with colloidal and mineral soil
surfaces, and presented a conceptual two-phase framework that
can be used to interpret soil P cycling (Figure 1).

EFFECTS OF ROOT EXUDATION ON
PHOSPHATASE ACTIVITY

A plant utilizes 20–40% of its photosynthetically fixed carbon
(C) through root exudation to expedite nutrient uptake by
supporting the growth of beneficial microorganisms, e.g.,
symbionts (Badri and Vivanco, 2009). Phloem metabolites (e.g.,
sugars, amino acids, and LMWOAs) are exuded via (i) passive
diffusion, (ii) exudation mediated by transporter channels, and
(iii) active transport across plasma membranes (Oburger and
Jones, 2018). The exuded metabolic products are used by plants
to sense nutrient availability relative to their demand at different
physiological stages (Canarini et al., 2019). The efflux of exudate
into the soil is carried out by plasmodesmata, which connect
the cytoplasm of neighboring cells to establish living bridges
between them (Ross–Elliott et al., 2017). The physiological
mechanisms regulating exudation efflux are strongly affected by
external environmental stimuli and exuded metabolic products
(Williams and de Vries, 2019; Korenblum et al., 2020). The
concentration of primary metabolites present in the root tip
serves as a cue for sensing the soil environment and signaling
between roots and shoots in order to modify root growth and
nutrient allocation (De Schepper et al., 2013; Hu et al., 2018).
The soil microorganisms affect the rate of exudation at the root
tips through their consumption and enzymatic transformation of
released metabolites (Sasse et al., 2019).

Low Molecular Weight Organic Acids
The root-exuded LMWOAs contain one to three carboxylic
groups; among them, malic and citric acids (>2 mmol kg−1 soil)
are the most abundant and prevalent organic acids associated
with P mobilization (Denton et al., 2007; Aziz et al., 2011;
Hunter et al., 2014). A typical concentration of LMWOAs in soil
solution ranges between 0–50µmol for dicarboxylic acids and 0–
1 mmol for monocarboxylic acids (Strobel, 2001; Nwoke et al.,
2008). Under abiotic stress, root tips of plants regulate malate
anion efflux channels (ALMT) that initiate malate exudation
in response to P deficiency (Ramesh et al., 2015; Gilliham and
Tyerman, 2016; Mora–Macías et al., 2017). A high exudation of
citric acid can lower soil pH and enhance P uptake by white
lupin (Weisskopf et al., 2006). Citric acid, as a tricarboxylic acid,
is more effective than dicarboxylic and monocarboxylic acids at
mobilizing soil P (Khademi et al., 2009; Gang et al., 2012). This
is because tricarboxylic acids are more capable of (i) forming
stable chelation complexes with Ca in alkaline soils, thereby
preventing precipitation of P (Kirk et al., 1999), (ii) complexing
Al to reduce precipitation of Al–P hydroxy-phosphates, thus
promoting weathering of P-bearing rocks (Pearse et al., 2007),
(iii) remobilizing adsorbed P from soil surfaces via ion exchange,
and (iv) preventing adsorption of P by soil matrix (Oburger
et al., 2011). The majority of LMWOAs (57%) is consumed by
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FIGURE 1 | A conceptual two-phase framework that integrates root exudation and soil environment as main drivers of soil phosphatase activity. The dotted lines in

each block of main sections indicate their combined effects on phosphatase activity. Based on the conceptual framework block, Phase I shows the soil Po acquisition

pathway that is regulated by active root exudation, while Phase II shows soil Po restoration in the absence or with reduced root exudation effects. Both phases are

controlled by the P demand of plants with the initiation of P mining processes (green boxes) or by reducing C investment into P mining (yellow boxes).

soil microorganisms as part of their metabolic processes (e.g.,
respiration), while the rest is absorbed by soil colloids (Andrade
et al., 2013).

Plant roots and soil microorganisms actively release
phosphatases and LMWOAs as a result of ATP consumption
for the acquisition of P in the P-deficient rhizospheres (Kelleher
et al., 2004; Nannipieri et al., 2011; Ajmera et al., 2019). LMWOA
anions either occupy sorption sites on the soil mineral surfaces
to replace Pi or contribute to the hydrolysis of adsorbed Po
(Lambers et al., 2015; Wang Y. et al., 2017). Their mutual
relationship in mobilizing and mineralizing soil Po is shown
to be synergistic in the conceptual model of Clarholm et al.
(2015). The bioavailability of P depends on the interaction of
pH, phosphatase activity, and the concentration of LMWOAs
in the soil solution (Adeleke et al., 2012). For example, a
significant positive correlation was found between pH and
phosphatase activity in the rhizosphere of drought-tolerant
and non-drought-tolerant corn varieties under water stress
(Song et al., 2012). The authors observed that osmotic stress
increased the concentration of LMWOAs exuded by roots,
resulting in increased phosphatase activity during elongation,
tasseling, and filling stages, whereas drought-tolerant corn
varieties showed higher phosphatase activity. Similarly, glucose,
glutamate, and citrate were found to significantly increase
phosphatase activity in both clayey and sandy soils at pH 6.9 and
5.1 (Renella et al., 2007). A significant increase in phosphatase
activity was observed in the rhizospheres of Crotalaria juncea
and Tithonia diversifolia at a distance of 0–1mm from the root
surface (George et al., 2002). The above examples illustrate a
close relationship between LMWOA exudation and phosphatase
activity in promoting phosphatase-mediated Po mineralization
by multiple mechanisms.

