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Cistanche salsa (C. A. Mey.) G. Beck, a holoparasitic desert medicine plant

with multiple hosts, is regarded as a potential future desert economic

plant. However, as a result of excessive exploitation and poaching, its

wild resources have become scarce. Thus, before developing its desert

economic value, this plant has to be protected, and the identification

of its natural reserve is currently the top priority. However, in previous

nature reserve prediction studies, the influence of host plants has been

overlooked, particularly in holoparasitic plants with multiple hosts. In this

study, we sought to identify the conservation areas of wild C. salsa by

considering multiple host–plant interactions and climate change conditions

using the MaxEnt model. Additionally, a Principal Component Analysis

(PCA) was used to reduce the autocorrelation between environmental

variables. The effects of the natural distribution of the host plants in

terms of natural distribution from the perspective of niche similarities and

extrapolation detection were considered by filtering the most influential

hosts: Krascheninnikovia ceratoides (Linnaeus), Gueldenstaedt, and Nitraria

sibirica Pall. Additionally, the change trends in these hosts based on climate

change conditions combined with the change trends in C. salsa were used

to identify a core protection area of 126483.5 km2. In this article, we

corrected and tried to avoid some of the common mistakes found in species

distribution models based on the findings of previous research and fully

considered the effects of host plants for multiple-host holoparasitic plants
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to provide a new perspective on the prediction of holoparasitic plants and to

provide scientific zoning for biodiversity conservation in desert ecosystems.

This research will hopefully serve as a significant reference for decision-

makers.

KEYWORDS

Cistanche salsa (C. A. Mey.) G. Beck, nature reserve, multiple host factors, climate
changes, species distribution model

Introduction

Desert economy refers to the development of industries
based on local characteristics according to the unique climatic,
geographical, and resource conditions of arid areas, thus driving
local economic development (Fan et al., 2020; Shao et al.,
2022). Cistanche salsa (C. A. Mey.) G. Beck, a holoparasitic
plant with multiple host plants living in expansive arid areas,
has the potential to become one of the potential targets
for desert economic development (Editorial Committee of
Flora Reipublicae Popularis Sinicae, 1990; Fan et al., 2020;
Station et al., 2020). Scholars have found that all tissues
of C. salsa comprise medicinal components that can inhibit
the enzymes that are implicated in human ailments in vitro,
including tyrosinase for skin hyperpigmentation disorders,
α-glucosidase and α-amylase for diabetes, and acetyl-(AChE)
and butyrylcholinesterase (BuChE) for Alzheimer’s disease
(Jiang and Tu, 2009; You et al., 2016; Trampetti et al., 2019;
Song et al., 2021). Additionally, because of its medicinal and
economic values, natural sources of this plant have been
decreasing in recent years (Sun X. et al., 2020). Hence, before
developing the economic industry, we first need to protect the
wild germplasm resources by identifying its natural reserves.
Subsequently, industrial coordination and functional area
development can be carried out according to the distribution of
the natural reserves.

For natural reserve identification and distribution
prediction, species distribution models (SDMs) are widely
used, with the Maximum Entropy (MaxEnt) algorithm being
popular due to its user-friendliness (Di Marco et al., 2018;
Galante et al., 2018; Sun J. et al., 2020). Using limited records
and environmental variables, the target species can be easily
predicted in study areas (Moreno-Amat et al., 2015; Gherghel
et al., 2018; Wiese et al., 2019; Mandakh et al., 2020). However,
common mistakes, such as the spatial resolution of records
and variables and the correlations between variables, which can
reduce the credibility of the MaxEnt model, are also ignored
by researchers (Sillero and Barbosa, 2021). Additionally, for
distribution prediction, climate change is also a key factor,

especially under the conditions of species extrapolation with
time range shifting (Elith et al., 2010; Nguyen et al., 2022).
The risk of climate change will also affect SDM accuracy and
reliability, particularly in terms of the climate uncertainty of the
Global Climate Model (GCM) from a single institute, so at least
two or more GCMs from other institutes can be used to check
or reduce the uncertainty (Araújo et al., 2005, 2019).

In addition to considering how these issues are related to
the model settings, for holoparasitic plants, in particular, the
effects of the host plants playing a fundamental role in its
growth must be considered (Wang et al., 2009; Smith et al.,
2013; da Cunha et al., 2018). Some researchers have been
studying the role of host plants. In 2009, David proposed
the host quality hypothesis, which is based on a summary of
previous research and states that host quality is the critical
factor governing the survival of parasitic plants (Watson,
2009). Follow-up studies on the host quality hypothesis have
also focused on hemiparasitic plants, such as Mistletoe and
Loranthaceae (Dibong et al., 2012; Sayad et al., 2017). Moreover,
subsequent studies on holoparasitic and hemiparasitic plants
have also shown that the host plant’s distribution, growth,
and developmental characteristics have an essential influence
on the distribution of parasitic plants (Hu et al., 2020;
Shao et al., 2022).

