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Selection of parental lines for
plant breeding via genomic
prediction
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1Department of Agronomy, National Taiwan University, Taipei, Taiwan, 2Institute of Statistical

Science, Academia Sinica, Taipei, Taiwan

A set of superior parental lines is imperative for the development of high-

performing inbred lines in any biparental crossing program for crops. Themain

objectives of this study are to (a) develop a genomic prediction approach

to identify superior parental lines for multi-trait selection, and (b) generate

a software package for users to execute the proposed approach before

conducting field experiments. According to di�erent breeding goals of the

target traits, a novel selection index integrating information from genomic-

estimated breeding values (GEBVs) of candidate accessions was proposed

to evaluate the composite performance of simulated progeny populations.

Two rice (Oryza sativa L.) genome datasets were analyzed to illustrate the

potential applications of the proposed approach. One dataset applied to the

parental selection for producing inbred lines with satisfactory performance

in primary and secondary traits simultaneously. The other one applied to

demonstrate the application of producing inbred lines with high adaptability

to di�erent environments. Overall, the results showed that incorporating

GEBV and genomic diversity into a selection strategy based on the proposed

selection index could assist in selecting superior parents to meet the desired

breeding goals and increasing long-term genetic gain. An R package, called

IPLGP, was generated to facilitate the widespread application of the approach.

KEYWORDS

genetic gain, genome-widemarkers, mixedmodels, multiple-trait selection, selection

index

Introduction

Parental line selection in plant breeding usually has two differing goals: (i) identify

suitable parents for commercial hybrid varieties and (ii) identify suitable parents to

develop inbred lines for subsequent breeding cycles (Gaynor et al., 2017). For goal

(i), the selection is based on an evaluation of hybrid performance (Wu et al., 2019);

however, for goal (ii), the selection is based on the performance of progeny populations

(Chung and Liao, 2020). In this study, we focus on the latter, i.e., parental line

selection for the development of high-performing inbred lines using a biparental crossing

scheme. Genomic selection based on the statistical method of genomic prediction

(GP) has emerged as a promising approach to improving quantitative traits. The main

concept of GP is to capture all the effects of quantitative trait loci by using high-

density DNA markers over an entire genome (Meuwissen et al., 2001). Marker effects
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are estimated using a GP model built from phenotypic and

genotypic data of a training population. After model training,

genomic estimated breeding values (GEBVs) for candidate

accessions are estimated from their genotypic data alone.

Genomic selection is then performed based on these resulting

GEBVs (Heffner et al., 2010).

Because genomic selection was specifically designed to

predict complex traits such as the grain yield (YLD) of a

crop, most published genomic selection studies have focused

on single-trait approaches without exploiting information

from multiple correlated agronomic traits (Schulthess et al.,

2016). Yet, attaining most breeding goals usually requires the

improvement of multiple traits. Besides a high YLD, an ideal

cultivar is also expected to perform well in some secondary traits

(Guo et al., 2020; Sandhu et al., 2021). For example, in rice,

a low plant height (PH) can reduce the incidence of lodging

and an early flowering time (FT) can reduce the cultivation

period; therefore, simultaneously inheriting these traits of high

YLD, low PH, and early FT is often sought by rice breeders.

In practice, it would be desirable to develop appropriate GP

approaches for multi-trait genomic selection (MTGS). In studies

by Jia and Jannink (2012), Hayashi and Iwata (2013), and Guo

et al. (2014), they reported that prediction accuracy for a target

trait with low heritability could be substantially improved when

a correlated indicator trait with higher heritability was also

included in the GPmodel. There are three types ofmulti-trait GP

models commonly used for MTGS, including (i) linear mixed

models (VanRaden, 2008; Endelman, 2011), (ii) Bayesianmodels

(Perez and de los Campos, 2014; Montesinos-Lopez et al., 2016),

and (iii) machine- and deep-learning models (Smith et al., 2013;

Lecun et al., 2015). Recently, Sandhu et al. (2021) compared

the performance of the above models based on the prediction

for grain yield and grain protein content in wheat (Triticum

aestivum L.). The results of this article showed that multi-

trait machine- and deep-learning models were able to increase

prediction accuracy and should be employed in large-scale

breeding programs. To harness the benefits of MTGS for plant

breeding, Schulthess et al. (2016), Fernandes et al. (2018), Ward

et al. (2019), and Guo et al. (2020) used multi-trait prediction

models to augment quantitative traits in various crops.