Root Mucilage
Mucilage secreted by the plant roots is composed of
polysaccharides or long-chain sugar molecules and proteins
that form a gelatinous substance that adheres to the root cap
(Bais et al., 2008). As a result of mucilage secretion, a biopolymer

layer forms in the soil around the root tips, known as rhizosheath
structures (Delhaize et al., 2012). Rhizosheath structures are
correlated to the length and density of the root hairs and modify
the rhizosphere transport processes (George et al., 2014; Pausch
et al., 2016). The gelatinous nature of mucilage facilitates the
uptake of water and nutrients by increasing the hydraulic
conductivity of soil particles and binding them together and with
the roots (Kroener et al., 2014; Carminati et al., 2016). Mucilage,
with its water absorption properties, affects soil hydraulic
properties due to the presence of surfactants (Zickenrott et al.,
2016). Mucilage can absorb water up to 1,000 times its dry weight
to maintain a moist rhizosphere where bulk soil dries out more
quickly (McCully and Boyer, 1997). The decrease in volumetric
water content of the soil reduces surface tension and increases
mucilage viscosity, which improves its ability to sustain liquid
bridges across soil particles (Carminati et al., 2017; Benard et al.,
2019b).

Phosphatase activity is closely related to root mucilage and
its ability to increase hydraulic conductivity in soil pores (Jones
et al., 2009). Due to mucilage secretion, rhizosphere volumetric
water content is higher than bulk soil. These effects enhance
enzyme diffusion into the root zone, creating a hotspot of
enzymatic activity (Carminati et al., 2010; Manzoni et al., 2014).
For example, a reduction in volumetric water content in the
rhizosphere of barley caused a 97% decline in phosphatase
activity, demonstrating a strong and reversible impact on soil
phosphatase activity (Holz et al., 2019). In another study, a
low concentration of mucilage secreted by maize roots (40
µg C g−1 soil is equivalent to 10% of microbial biomass
C) significantly increased the soil phosphatase activity under
drought (30% of soil water holding capacity) (Ahmed et al.,
2018). In the presence of a high mucilage concentration (200
µg C g−1 soil is equivalent to 50% of microbial biomass C),
the drought effect was overcompensated, leading to a one-third
increase in phosphatase activity. Plants increase phosphatase
activity directly by producing and exuding phosphatases through
roots and indirectly by providing labile C, as found in root
mucilage, to promote microbial activity (Rejsek et al., 2012;
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Spohn and Kuzyakov, 2013). The increase in viscosity of
mucilage under drought conditions causes it to transform
into a hydrophobic inter-particulate glue that strongly inhibits
the diffusion of substrates toward phosphatases, resulting in
decreased availability of Pi to plants (Hunter et al., 2014;
Brax et al., 2020). Microorganisms in thin water films around
soil particles may suffer dehydration and go dormant (as
cysts or spores) or even die as a result of denaturation of
their cellular components under osmotic stress (Schimel and
Balser, 2007; Williams and Rice, 2007; Loeppmann et al.,
2018).

Substrate–Product–Enzyme Interactions
and Their Kinetic Description
The economic model of extracellular enzyme production treats
soil microbial communities as economic units during their
resource allocation to produce C-, N-, and P-releasing enzymes
(Sinsabaugh and Moorhead, 1994). In spite of contrasting soil
properties and nutrient stocks, the C- and P-cycling enzyme
network enhanced nutrient acquisition to maintain microbial
growth, which indicates a similar trade-off between C- and
P-cycling enzymes (Loeppmann et al., 2020). Extracellular
phosphomonoesterase activity regulates the P forms in soil and
depends on the enzyme production itself, such as the release
of the enzyme by plants and microbes into the soil solution,
or the availability of labile P substrate (Turner and Haygarth,
2005; Burns et al., 2013). Total composition and quality of soil
Po influence enzyme- and substrate-dependent catalysis of soil
Po compounds (Quiquampoix and Mousain, 2005; Noll et al.,
2019). Both acid and alkaline phosphomonoesterases hydrolyze
phosphomonoesters, e.g., inositol phosphates and phytins, which
constitute between 20 and 50% of the total soil P (Dalal,
1977; Turner, 2008). Compared with phosphomonoesterases,
phosphodiesterases exhibit relatively low activity (e.g., in acidic
soils) as a result of the resiliency of phosphodiesters to
degradation or sorption, both due to their protected phosphate
ester groups (Jarosch et al., 2019). The phosphodiesters found
in fresh detritus of plant or microbial origin have a low
persistence in the soil and rarely exceed 1% of the total soil P
(Paul and Clark, 1989). The activities of phosphomonoesterases
and phosphodiesterases cannot be separated completely. The
phosphodiesterase produces highly labile substrates for the
phosphomonoesterase, which, in turn, releases orthophosphate,
which is a potential inhibitor for both enzyme groups (Leake and
Miles, 1996).