However, some studies still treat holoparasitic plants,
such as C. salsa and C. deserticola as non-parasitic plants,
during distribution prediction and only investigate the role
of the climate, soil, and other environmental factors (Li
Z. et al., 2019; Liu et al., 2019; Sun X. et al., 2020). To
better understand and predict C. salsa distribution in natural
conditions and to identify the effects of host plants in natural
reserves, our study aims to (1) analyze the changes in the
host plant caused by climate change; (2) predict C. salsa
distribution according to the effects of the host plant; and
(3) identify the natural reserve by changing the habitat of
C. salsa and its hosts in different scenarios. Additionally,
these results will also help other researchers and local
government bodies to better understand how to protect multi-
host parasitic plants.
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Materials and methods

Study area, host selection, and
occurrence records

The Xinjiang Uyghur Autonomous Region comprises
about one-sixth of the Chinese national territory area (totally
1,664,900 km2) and is the location of two large deserts (the
Taklimakan desert and the Gurbantunggut desert). Its unique
climate and soil conditions mean that it may experience
potential economic and research development (Zhou et al.,
2016; Yan et al., 2019; Yang et al., 2021). Most plants cannot
live here because of the region’s extremely bad ecological
environment, but it is also the habitat of some unique
species that can live in high-evaporation and low-precipitation
conditions (Li et al., 2011; Li and Sun, 2017). C. salsa is one
such arid plant, and Xinjiang is its main place of origin in China
(Editorial Committee of Flora Reipublicae Popularis Sinicae,
1990). Hence, understanding the plant’s natural reserves in
Xinjiang is conducive to planning a long-term development
schedule and research projects.

Host plants of C. salsa include Kalidium foliatum (Pall.)
Moq., K. gracile Fenzel, K. cuspidatum (Ung.-Sternb.) Grub.,
Reaumuria soongarica (Pall.) Maxim., Nitraria sibirica Pall., and
Achnatherum splendens (Trin.) Nevski (Editorial Committee of
Flora Reipublicae Popularis Sinicae, 1990). However, new host
plants such as Suaeda physophora Pall. and Krascheninnikovia
ceratoides (Linnaeus) Gueldenstaedt have been observed in
fieldwork. As such, considering the history and current
conditions, these host plants should all be regarded as host
factors for future C. salsa prediction. In the present study,
occurrence records (for host plants and parasitic plants)
were obtained from online databases, including the Global
Biodiversity Information Facility (GBIF), Chinese Virtual
Herbarium National Plant Specimen Resource Center (CVH
NPSRC), National Specimen Information Infrastructure (NSII),
and fieldwork records. Additionally, after the occurrence data
were obtained, the data were cleaned by removing the records
without coordinates and duplicate data. These data were saved
as the “.csv” files with the terms “longitude” and “latitude” in the
header. However, these “.csv” files cannot be used in MaxEnt
modeling directly, and there is a final step to be completed after
preparing the environmental variables: that is, the resolution of
occurrence records should be the same as that of variables. There
were 465 occurrence records in total.

Environmental variables

The current and future climate variables are all from the
WorldClim 2.1 database (including 19 bioclimatic variables
and elevation) and have a spatial resolution of 2.5 Arc-min.

The spatial resolution of 30 Arc-s observed in the bioclimatic
variables can be downloaded for both current and future
scenarios but cannot be used in this study because the resolution
of the variables is extremely accurate and the resolution of
the occurrence records is not as accurate (Sillero and Barbosa,
2021). Additionally, considering the area of Xinjiang, the spatial
resolution of 2.5 Arc-min is enough for MaxEnt modeling.
Additionally, the use of future climate simulations conducted
in different institutes avoids some of the climate uncertainty
resulting from a single climate model (Araújo et al., 2019), so the
mean of the MIROC6, BCC-CSM2-MR, CNRM-CM6-1, and
CanESM5 future climate models were used in this study and
was determined using the R packages “raster” and “rasterVis”
(Hijmans, 2021; Perpiñán and Hijmans, 2021). Furthermore,
the soil and topographical variables shaping the distribution of
arid plant species must be considered (Mod et al., 2016; Buri
et al., 2017; Figueiredo et al., 2018). As such, the data of the
related variables downloaded from NASA and OpenLandMap
include the soil water content (at 100 and 200 cm depth), soil
sand content (at 100 and 200 cm depth), soil organic carbon
content (at 100 and 200 cm depth), soil texture class (at 100and
200 cm depth), and aspect and slope. All of these data have a
spatial resolution that is more accurate and can be processed
once reaching the spatial resolution of 2.5 Arc-min using the
Google Earth Engine.