A selection index is often used in multi-trait breeding

programs because it combines information from multiple traits,

and incorporates the capacity of favorable levels of some traits

to compensate for unfavorable levels in other traits (Dolan

et al., 1996). Several different selection indices can be used in

MTGS, including those based on economic values, phenotypic

correlations, genotypic correlations, and enhancing some traits

while limiting other traits (Baker, 1986; Ceron-Rojas and

Crossa, 2021). Schulthess et al. (2016) compared the prediction

accuracies of different selection indices using various prediction

methods and recommended implementing a single-trait GP

model by treating a selection index itself as a new single trait.

Covarrubias-Pazaran et al. (2018) demonstrated that the use

of multi-trait genomic best linear unbiased prediction (multi-

trait GBLUP) models could improve selection accuracy and

subsequently lead to more reliable selection indices. Notably,

those studies cited above focused on prediction accuracy for

target traits or selection indices. Alternatively, Lehermeier

et al. (2017) emphasized that genetic gain can be increased

considerably when the crosses are selected based on their

genomic usefulness function compared to selection based on

meanGEBVs. In this respect, Yao et al. (2018) combinedGPwith

Monte Carlo simulations to select superior parents for wheat

breeding. The authors applied a selection index to incorporate

YLD and two crop quality-related traits, and calculated a

usefulness function based on the selection index values of

simulated progeny populations. Their findings also showed

that utilizing the usefulness function for parental selection is

capable of providing higher genetic gain than the use of a

mid-parent GEBV.

Both Lehermeier et al. (2017) and Yao et al. (2018) cautioned

that parental selection strategies should not focus solely upon

truncation selection that selects the top fraction of candidate

accessions with the top GEBVs. To preserve genetic variation

to maximize selection responses in progeny populations, plant

breeders should avoid selecting closely related parental lines

in the base population. Accordingly, Chung and Liao (2020)

proposed strategies whereby both GEBV and genomic diversity

(GD)were taken into account for single-trait selection. However,

such single-trait selection strategies can result in different

choices of parental lines for different target traits, and this may

cause confusion in practical applications. The improvement of

genetic stocks usually warrants considering multiple traits at

once, because economic value and net genetic merits depend on

almost all the traits responsible for the desired crop phenotype

(Falconer and Mackay, 1996).

In this study, our aim was to develop and validate a

useful genomic prediction approach to select parental lines

for producing progeny populations with superior performance

in multiple target traits. To do this, a multi-trait GBLUP

model was used to simultaneously predict normalized GEBVs

of the multiple target traits. A new selection index integrating

information from the normalized GEBVs was then proposed

to evaluate the composite performance of simulated progeny

populations. Three different strategies considering GEBV and/or

GD were compared through a stochastic simulation approach

for producing progeny populations. Finally, an R package called

IPLGP (Chung and Liao, 2022) was generated in conducting

this study.

Materials and methods

Tropical rice genome dataset: The rice (Oryza sativa

L.) genome dataset presented in Spindel et al. (2015)
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was analyzed first. This dataset contains 73,147 single-

nucleotide polymorphism (SNP) markers and 363 elite

breeding lines belonging to indica or indica-admixed

groups. The phenotypic data include 4 years (from 2009

to 2012), two seasons per year (dry and wet), and YLD,

PH, and FT for each season. Unfortunately, PH data for

the 2009 wet season were not available. Phenotypic values

of 35 of the 363 breeding lines were also missing; hence,

adjusted means derived from 328 breeding lines were

used in our study. The adjusted means were obtained

using the residuals derived separately for each trait by the

following model:

yijk = µ + Ai + Sj + (AS)ij + Bk + eijk (1)

where yijk is the phenotypic value of the trait at year i,

season j and block k; Ai is the fixed effect of year i; Sj is

the fixed effect of season j; (AS)ij is the interaction effect

between year i and season j; Bk is the fixed effect of block

k; and eijk is the residual. One SNP marker was randomly

chosen per 0.1-cM interval over each chromosome because

Spindel et al. (2015) had shown that the subset of the full

markers was efficient enough for genomic selection for this

collection of rice germplasm. This resulted in 10,772 out

of the 73,147 SNP markers being used for this example.

The SNP genotype at each locus was coded as −1, 0, or

1, where 1 indicates homozygosity for the major allele, −1

indicates homozygosity for the minor allele, and 0 indicates

heterozygosity. After the SNP coding, any missing loci were

imputed as 1.