In nature, enzyme-driven substrate catalysis occurs
spontaneously and is primarily regulated by the diffusion
of substrate monomers toward enzymes present in solution
or adsorbed at the soil surface (Datta et al., 2017). The
breakdown of soil Po by phosphatases involves the production
of metaphosphate as an intermediate product, which is then
converted into orthophosphate in the presence of water
(Lassila et al., 2011). As a result of the rapid protonation
of phosphoryl groups, phosphate-monoester anions have
increased electrophilicity, which allows them to react more
quickly with substrates in contrast to phosphate-diester anions

(Hengge, 2005). Experimental evidence concerning the co-
occurrence of phosphatase activity and the P depletion zone has
been obtained up to a distance of 2–4mm from the root surface
(Nuruzzaman et al., 2006; Hummel et al., 2021). Phosphatase
activity near the root surface reduces the concentration of Po
substrate compared with the surrounding soil (Burns et al., 2013).
As a result, a concentration gradient drives substrate diffusion
from solution, while catalysis depends largely on phosphatases
present in a free state or adsorbed on the soil surfaces. The rate
of product formation and/or the rate of substrate catalysis (v)
can be determined by the Michaelis–Menten Equation (1).

v =
Vmax × S

Km + S
, (1)

where Vmax is the maximum reaction rate of product formation
and Km is the Michaelis constant, which indicates the affinity of
enzymes to specific substrates (e.g., Km is inversely proportional
to affinity) and is defined as substrate concentration (S) at half
of Vmax.

The kinetic parameters of the substrate-dependent Michaelis–
Menten model are merely the weighted means of the
characteristics of the enzymatic activity catalyzed by many
diverse enzyme systems in soil; hence, they are often defined
as apparent Vmax and Km. However, the Michaelis–Menten
approach in environmental modeling remains important for
understanding the effects of plant–microbial interactions and
soil physicochemical conditions on average substrate turnover
rates (Eberwein et al., 2017).

Plant Photosynthesis and Microbial P
Acquisition: A Coupled Relationship
Root secretion of mucilage and exudation of LMWOAs is carried
out by passive and active mechanisms, respectively (Jones et al.,
2009). Together with dying root cells, the released C sources
serve as microbial substrates that promote microbial activity
and growth (Loeppmann et al., 2016a,b). A coupled relationship
has been observed between photosynthetic activity and root
exudation, which is mediated by soil microorganisms through
consumption and biotransformation of released metabolites
(Doan et al., 2017; Vidal et al., 2018). For example, the
photosynthetic P-use efficiency was found to be exceedingly high
for Proteaceae and non-Proteaceae species with different leaf
traits (Pereira et al., 2019). On nutrient-poor sites, P was used
much more efficient for photosynthesis, indicating a species-
independent increase in P-use efficiency in both Proteaceae and
non-Proteaceae with decreasing soil P availability (Pereira et al.,
2019). The competitive saturation of sorption sites by organic
C anions caused by elevated organic C content of soil led to
an increase in the lability, solubility, and transport of Pi in soil
(Reddy et al., 1980; Ohno and Crannell, 1996; Brucker et al.,
2020). The low availability of dissolved Pi in soil solution (<0.01–
1mg L−1) results in starvation conditions for soil microbes,
thus they have to use multiple strategies to acquire P, such as
improving P assimilation, optimizing intracellular P metabolism,
and mobilizing extracellular P (Steinweg et al., 2013; Grafe et al.,
2018; Pistocchi et al., 2020). We propose a coupled relationship
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that entails the provision of labile C to soil microorganisms
through root exudates (e.g., mucilage, LMWOAs) and the
microbial response to access soil P through phosphatase activity.
This coupled relationship (Figure 2) controls both the uptake
of Pi by plant roots and soil microorganisms, and hence
phosphatase activity, which in turn is determined by phosphatase
production and dissolved Pi in soil solution.

EFFECTS OF ABIOTIC SOIL
ENVIRONMENT ON PHOSPHATASE
ACTIVITY

The abiotic soil environment strongly regulates substrate
degradation rates since it influences the nutrient-foraging
strategies of soil microorganisms (Schimel and Weintraub,
2003; Gianfreda, 2015). After being released from plant roots
as exudates or microbial secretions, extracellular phosphatases
form many types of associations (Figure 3), including (i)
enzyme–substrate complexes, (ii) adsorption to clay minerals,
(iii) complexing with soil organic matter surfaces through
entrapment, absorption, or co-polymerization, and/or (iv)
present in freely diffusible forms in soil solution (Wallenstein and
Burns, 2011).