Environmental variables (30 files) with the same resolution
cannot be used in MaxEnt modeling directly. The use of
highly correlated variables in building models without critically
analyzing them will result in undesired effects (Franklin, 2010;
Field et al., 2012; De Marco and Nóbrega, 2018; Sillero and
Barbosa, 2021): the null hypothesis can be wrongly rejected;
coefficients can change significantly and may even reverse their
sign; insignificant variables can be selected; the model can
suffer from over-fitting, being excessively adjusted to the data
(possibly reflecting noise); and it may be not possible to correctly
disentangle the response curves for each variable, as each
variable will interact with others, making it difficult to obtain
the actual response curves. To avoid these undesired effects
observed in past research, the Pearson and Spearman correlation
matrices have been used, obtaining correlation thresholds of
around 0.7 or higher (Dormann et al., 2013). However, (1)
collinearity effects models trained on data from one region
or time and then projected to another with a different or
unknown collinearity structure (Dormann et al., 2013); and (2)
precipitation will always be related to temperature or elevation
or both, and other variables are associated with everything else,
so there are no completely uncorrelated variables (Tobler, 1970).
Hence, considering that everything is related to everything and
that the effect of collinearity effects change as time and climatic
variables change, Principal Component Analysis (PCA) should
be considered as an approach because it can transform all
environmental variables into different orthogonal components
while maintaining their ecological meaning (Hirzel et al., 2002).
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For this goal, the R package “ENMTML” was used for variable
selection and variable reconstitution in the PCA approach (de
Andrade et al., 2020). The raw 30 environmental variables were
transformed into 8 restructured variables PC1 to PC8, which
contain over 95% of the variable information (Figure 1) that
could be used in model building.

Maximum entropy modeling

There are two fundamental steps in model building: (1)
the preparation and processing of occurrence records and
environmental variables; and (2) the optional strategy for the
research object.

For step one, the occurrence records are processed using
data clean, and the variables also are processed by PCA. Before
putting them together in the Maxent model “machine,” the
spatial resolutions should be the same (Sillero and Goncalves-
Seco, 2014). To achieve this, the R package “ENMeval” provides
a tool to put records into the variable spatial raster and filter
the surplus records to make one record in one spatial raster
(Muscarella et al., 2014; Kass et al., 2021).

Additionally, for step two, C. salsa is a holoparasite plant
with multiple hosts, and it is not easy to input biotic factors
when predicting the performance effects of the host, and this is
often ignored by other researchers (Sun X. et al., 2020). Recently,
researchers have proposed an approach in which the biotic
factors can be regarded as the normal environmental factors
during model building to produce a predictive distribution
(Shao et al., 2022). According to this approach, the model
building takes place in two steps: (1) the host plant distributions
are produced: in each scenario, the MaxEnt model is built with
each host occurrence record and all of the processed variables
(PC1 to PC8 can indicate over 95% of the influence of the
original variables); and (2) the predictive distribution of C. salsa
is produced: in each scenario, the MaxEnt model is trained using
C. salsa records and host plant distributions (as the effect factors
of parasite plant). As such, all of the processes within a specific
climate condition can be included in three steps: (1) the records
of the host plants and C. salsa and the environmental variables
(PC1 to PC8) are processed; (2) the predicted distribution of
the host plants is determined by factors PC1 to PC8 (these
distributions are regarded as in-process factors for the next
step); and (3) the predicted distribution of C. salsa is determined
by the in-process factors (the distributions of its hosts).

This approach is clear, but there is still a question of how
to choose the optional model during training. Traditionally, the
AUC (area under the curve) is a good choice for optional model
selection (Radosavljevic and Anderson, 2014; Kass et al., 2020).
However, some researchers have pointed out that the AUC
is not an optional or appropriate option for the performance
measure of presence-background or presence-only ecological
niche models (Lobo et al., 2008; Leroy et al., 2018; Sofaer
et al., 2019; Velasco and González-Salazar, 2019). As such,