44k rice genome dataset: The rice genome dataset is

presented in Zhao et al. (2011). It was originally collected

for a genome-wide association study and was reanalyzed

here. It contains 44,100 SNP markers and 36 traits of 413

accessions, and this dataset features a strong subpopulation

structure. All SNP markers with a missing rate > 0.05 and

a minor allele frequency < 0.05 were first removed from the

dataset. This left 34,233 SNP markers. To avoid redundant

SNP markers in calculating the genomic relationship between

individuals, about one-third of these SNP markers (11,043

out of the 34,233) evenly distributed over each chromosome

were selected. Their SNP coding was performed as described

above for the tropical rice dataset. Only those 300 of the 413

accessions with nomissing FT data from all the three locations—

Arkansas (FT-Ark), Faridpur (FT-Far), and Aberdeen (FT-

Abe)—were used here for building the required multi-trait

GBLUP model. To simulate the genotypic data of progeny

populations for both the rice datasets, the Gramene Annotated

Nipponbare Sequence provided by Youens-Clark et al. (2011)

was used to estimate recombination rates between two adjacent

SNP markers.

The multi-trait GBLUP model for fitting
normalized phenotypic values

The target traits of interest were classified into three types

according to their breeding goals. The larger-the-better: the

larger phenotypic value is desirable; the smaller-the-better: the

smaller phenotypic value is desirable; and the nominal-the-best:

the nominal value is the best because it is the one that satisfies

the target set by the plant breeder. Therefore, a given phenotypic

value that falls around the nominal value is desirable for this last

type. For example, FT may be set to a specific time for balancing

the duration of cultivation and the vegetative growth period.

Accordingly, the vectors of phenotypic values for traits were first

normalized as follows. Letwi = (yi−δ1n)/si, where δ is set to the

sample mean of the phenotypic values for both the larger-the-

better and the smaller-the-better types, and to the desired target

value for the nominal-the-best type; si is the sample standard

deviation of those phenotypic values; 1n is the vector of order

n with all elements equal to 1; and yi =
[

yi1, . . . , yin
]T

is the

vector of phenotypic values for i = 1, 2, . . . , t. Here n is the

number of individuals in the training population, and t is the

number of target traits.

Let

w =









w1

...

wt









;µ =









µ1

...

µt









; g =
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...

gt









; and e =









e1
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where µi, gi, and ei, respectively, denote the general mean, the

vector of genomic values, and the vector of random errors for

trait i. The additive effects multi-trait GBLUP model is given as:

w = µ ⊗ 1n + g + e (2)

where ⊗ denotes the Kronecker product (Searle, 1982). It is

assumed that g and e are mutually independent and separately

follow a multivariate normal distribution, as denoted by

g ∼ MVN (0,6A ⊗ K)

and

e ∼ MVN (0,6e ⊗ In)

where 0 is a zero vector, 6A is the genetic variance-covariance

matrix for additive effects among the t target traits, K is a

genomic relationship matrix for additive effects among the

n individuals, 6e is the residual variance-covariance matrix

among the t target traits, and In is the identity matrix of order

n. Here, 6A and 6e can be represented as

6A =
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where σ 2
Ai

and σ 2
ei are the respective variances for the additive

effects and the random errors for trait i, and σAij and σeij are the

corresponding covariances between traits i and j. The genomic

relationship matrix was calculated as K = MMT/p, where M is

the marker coding matrix regarding the additive effects, and p is

the number of markers.

Let µ̂ be the best linear unbiased estimate (BLUE) for µ, and

ĝ be the best linear unbiased predictor (BLUP) for g, then µ̂

and ĝ can be obtained from the following linear mixed model

equations (Henderson, 1975):

[

nIt It ⊗ 1Tn
It ⊗ 1n Int + (6e6A

−1)⊗ K−1

] [

µ̂

ĝ

]

=

[

(It ⊗ 1Tn )w

w

]

. (3)

The restricted maximum likelihood estimates (REMLs) for 6A

and 6e were plugged into Eq. (3) to generate µ̂ and ĝ. The

R package sommer (Covarrubias-Pazaran, 2016) was used to

calculate these estimates from training data.

Predicting GEBVs for simulated progeny
populations

The performance of a set of parental lines was evaluated

based on the GEBVs of their progeny populations. Genotypic

data of the progeny populations were generated using the

simulation approach of Chung and Liao (2020). This was mainly

based on the mapping function of recombination rate on linkage

distance between two adjacent markers as presented in Haldane

(1919). The required GEBVs were then predicted using the

multi-trait GBLUP model of (2). Let hi denote the vector of

genomic values for trait i in a simulated progeny population,

and Kpt denote the genomic relationship matrix between the

simulated progeny population and the training population.