Phosphatase Adsorption on Colloidal and
Mineral Soil Surfaces
In soil, extracellular phosphatases are present in solution or
they bind reversibly to soil colloidal and mineral surfaces, which
protect them against microbial decomposition and exposure to
environmental stresses (Burns, 1982; Kedi et al., 2013; George
et al., 2014). Several mechanisms can account for the strong
adsorption affinity of phosphatases for soil colloidal components
(<2µm), including electrostatic Van der Waals forces, Lewis’s
acid–base effects, hydrophobic interactions, and conformational
entropy (Ikeda and Kuroda, 2011). In the rhizosphere, organic
and inorganic ligands (e.g., LMWOAs and phosphate anions)
contribute to phosphatase adsorption through ion exchange,
covalent complexation, and hydrogen bonding (Nannipieri et al.,
1988). The abundance of silica (SiO2) in soil facilitates the
physicochemical interaction of phosphatases with soil surfaces
through the negative charge of silanol groups (Si–OH) and
siloxane bridges (–Si–O–Si–) (Zhuravlev, 2000). Typically, free or
colloid-associated phosphatases are transported to soil surfaces
by convection (laminar or turbulent flows); however, their final
adsorption to soil surfaces is carried out by diffusion (Datta
et al., 2017; Guber et al., 2022). Due to electrostatic attraction,
oppositely charged phosphatases adopt a spatial orientation
toward soil surfaces during adsorption (Margalef et al., 2017).
The phosphatase adsorption by colloidal and mineral surfaces of
soil can be explained by Langmuir’s Equation (2).

X =
Xm × C

K + C
, (2)

where Xm is the maximum adsorption capacity of enzymes, C
is the equilibrium concentration of enzymes in solution, and K
is the binding energy of enzyme molecules (e.g., low K values

indicate high affinity of enzymes for colloids and minerals)
(Huang et al., 2003). Langmuir’s equation assumes uniform
surface area and is commonly used to estimate phosphate
adsorption, but it can underestimate the amount of adsorption
since it neglects multiple possible sorption pathways (Hussain
et al., 2012; Kruse et al., 2015).

In acidic soil environments, phosphatases adsorb to finer
colloidal particles (e.g., goethite and montmorillonite), which
can be exacerbated by the presence of iron oxides with large
surface areas and high anion exchange capacity (Huang et al.,
2005; Zhao et al., 2012). Organic components (e.g., humic acids)
facilitate phosphatase adsorption by trapping them within their
macromolecular networks (Kelleher et al., 2004). Adsorption of
phosphatase by LMWOAs and inorganic anions decreased in
the following order: phosphate > tartrate > oxalate > acetate
(Huang et al., 2003). Nevertheless, addition of acetate (0–10
mmol) increased phosphatase adsorption onto goethite and
kaolinite surfaces by protonating the surfaces of the acetate
adsorbates, thereby creating more adsorption sites. As anion
adsorption density increased, the promoter effect of acetate
diminished at concentrations above 10 mmol as a result of
steric and competitive interactions (Kafkafi et al., 1988; Geelhoed
et al., 1998). By contrast, higher concentrations of oxalate
(0–50 mmol) reduced phosphatase adsorption on goethite
surfaces (Zhao et al., 2012). Oxalate affects the adsorption
properties of clay minerals by forming mono- (pH 3.5) and di-
coordinate (pH 4.5 and 5.5) complexes that reduce phosphatase
adsorption through conformational changes (Bhatti et al., 1998).
Phosphatases maintain a neutral charge at their isoelectric
point (pH∼5), which is necessary to preserve their natural
molecular configuration (Huang et al., 2003). A reduction
in adsorption at the isoelectric point would facilitate the
achievement of maximum specific activity by reducing the
congestion among phosphatase molecules. When pH decreases
from 5, an electrostatic repulsion develops between phosphatases
and clay minerals (both being positively charged), resulting
in reduced adsorption (Leprince and Quiquampoix, 1996). In
addition, the negative charge on the surface of phosphatases
and clay minerals above the isoelectric point inhibits adsorption,
thereby allowing the phosphatases to diffuse into the water-filled
pores of the soil. We therefore speculate that phosphatase activity
and adsorption may be affected by the competitive adsorption
of enzymes and organic/inorganic anions. Both mechanisms
(phosphatase–Po substrate and phosphatase–soil interactions)
are controlled by changes in enzyme configuration/coverage
on soil colloids and organic anion-induced dissolution of soil
colloids and minerals.