for presence-only models, the Continuous Boyce index (CBI)
may be more suitable (Boyce et al., 2002; Hirzel et al., 2006;
Viña et al., 2010). The CBI value is between −1 and +1.
The positive value means that the predictive distribution is
consistent with the presented distribution, and the negative
value indicates that the habitat has poor predicted quality
(Hirzel et al., 2006; Sun et al., 2021). Additionally, before
the final step, cross-validation must be selected. Spatial cross-
validation can reduce the effects of spatial autocorrelation in
the occurrence data, which avoids overly optimistic model
performance due to the spatial dependence between localities
that can occur through random cross-validation (Roberts et al.,
2017). The R package “ENMeval” also provides some options
for cross-validation, such as block, checkerboard, hierarchical
checkerboard, and so on (Muscarella et al., 2014; Kass et al.,
2021). Considering the area and occurrence in the study
region, the hierarchical checkerboard was chosen for this study
(Radosavljevic and Anderson, 2014; Roberts et al., 2017). In
summary, the whole model generation process includes three
main steps: (1) inputting the data, including clean species
occurrence records and effect factors (for the host plants, the
effect factors are the variables from PC1 to PC8, and for C. salsa,
the effect factors are the distributions of its hosts); (2) producing
the all possible model-parameter settings with evaluations by
considering cross-validation and appropriate features [L, Q, H,
LQ, LH, QH, LQH (Phillips et al., 2017)]; and (3) selecting the
optional model according to the maximum CBI.

Additionally, after models are produced, the extrapolation
risk in prediction training should be estimated due to the
distribution models being produced from the limited data in
the limited zone to the extent zone (King and Zeng, 2007;
Mesgaran et al., 2014; Mannocci et al., 2017, 2018). In this
step, the “dsmExtra” package in R is used to produce the
extrapolation detection (ExDet) metric (which assesses the
extrapolation in environmental space and model transferability)
and the percentage of data nearby (%N) (quantitatively assessing
the extrapolation reliability in multivariate environmental
space) (Bouchet et al., 2020). Additionally, to interpret the
extrapolation assessments simply, a lower ExDet is better; a
higher%N is better; a high ExDet with a low%N is the least
reliable; and a low ExDet with a high%N is the most reliable
(Miller et al., 2013; Bouchet et al., 2019). Additionally, to
assess the effects of the host plants, the ExDet metric, and
the “I” similarity statistic can all quantitatively evaluate this
goal (Warren et al., 2008). These approaches are independent
of the model training processing (Broennimann et al., 2012;
Bouchet et al., 2019).

Assessing the conservation areas

We have primarily used two principles for the delineation
and identification of conservation areas: (1) the classification of
the fitness class of the distribution of wild resources of C. salsa
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FIGURE 1

The PC1 to PC8 are containing with the main information of environmental variables. The main feature of each variable can be contained in one
or more PCA, especially the outlier should pay more attention. The PC1 contains the features of bio01, bio05, bio06, bio09, bio11, bio13, and
bio16; The PC2 contains the features of bio01, bio03, bio04, bio05, bio07, bio08, bio10, bio14, and bio15; The PC3 contains the features of bio12,
bio14, bio17, bio19, elevation, sand_b100, sand_b200, texture_b100, and texture_b200; The PC4 contains the features of bio06, bio09, bio11,
organic_b100, and organic_b200; The PC5 contains the features of bio03, bio04, bio06, bio09, bio11, bio12, bio13, bio16, bio18, organic_b100,
and organic_b200; The PC6 contains the feature of aspect; The PC7 contains the features of bio13, bio14, bio15, bio16, bio17, bio18, bio19, and
elevation; The PC8 contains the features of bio02, bio05, bio15, organic_b100, organic_b200, slope, water_b100, and water_b200.

under current environmental conditions; and (2) the change in
the habitat class of areas under future climate change conditions
(Shao et al., 2022).

Habitat levels were classified using the Jenks natural breaks
classification method, which looks for natural patterns in the
data rather than artificial and rigid groupings (Chen et al., 2013).
Jenks natural breaks classification classifies habitats into four
categories: (1) inappropriate habitats (IH); (2) low-suitability
habitats (LSH); (3) medium-suitability habitats (MSH); and
(4) highly suitable habitats (HSH). To ensure that the future
classification of habitat classes is consistent with the current
distribution and allows for comparison, we applied the current
grouping strategy of each model to the future distribution model
so that the groupings were consistent and the grouping error was
low to minimize the climate change uncertainty.

Using the current habitat as a criterion, habitat changes were
classified into three broad categories based on the differences
between the habitats in various climatic conditions and the
current habitat: (1) areas with a constant habitat class over time;

(2) areas with a decreased habitat class over time; and (3) areas
with an increased habitat class over time.

Based on the current habitat classes, a statistical approach
was used to determine trends in the rate of change in the area
for various habitat classes under various climatic scenarios. By
utilizing trends rather than simply increasing or decreasing
the sizes of areas to classify conservation areas, the natural
patterns of habitat change can be better understood to benefit
human activities.

Results

Current distribution and future change
trends

Under the effects of multiple host plants, it was predicted
thatC. salsa is distributed around the Xinjiang region (Figure 2).
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FIGURE 2

The predictive distribution of C. salsa with the main mountains and rivers in Xinjiang. The map is made based on the standard map no.
GS(2017)1267 downloaded from the standard map service website of the Ministry of Natural Resources, without modification of the base map.

The HSH is mainly in the northern foothills of the Tian
Shan Mountains, north of the Gurbantunggut Desert near the
Irtysh River, and Tacheng Prefecture, which are all in the
northern Xinjiang region. Additionally, in the southern Xinjiang
region, HSH is predominantly located in the periphery of the
Taklimakan Desert, and there are some HSH upstream of the
Tarim River in the main oasis and in the northern foothills of
the Karakoram Range. For the MSH, they are mainly located in
the western Gurbantunggut Desert, upstream of the Tarim River,
and in the northern foothills of the Karakoram Range. The LSH
is in the eastern Gurbantunggut Desert and along the western
margin of the Taklimakan Desert.

Additionally, the habitat change rate indicates the change
in the C. salsa distribution under climate change conditions
(Figure 3). In terms of the overall trend, MSH and HSH
are always shown to increase in different climate scenarios.
However, there are some differences between each scenario. In
SSP126, the maximum growth ratio (MGR) of MSH appears
from 2,040 to 2,060 (18.7%) and the MGR of HSH is 62.4%

under the same scenario. After that period, the growth ratio
gradually decreases. Additionally, for MSH, the same trend also
appears in SSP585, with an MGR of 42.5% from 2,060 to 2,080.
However, in other scenarios, the growth ratio of HSH still has
an increasing trend, with an MGR of 249.9% in SSP585 from
2,080 to 2,100. In contrast to the increasing trend in the MSH
and HSH, the LSH and ISH always show decreasing trends.
Additionally, the maximum reduction ratio (MRR) of ISH is
26.5% in SSP585 for 2,080–2,100, and that of LSH is 24.2% in
SSP585 for 2,060–2,080.

The evaluations and uncertain of the
models

As shown in Table 1, the evaluations used in this study
were AOC, CBI, and OR. In all of the models, the fundamental
index, the CBI, is over 0.8; K. ceratoides, the maximum
CBI is 0.88. Additionally, from the perspective of traditional
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FIGURE 3

The change trends of C. salsa in each scenario (comparing the areas under current conditions, the positive value is increasing, and the negative
value is decreasing). ISH, inappropriate suitable habitat; LSH, low-suitability habitat; MSH, medium-suitability habitat; HSH, highly suitable
habitat. Additionally, 2,030, 2,050, 2,070, and 2,090 represent 2,020–2,040, 2,040–2,060, 2,060–2,080, and 2,080–2,100.

TABLE 1 The average and standard deviation of AUC, CBI, and the omission rate (OR).

AUC avg AUC SD CBI avg CBI SD OR avg OR SD

A. splendens 0.88 0.03 0.86 0.04 0.10 0.07

C. salsa 0.85 0.05 0.82 0.09 0.12 0.03

K. ceratoides 0.83 0.03 0.88 0.07 0.10 0.08

K. cuspidatum 0.76 0.03 0.82 0.08 0.09 0.09

K. foliatum 0.88 0.08 0.85 0.08 0.10 0.12

K. gracile 0.82 0.15 0.80 0.07 0.06 0.13

N. sibirica 0.84 0.04 0.81 0.07 0.10 0.08

R. soongarica 0.87 0.06 0.81 0.03 0.10 0.19

S. physophora 0.88 0.06 0.84 0.07 0.15 0.13

evaluation methods, the AUC values of most of the models
are over 0.8. However, the AUC of K. cuspidatum is 0.76.
Additionally, the OR for all of the models is about 0.1, with
the exception of S. physophora, where it is 0.15. For the
uncertainity, according to alpha and color changes shown
in Figure 4, a lower ExDet and a higher %N will result
in a deeper color, and according to this, the most reliable
areas can be easily observed. The least reliable areas are

mainly located in maintained and desert zones, such as
the Taklimakan Desert and Tianshan Mountains. The most
reliable areas were located in the foothills of mountains, in
the peripheries of the Taklimakan Desert and Gurbantunggut
Desert. Compared to the current distribution and for the
habitat classes, in particular, the most reliable areas overlap
with HSH and MSH, such as the western edge of the
Taklimakan Desert.
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FIGURE 4

The uncertainty of C. salsa prediction. ExDet is the extrapolation detection metric, and Nearby is the percentage of data nearby (%N). When the
color is deeper, the areas are more reliable (with high%N and low ExDet).