Phosphatase Immobilization and Inhibition
Kinetics
Adsorption of enzymes generally prevents their degradation
since immobilized enzymes are less susceptible to environmental
stresses, because their 3D structure is stabilized through
the surface–surface interactions, and stressors are prevented
from accessing them (Joner and Johansen, 2000). Due to
immobilization, phosphatase activity is largely controlled by
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FIGURE 2 | A scheme visualizing the coupled relationship between plants and soil microbes for the acquisition of available soil P resources and/or P mineralization

induced via phosphatase activity. Root exudation of mucilage and LMWOAs exert favorable physicochemical and hydraulic changes in the rhizosphere for P

accessibility. Soil microbes ensure a mutual relationship with plant roots by the production of phosphatases and release of LMWOAs, which favor P supply from soil P

reservoir.

pH fluctuations, temperature variations, structural orientation
effects, and steric hindrances caused by organic or inorganic
ligands (Demanèche et al., 2009; Kedi et al., 2013). For
example, after immobilization by minerals and sediments,
alkaline phosphatases showed a 5% decline in activity (Zhu
et al., 2016). However, after immobilization by soil inorganic
components, acid phosphatases showed distinct patterns of
activity in the following order: allophane > kaolin > Fe oxide
> montmorillonite > Al oxide = Mn oxide (Shindo et al.,
2002). Acid phosphatases immobilized on Al, Fe, Mn oxides, or
montmorillonite retained 13–23% of their activity, whereas acid
phosphatases immobilized on kaolin and allophane retained 57
and 77% of their activity, respectively. As a result of adsorption,
acid phosphatases showed a decrease in Vmax, an increase in Km,
and a decrease inVmax/Km ratio (Shindo et al., 2002). The specific

activity and adsorption strength of acid phosphatases increased
with the increasing concentration of organic anions (e.g., oxalate)
(Zhao et al., 2012). The general consensus is that organic ligands
increase phosphatase activity (a stimulatory effect) compared
with inorganic ligands (a competitive effect) (Pascual et al., 2002).

The inhibition of phosphatases by immobilization occurs
through interactions with colloidal and mineral soil surfaces
via competitive inhibition, non-competitive inhibition, or mixed
mechanisms (Deng and Tabatabai, 1995). Phosphatase inhibition
causes the formation of enzyme–substrate, enzyme–inhibitor,
or enzyme–substrate–inhibitor complexes (Quiquampoix et al.,
2002; Tietjen and Wetzel, 2003). The presence of certain
inorganic anions (e.g., phosphate) and heavy metals (e.g.,
arsenate) may inhibit phosphatases, leading to a reduction in
their affinity for substrates (Tian et al., 2018). As phosphatases
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FIGURE 3 | A summary of the interactions between soil colloidal and organic matter surfaces and extracellular enzymes and their effect on enzyme–substrate

complex formation.

are synthesized by plants under conditions of Pi limitation,
their activity is referred to as Pi-repressible activity (Rombola
et al., 2014; Čapek et al., 2021). Phosphatase activity is inhibited
by dissolved Pi concentrations in solution, suggesting a close
relationship between the use of dissolved Pi in the soil and
the mobilization of plant’s internal P reserves (Gianfreda and
Ruggiero, 2006; Maseko and Dakora, 2013). A direct, positive
relationship exists between phosphatase activity and product
concentration when soil biota gains optimal access to dissolved
Pi under conditions of high P demand (Treseder and Vitousek,
2001). The inverse relationship can be observed when high
levels of phosphatases are present without significant formation
of products (Allison S. D. et al., 2007; Allison V. J. et al.,
2007). In addition, the negative correlation is also evident when
phosphatases are adsorbing to colloidal and mineral soil surfaces,
e.g., lowering their catalytic efficiency (Weintraub and Schimel,
2005).

Phosphatase immobilization on montmorillonite or goethite
surfaces results in a reduced inhibitor affinity by reducing the
accessibility of inhibitors to the catalytic sites (Bhattacharyya
et al., 2008; Wang Z. Q. et al., 2017). For example, the
competitive inhibition represents the direct competition between
an inhibitor and substrate at the enzyme’s active site, resulting
in a decrease in Km but an increase in Vmax, indicating that
the enzyme’s active sites are temporarily bound to the organic
matter surfaces (Zimmerman and Ahn, 2010). The ability to
characterize the competitive inhibition of phosphatases can
be useful in predicting inhibitor toxicity to soil phosphatase
activity (Wang et al., 2018). As a result of high inhibitor

concentrations, Km increases, resulting in a more difficult-to-
break ESI complex, which reduces Vmax (Dick and Tabatabai,
1987; Cornish–Bowden, 2015; Wang Z. Q. et al., 2017).
Phosphatases immobilized on mineral soil surfaces exhibit a
complete inhibitory effect, whereas free phosphatases in solution
show a mixed, linear inhibitory effect (Tian et al., 2018). The
reason for this is that inhibitors (e.g., phosphate anions, arsenate)
cannot fully compete with the substrate on the active sites of
immobilized phosphatases due to their adsorption by mineral
soil surfaces. Conversely, inhibitors are better able to compete
with the substrate at the active sites of free phosphatases
when there are few adsorption sites supplied by the enzyme–
substrate complex. A non-competitive inhibition mechanism
is characterized by inhibitors binding to the enzyme–substrate
complex or enzyme itself, but not the active site, causing a
reduction in Vmax and no change in Km (Ahn et al., 2006).
In acidic soils, non-competitive inhibition reduces phosphatase
activity to a significant extent, but this can be slowly recovered
with an increase in organic matter content and cation exchange
capacity (Wang et al., 2018). A decline in phosphatase activity in
alkaline soils can be attributed to competitive inhibition and non-
competitive inhibition effects, with an increase in Km resulting
from increasing inhibitor concentration.