FIGURE 5

The niche similarity of host plants.
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TABLE 2 The extrapolation values and the most influential covariates.

Table: Extrapolation

Type Count Percentage

Univariate 73,980 73.77

Combinatorial 6,696 6.68

Sub-total 80,676 80.44

Analogue 19,612 19.56

Total 100,288 100

Table: Most influential covariates (MIC)

Type Covariate Count Percentage

Univariate N. sibirica 33,594 33

Univariate K. ceratoides 18,555 19

Univariate K. cuspidatum 16,999 17

Univariate A. splendens 2,118 2.1

Univariate K. gracile 1,106 1.1

Univariate R. soongarica 1,053 1

Univariate S. physophora 460 0.46

Univariate K. foliatum 95 0.095

Sub-total 73,980 74

Combinatorial S. physophora 1,633 1.6

Combinatorial K. gracile 1,192 1.2

Combinatorial R. soongarica 1,111 1.1

Combinatorial K. foliatum 872 0.87

Combinatorial N. sibirica 697 0.69

Combinatorial A. splendens 491 0.49

Combinatorial K. ceratoides 441 0.44

Combinatorial K. cuspidatum 259 0.26

Sub-total 6,696 6.7

Total 80,676 80

The effects and changes of host plants
in identifying reserves

From the perspective of niche similarity (Figure 5), it can
be seen that different host plants result in different trends
in different climatic situations. The host plant K. gracile, for
example (Figure 5), showed a higher value (0.684) in the current
scenario than in any other climatic scenario, while the host
plant A. splendens showed a steady increase in its value with
time in other climatic scenarios. The distribution of host plants
with mean values above 0.9 in different climatic conditions and
time dimensions are considered the main influencing factors.
The value of K. cuspidatum is about 0.977 and the value of
N. sibirica is 0.973, near that of K. cuspidatum. Additionally, not
only are these two host plants similar in terms of the evaluation
of niche similarity, but four host plants, including the other
two host plants, K. ceratoides (0.972), and A. splendens (0.938),
can be regarded as effective factors. These plants not only have

the highest niche similarity but also have the most influential
covariates (MIC) for niche extrapolation. The results of the
extrapolation are summarized in Table 2. For the extrapolation,
the univariate plays a big role in C. salsa prediction, with a value
of 73.77%. Additionally, for the MIC, N. sibirica, K. ceratoides,
and K. cuspidatum occupy approximately 70% of all of the
extrapolation results. Additionally, according to the habitat
trends of the four host plants in different climatic situations,
we can roughly divide them into two categories: (1) each major
habitat (HSH, MSH) showed an increasing trend, including in
the two host plants A. splendens and K. cuspidatum (Table 3);
and (2) the major habitats showed a shrinking trend, including
in N. sibirica and K. ceratoides (Table 3).

In the increasing category, the MRR of A. splendens in HSH
and MSH were found to be at 382.1% in SSP585 from 2,080 to
2,100 and 47.9% for SSP585 from 2,060 to 2,080. Additionally,
the MRR of K. cuspidatum in HSH and MSH was 190.2%
according to SSP585 from 2,080 to 2,100 and 29.6% in SSP585
from 2,040 to 2,060. For the host plants, in the decreasing
category, the MSH of the host plant N. sibirica decreased, with
a maximum reduction ratio of 26.1%. Additionally, the host
plant K. ceratoides showed a very dangerous habitat change
trend when the HSH of other host plants was increasing, and
the HSH decreased in most cases, with a maximum decrease
ratio of 17.7%. When identifying the natural reserves, the host
plants with shrinking habitats should be focused, especially
N. sibirica and K. ceratoides, in which habitat shrinkage was
determined to be gradually increased. Therefore, according to
the variations in the host plants in different climatic situations
from the perspective of niche similarity and the influence
of host plants from the perspective of MIC, and because
of the variation in the parasitic plant C. salsa, the main
strategy for identifying natural reserve is to focus on the main
areas experiencing habitat shrinkage in both host and parasite
distributions, including in the HSH of K. ceratoides, the MSH
of N. sibirica and K. ceratoides, and the MSH and HSH of
C. salsa under the current conditions. These areas are regarded
as core protection zones (Figure 6), and the total area is about
126,483.5 km2.

Discussion

When identifying natural reserves, the past studies have
focused on a single change (the subject of research) in the
climate (Li J. et al., 2019; Sun X. et al., 2020; Tang et al.,
2021). This is a reliable method for non-parasite plants or
other species; however, it is not suitable for parasitic and
especially holoparasitic plants (Shao et al., 2022). For parasitic
plants, biotic factors play a fundamental role in parasitic plants,
especially in holoparasite plants (Dibong et al., 2012; Sayad et al.,
2017; Hu et al., 2020). Particularly, Watson (2009) proposed
the host-quality hypothesis, which is based on a summary of
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TABLE 3 The change trends of the host plants under different scenarios.

Scenarios A. splendens K. cuspidatum K. ceratoides N. sibirica

ISH LSH MSH HSH ISH LSH MSH HSH ISH LSH MSH HSH ISH LSH MSH HSH

SSP126
2,020–2,040

−0.07 0.03 0.09 0.60 −0.13 −0.02 0.17 0.31 0.09 −0.09 −0.06 −0.17 −0.06 −0.03 −0.05 0.35

SSP126
2,040–2060

−0.12 0.07 0.18 0.95 −0.20 −0.03 0.24 0.46 0.04 −0.05 0.02 −0.10 −0.08 −0.03 −0.08 0.47

SSP126
2,060–2,080

−0.11 0.06 0.17 0.90 −0.20 −0.01 0.24 0.43 0.07 −0.07 −0.03 −0.18 −0.08 −0.03 −0.08 0.46

SSP126
2,080–2,100

−0.11 0.07 0.17 0.89 −0.18 −0.02 0.22 0.41 0.07 −0.06 −0.04 −0.18 −0.07 −0.03 −0.08 0.44

SSP245
2,020–2,040

−0.09 0.06 0.14 0.72 −0.17 −0.02 0.21 0.37 0.04 −0.04 0.00 −0.12 −0.07 −0.02 −0.06 0.40

SSP245
2,040–2,060

−0.16 0.09 0.27 1.26 −0.25 −0.03 0.28 0.61 −0.01 −0.01 0.07 −0.02 −0.10 −0.03 −0.12 0.61

SSP245
2,060–2,080

−0.18 0.08 0.30 1.49 −0.31 0.01 0.29 0.73 0.01 −0.03 0.04 −0.05 −0.11 −0.03 −0.15 0.72

SSP245
2,080–2,100

−0.21 0.06 0.37 1.80 −0.36 0.03 0.28 0.85 0.00 −0.02 0.04 −0.01 −0.12 −0.04 −0.17 0.80

SSP370
2,020–2,040

−0.09 0.07 0.14 0.71 −0.16 −0.03 0.21 0.36 0.05 −0.04 −0.01 −0.14 −0.07 −0.02 −0.06 0.40

SSP370
2,040–2,060

−0.16 0.09 0.25 1.25 −0.27 −0.02 0.29 0.62 0.03 −0.04 0.03 −0.09 −0.11 −0.03 −0.12 0.65

SSP370
2,060–2,080

−0.23 0.05 0.41 1.98 −0.42 0.07 0.28 0.99 −0.01 −0.01 0.06 −0.01 −0.14 −0.05 −0.19 0.91

SSP370
2,080–2,100

−0.30 −0.01 0.53 2.88 −0.62 0.24 0.23 1.45 −0.05 −0.01 0.07 0.19 −0.18 −0.06 −0.24 1.15

SSP585
2,020–2,040

−0.11 0.07 0.17 0.85 −0.18 −0.04 0.22 0.42 0.04 −0.05 0.00 −0.13 −0.07 −0.03 −0.08 0.45

SSP585
2,040–2,060

−0.18 0.08 0.29 1.49 −0.31 0.00 0.30 0.71 0.02 −0.03 0.01 −0.09 −0.11 −0.04 −0.15 0.71

SSP585
2,060–2,080

−0.26 0.00 0.48 2.44 −0.52 0.17 0.25 1.22 −0.02 −0.02 0.03 0.10 −0.16 −0.06 −0.22 1.04

SSP585
2,080–2,100

−0.39 0.10 0.45 3.82 −0.74 0.24 0.20 1.90 −0.07 −0.03 0.09 0.36 −0.21 −0.07 −0.26 1.33

previous research and states that host quality is the critical factor
governing the survival of parasitic plants. Follow-up studies on
the host quality hypothesis have also focused on hemiparasitic
plants, such as mistletoe and Loranthaceae (Dibong et al.,
2012; Sayad et al., 2017). In studies of holoparasitic root
plants, it has been shown that the host also has a relatively
important influence on the growth of parasitic plants (Hu
et al., 2020). Hence, from this point, the effects of host plants
on C. salsa distribution prediction are fundamental factors in
this study.