CONCEPTUAL TWO-PHASE FRAMEWORK

In a heterogeneous soil environment, diffusion and mass flow-
based transport processes co-regulate Po mineralization through
extracellular phosphatases. During water flow toward the plant’s
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xylem, mass flow facilitates substrate transport to phosphatases
close to the roots, while diffusion governs Po hydrolysis and
is dominated by readily available dissolved Pi in soil. The fast
decomposition of the substrate (Po) and the uptake of released
products (Pi) in the immediate vicinity of roots enhance the
diffusion of P toward root surfaces. Due to the strong adsorption
of Pi ions on the soil surfaces, diffusion alone is not sufficient to
meet the plant’s P requirements. This results in a non-equilibrium
shift between high Pi uptake and low replenishment from the soil,
resulting in P depletion zones that extend from the root surface
toward the bulk soil. The production and subsequent activity of
extracellular phosphatases are strongly related to the depletion of
Pi from the soil solution, suggesting that plants meet most of their
P needs by mineralizing soil Po. In addition, metabolic products
that are excreted by the roots (e.g., mucilage and LMWOAs) play
an important role in both modifying the soil physicochemical
conditions to increase P accessibility and indirectly enhancing
extracellular phosphatase activity. In our conceptual two-phase
framework, we explain how root-exuded metabolic products,
such as mucilage and LMWOAs, regulate phosphatase activity
by altering soil physicochemical and hydraulic conditions. It is
hypothesized that exudate-imposed conditions can affect soil P
bioavailability in response to the P demand of soil biota. An
opposite scenario occurs when the active P demand has beenmet,

resulting in reduced exudation of bioactive compounds, which
conserves available P resources and phosphatases by adsorption
to the soil matrix.

Mechanistic Interpretation
The framework aimed to address the challenges involved in
developing efficient, reliable, and useful P models for ecosystem
studies. To provide a mechanistic explanation, a two-phase
dynamic system (Figure 4) is constructed to describe the
acquisition of soil P by plants via root exudation and the
conservation of soil P via adsorption. Both phases are influenced
by the presence or absence of stimulating root exudates.

The proposed two-phase model system is composed of several
interrelated processes marked with letters A, B, C, and D. The
processes designated with the letter “A” are connected with the
P demand of plants, which in turn facilitates root uptake of
dissolved Pi through diffusion, which is relatively low (0.1–5 ×

10−13 m2 s−1) as compared to other nutrients (Bhadoria et al.,
1991). Due to a continuous uptake of Pi by plant root systems, a
rapid equilibrium between dissolved Pi and labile soil Pi fractions
is disturbed, leading to a faster release of Pi into solution (Tinker
and Nye, 2000; Mengel et al., 2001). Those processes with the
letter “B” involve an increase in the P requirement of plants due
to a low level of dissolved Pi, leading to physiological changes

FIGURE 4 | A conceptual two-phase framework for predicting P bioavailability in ecosystems based on phosphatase activity and soil phosphatase interactions. In

“Phase I”, plants acquire soil P via phosphatase activity, which is controlled by a coupled relationship (biotic relations) with soil microorganisms in the presence of

exuded metabolic products such as mucilage and LMWOAs. The “phase II” is characterized by the conservation of soil P resources under the dominance of biotic and

abiotic interaction among microbes, phosphatases, and the different P forms with the soil mineral surfaces in the absence of root exudation. During phase II,

extracellular phosphatases are immobilized and adsorbed onto colloidal and mineral soil surfaces, which inhibits their activities through modifications in hydraulic and

physicochemical properties. CI, competitive inhibition; non-CI, non–competitive inhibition; ES, enzyme–substrate; EI, enzyme–inhibitor; ESI, enzyme–substrate–

inhibitor.
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in plants. Consequently, plants exude metabolic products (e.g.,
LMWOAs and phosphatases), which facilitate the mobilization
of sparingly soluble soil P forms and/or the mineralization of soil
Po (Chen et al., 2002; Merlin et al., 2016). The hydrolysis of soil
Po is inhibited when dissolved Pi is no longer the limiting factor
for plant uptake, suggesting a negative relationship between
Pi availability and phosphatase activity (Moscatelli et al., 2005;
Marklein and Houlton, 2012). The letter “C” represents catalytic
processes involving Po mineralization and/or phosphatase soil
adsorption in the absence of root-exuded metabolic products.
The coregulation of labile Pi uptake and Po mineralization is
contingent on the plant’s P demand, which then drives the system
either toward P-mineralization or microbial P-immobilization
(Zhang et al., 2018; McConnell et al., 2020). The letter “D”
denotes processes that are executed under P restricted conditions
that may result in P immobilization (e.g., increasing P storage
in microbial cells), which will eventually result in the transition
from P acquiring systems to an efficient P recycling system (Lang
et al., 2017; Manzoni et al., 2021). The decrease in P demand
for immobilization by plants and soil microbes also results in a
decrease in the exudation of their metabolic products, including
the production and exudation of extracellular phosphatases
(Rejsek et al., 2012). Following the cessation of exudation of
metabolic products (e.g., mucilage, LMWOAs) from plants’ roots,
the rhizosphere conditions modify to trigger P immobilization
pathways involving adsorption of Pi, Po, and phosphatases to
soil surfaces.