Additionally, for the multiple host plants, analyzing the
effects of the hosts in the prediction process is the most
important factor in reserve identification. Two approaches can
be applied in reserve identification to evaluate the effects of
hosts: niche overlap and MIC. Niche overlap simply indicates
that there is competition between two or more species sharing
the source in the same area (Pianka, 1974; Jakob et al., 2010;

Sales et al., 2022). Additionally, if we bring the parasitic
relationship between holoparasitic plants and host plants into
the niche overlap theory, then the niche overlap value can
be taken as the effect of host plant distribution on the
distribution of parasitic plants (Jakob et al., 2010; Broennimann
et al., 2012; Casadesús and Munné-Bosch, 2021). According
to this, what niche overlap represents is not the competitive
relationship between host and parasitic plants, but rather the
similarity in their distribution (Li et al., 2014; Pili et al.,
2020). In this view, the influence of the host plant on the
predicted distribution of C. salsa was reflected by the niche
overlap value, especially when we chose the host factor as the
limiting factor.

Additionally, the effects of host distribution on
extrapolation evaluation indicate more quantitative
information, and the ExDet metric can show the MIC (for this
study, there were different host distributions), which can make
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FIGURE 6

The identified nature conservation area of C. salsa.

the largest contribution to extrapolation in the target system
(Mesgaran et al., 2014; Bouchet et al., 2019). Additionally,
univariate extrapolation is known as the mathematical, strict,
novel, or type 1 extrapolation (implementing Mahalanobis
distance), which can identify whether any given covariate
is out of range and can be successfully applied for habitat
suitable modeling (Clark et al., 1993; Farber and Kadmon, 2003;
Mesgaran et al., 2014).

Additionally, according to the MIC table (Table 2), the
host plants N. sibirica, K. ceratoides, and K. cuspidatum play
a role in parasite distribution prediction, especially N. sibirica.
The ExDet metric can be regarded as a tool for considering
prior covariates, and in this study, the effects of N. sibirica
and the other two host plants are fundamental in production
model processing or data extrapolation (Guisan et al., 2017;
Mahony et al., 2017; Yates et al., 2018; García-Barón et al.,
2019). Additionally, based on the effects of the hosts, climate

change is a popular factor in MaxEnt modeling for plants. In
this study, the climate changes play an indirect role in the
predicted process. Figure 7 is showing the different factors
with their effect-percentage in host plants predicted process.
For example, the host plant N. sibirica is mainly affected
by PC2 and PC1, and these two components contain more
than two environmental variables’ features, every environmental
variable can be affected by climate changes. And especially in
an arid land, water, especially groundwater, plays an important
role in plant growth (Xiong et al., 2018; Yang et al., 2020).
As such, changes in the climate, including temperature and
water changes, are regarded as the basis of natural reserve
identification (Yue et al., 2021). Therefore, in this study, the
final protected zone is with a combination of the effects of
all the selected hosts from the predictions, the main hosts’
effects for reserve identification, and the effects of future climate
change trends.
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FIGURE 7

The main effect factors in host plants predictions.

However, our study cannot effectively explain the factors
causing different desert plants to have different climate
change trends and cannot effectively explore how the deeper
groundwater affects the arid plants’ distribution. In our future
study, better explanatory variables will be discovered and
introduced in addition to the hosts and environment in order
for the results of the evaluation to be more accurate.

Conclusion

A few host plants play fundamental roles in distribution
prediction. The host plants A. splendens, K. cuspidatum,
N. sibirica, and K. ceratoides are more important than
other host plants from the perspective of niche similarity.
Additionally, considering the MIC, K. ceratoides and N. sibirica
are fundamental factors in core natural reserve identification.
To identify natural reserves, especially under climate change
conditions, multiple host parasitic plants require more attention
to determine the effects of their host plants. For C. salsa, its
host plants N. sibirica and K. ceratoides can provide good aid
for planning and protecting areas. Under the same conditions

of good similarity and MIC, the trends of the host habitat can
likewise affect the future distribution of C. salsa, similar to
the role of environmental variables in the prediction of non-
parasitic plants. The MSH of N. sibirica and K. ceratoides and
the HSH of K. ceratoides are combined with the MSH and
HSH of C. salsa, which can better demonstrate the accuracy
of identifying areas from the perspective of the host–parasite
relationship. The core area for C. salsa was determined to have a
final area of 126483.5 km2.
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