Phase I: P Acquisition by Increased Root Exudation

Effects
The secretion of mucilage at the root tips has multiple functions,
including (i) mobilizing Pi from mineral sorption sites, (ii)
transporting mobilized Pi to the roots, and (iii) facilitating the
mineralization of Soil Po by extracellular phosphatases. Mucilage
stimulates the growth and activity of soil microorganisms by
providing them with labile C, thereby indirectly increasing
phosphatase activity. The texture of mucilage gel promotes the
retention of more water during drought events, so mucilage
increases soil hydraulic conductivity. When the soil dries out,
water diffuses from the gel and forms liquid bridges with soil
surfaces that encapsulate root tips. These liquid bridges act as
small water channels connecting the soil particles with each
other and with the surface of the roots to facilitate the transport
and uptake of Pi. In situations of high P demand, mucilage
reduces the diffusion barrier of phosphate monoesters and
allows them to reach phosphatases near the roots. The increased
secretion of mucilage reduces its viscosity, which increases the
surface tension of the solution directly attached to the soil
pore surfaces. Ultimately, this increases the hydrophilicity of
phosphatase catalytic active sites required for Po catalysis and
enhances phosphate desorption from soil surfaces. Mucilage
gels are capable of retaining water, creating a hydrodynamic
barrier that can restrict the diffusion of phosphatases, thereby
preventing their adsorption at soil surfaces. The catalytic
efficiency of phosphatases increases with desorption resulting
in the formation of an ES complex as indicated by a high
Vmax and a low Km. In summary, mucilage secretion can

either increase or decrease phosphatase activity by increasing
soil hydraulic conductivity and desorbing phosphate anions.
Similarly, root-exuded LMWOAs alter soil physicochemical
properties in two ways: they (i) increase P bioavailability through
the solubilization of crystalline and/or amorphous P-containing
minerals and (ii) function synergistically with phosphatases
through anion-exchange reactions. This synergistic relationship
results in (i) the blocking of phosphatase adsorption sites at
the soil surface, which helps to reduce (re-) adsorption and
(ii) the introduction of pH changes to the isoelectric point
of phosphatases, which increases their activity. A net neutral
charge on phosphatases is ensured by the isoelectric point,
whichmaintains their natural molecular configuration during the
formation of ES complexes. A maximum level of phosphatase
activity is observed between pH values of 3 and 5, which
subsequently increases due to root exudation of LMWOAs. At
pH < 3, exuded LMWOAs represent an indirect source of
competitive inhibition (e.g., desorption of Pi and inhibitor ions
from soil surfaces), thereby decreasing the substrate accessibility
to phosphatases. Similarly, phosphatase soil adsorption reaches
its maximum level below the isoelectric point and decreases at
a low pH. Both phosphatases and adsorbing soil surfaces are
positively charged at low pH, resulting in a strong electrostatic
repulsion, which may account for phosphatase desorption in
acidic soils.

Bridging Phase: A Spatiotemporal Shift in Root

Activity
Phase I and its underlying processes are continued until Pi
availability is no longer a limiting factor for plant uptake. The
acquisition of dissolved Pi by plant roots depends on many
factors, including (i) the P demand of plants at each stage of
their physiological development, (ii) the soil physicochemical
properties, and (iii) the environmental factors associated with
P accessibility to plants (e.g., water availability). Our hypothesis
states that the P demand of plants is not limited by excessive
dissolved Pi, but it is shifted toward alternative locations
during root development in the soil. Root exudation activity
may improve effective utilization of dissolved Pi through
reallocation of soil P resources during root growth. The term
“effective utilization” refers to acquiring soil Pi in a way that
is advantageous over the addition of exuded metabolites. Plant
roots secrete mucilage and exude LMWOAs, which contribute
to effective soil P acquisition. These processes may also have
residual effects due to spatiotemporal shifts in root activity while
the roots are still growing in the soil. In our opinion, either the
plants’ P requirement has been met at the “depleted hotspots”
or there is a decline in root exudation activity as a result of
environmental factors (e.g., water scarcity). In phase II of the
current framework, we refer to these residual rhizosphere effects
as “depleted root activity” effects that contribute to P restoration
in the soil matrix.

Phase II: P Restoration by Reduced Root Exudation

Effects
The spatiotemporal shifts encountered during root growth result
in reduced P demand of plants at individual sites, and as a
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consequence, reduced root exudation activity, thus leading to
the “depleted root activity effects” effects. These effects increase
during drought, disrupting the coupled relationship between
plant roots and soil microorganisms that was established during
phase I. When root exudation is reduced, microorganisms
struggle to mobilize sufficient P, resulting in a joint C and P
deficiency, which results in a reduced level of activity and growth.
The resulting effect is the interaction between soil microbes and
the mineral surfaces of the soil to maintain the basic requirement
of microbial P acquisition. The transition to microbial dormancy
when nutrients are scarce starts phase II of our conceptual
framework leading to soil P restoration. Drought accelerates P
restoration through the adsorption of extracellular phosphatases
and Pi anions, as well as labile soil Po as high-quality substrates
for future reserves when soil location shifts toward a phase I
condition. A decrease in mucilage secretion reduces hydraulic
conductivity and soil pore connectivity, which in turn has a
negative effect on the transport and uptake of dissolved Pi, as
well as its desorption from the soil surfaces. The decrease in
hydraulic conductivity as a result of low soil volumetric water
content restricts the transport of phosphatases and substrate to
thin water films covering the soil pore surfaces. In the absence
of fresh mucilage secretion by plant roots, the concentration
of mucilage in the rhizosphere increases due to drying, which
increases viscosity and decreases surface tension within the
biogel. As a result of the lower surface tension, the hydrodynamic
barrier between phosphatases and adsorbing soil surfaces is
reduced, and phosphatases adsorb to soil surfaces at different
concentration gradients. During Phase I, this concentration
gradient exists between adsorbed phosphatases and product
concentrations (dissolved Pi) in the soil solution and serves as a
source of competitive inhibition for phosphatases. During Phase
II, this gradient exists between adsorbed phosphatases and their
concentration near the soil surfaces. Moreover, a reduction in
LMWOAs exudation by plant roots may result in an increase
in phosphatase adsorption, since LMWOAs desorption frees up
phosphatase adsorption sites. In the event of a pH rise above
the isoelectric point (>5), a negative charge is generated, causing
electrostatic repulsion between phosphatases and soil colloids.
Consequently, the presence of high alkalinity also results in an
increase in inhibitor concentration in solution, which leads to
a competitive inhibition that reduces substrate accessibility to
phosphatases, leading to the formation of the enzyme–inhibitor
or enzyme–substrate–inhibitor complexes.

The P restoration phase is in effect until the “depleted
root activity” effects are mitigated by increasing the P demand
of plants, thereby transitioning from phase II to phase I.
The dynamic spatiotemporal shifts between both phases are
considered essential to our cyclic two-phase framework.

CONCLUSION

Extracellular phosphatase activity is considered to be the
mechanism by which soil Po is made available to plants and
microorganisms through enzymatic catalysis. The production
of extracellular phosphatases and their subsequent activity are
governed by the P demand of the plant, as well as the availability
of Po substrate in the rhizosphere. Upon the plant’s demand for

P, non-equilibrium conditions develop between readily available
dissolved Pi and the soil’s labile P pool, resulting in an increase
in P mineralization through root and microbial phosphatase
activity. In addition to the catalytic mechanism, several factors
determine phosphatase activity, such as the accessibility of Po
substrates, the pH-sensitive charge of phosphatases, and the
adsorption of phosphatases and their substrates to colloidal
and mineral soil surfaces. The catalysis of soil Po is strongly
influenced by physicochemical properties of soil, including the
presence of organic and phosphate anions. It has been observed
that the amount of dissolved Pi in soil exerts a bimodal effect
on extracellular phosphatase activity (i) directly, when Pi anions
are excessive, they act as competitive inhibitors of phosphatases,
preventing them from binding to substrates, and (ii) indirectly,
by reducing their adsorption on soil surfaces. In addition,
the availability of water influences the interactions between
phosphatases and soil organic matter andmineral surfaces, hence
controlling the catalysis and adsorption processes. The lack of
water availability leads to diffusion limitations, which, in turn,
affect the hydrolysis of soil Po by phosphatases, and thereby
facilitate their adsorption to the soil matrix.

The exudation of metabolic products from plant roots
(e.g., mucilage, LMWOAs) increases soil P availability through
alteration of soil physicochemical conditions. The hydraulic and
physicochemical effects of mucilage and LMWOAs influence the
process of soil P acquisition by phosphatase activity, and the
mobilization of insoluble P compounds. Based on our conceptual
framework, root exudation serves as a controlling factor that
regulates the acquisition and restoration of P within the soil
matrix and is responsible for driving the two phases of Po-
phosphatase interactions. This conceptual framework provides
both theoretical- and process-based insights into the dynamics
of soil P. Phosphatases are secreted by plant roots to meet their
requirement for P, particularly when dissolved Pi is insufficient in
the soil. The spatial and temporal shift between P acquisition and
restoration affects the dynamics of P, implying a demand-driven
strategy for resource acquisition by plants. As root exudation is
largely controlled by plants, it is often poorly understood in its
regulation, which makes it difficult to predict the transition from
an acquiring phase I to a restoring phase II. To develop a detailed
quantitative description and a reliable model of soil phosphatase
activity, and thus Po and Pi dynamics, future studies are needed
that investigate the spatiotemporal heterogeneity of both phases
of soil P cycling.
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