From Henderson (1977), the BLUP for hi is given by

ĥi = KptK
−1 ĝi (4)

where ĝi is the BLUP for the vector of genomic values of trait

i obtained from Eq. (3). The GEBVs for the simulated progeny

population are then predicted by µ̂i1n+ĥi, where µ̂i is the BLUE

of µi obtained from Eq. (3), for i = 1, 2, . . . , t.

The selection index

For a particular individual, the selection index below was

used to integrate its normalized GEBVs for the multiple

target traits:

SI =
∑

t
i=1wiZi (5)

where wi is a pre-specified weight for trait i subject to the

constraint that
∑t

i=1 wi = 1; and Zi is designated as GEBVi for

the larger-the-better case, as −GEBVi for the smaller-the-better

case, and as −|GEBV i| (the absolute value of GEBVi) for the

nominal-the-best case. The selection index conveys an overall

performance score for the individual. Note that the normalized

GEBVi are scalars with no measuring units. The larger the

selection index, the better the composite performance.

Procedure for selecting superior parental
lines

For the tropical rice dataset, the aim was to select a set

of parental lines whose progeny populations had high YLD,

low PH, and low FT. For the 44k rice dataset, the breeding

goal was assumed to identify a set of superior accessions that

would produce inbred lines with an FT as close as possible

to the nominal value set as 80 days at all three locations (FT-

Ark, FT-Far, and FT-Abe). The resulting inbred lines would

be anticipated to have high adaptability to the three different

locations. The selection procedure can be described as follows.

Step 1

All available phenotypic values in each dataset were

normalized as described above. The ensuing normalized data

were used to build the multi-trait GBLUP model given by

Eq. (2). The trained multi-trait GBLUP model predicted the

normalized GEBVs of the target traits for each dataset; then the

corresponding selection index values were obtained for all the

accessions in the candidate population.

The selection index integrating the normalized GEBVs of the

three target traits in the tropical rice dataset was defined this way:

SI(tropical) = w1GEBVYLD − w2GEBVPH − w3GEBVFT (6)

where w1, w2, and w3 are pre-specified index weights. Note the

minus signs applied in the equation for PH and FT because

smaller values are preferable for these two traits. The index

weights w1, w2, and w3 were respectively specified as 0.6, 0.2,

and 0.2. For the sake of contrast, another setting of 1, 0, and

0 was used that corresponded to the single-trait selection for

YLD. To compare the improvement of the strategy changed

from single-trait selection to multi-trait selection, an index was

defined as follows:

IR =
[

GEBV of (0.6, 0.2, 0.2) − GEBV of (1, 0, 0)
]

÷GEBV of (1, 0, 0) × 100%. (7)

The selection index for the 44k rice dataset was defined as:

SI
(

44k
)

= −w1|GEBVFT−Ark| − w2|GEBVFT−Far|

−w3|GEBVFT−Abe| (8)

where the index weights w1, w2, and w3 were equally set to

be 1/3.
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FIGURE 1

GEBV averages of the best individuals at each generation for the tropical rice dataset. GEBV-O, Subset of the 10 accessions with the highest

selection index values; GD-O, Subset of the 10 accessions with the maximal D-scores chosen from the candidate set Sc; GEBV-GD, Subset of

the top two accessions with the highest selection index values, and another eight accessions chosen from the reminder of Sc. YLD, grain yield;

PH, plant height; FT, flowering time.
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Step 2

Based on the normalized GEBVs of the candidate accessions

obtained from Step 1, three strategies were implemented to select

a subset of 10 parental lines from the candidate population. (i)

The GEBV only (GEBV-O) strategy, which selected the top 10

accessions with the highest selection index values. (ii) The GD

only (GD-O) strategy, which searched for an optimal subset

of 10 accessions from Sc that is the set composed of those

accessions whose selection index values were above average. This

resulting optimal subset achieved the maximal D-score, where

the D-score is the determinant of the genomic relationship

matrix corresponding to the selected accessions, and it was used

to measure the genomic diversity of the selected accessions

(Chung and Liao, 2020). (iii) The GEBV-GD strategy, which

considered both GEBV and GD. This strategy retained the top

two accessions with the highest selection index values, and then

searched for another eight accessions among the remainder of

Sc. The resulting 10 accessions achieved the maximal D-score.

Step 3

For each subset of 10 parental lines generated from Step 2,

any two parental lines were crossed to produce 45 F1 hybrids,

and then each F1 hybrid produced 60 individuals by self-

pollinating and applying the simulation approach of Chung and

Liao (2020); hence, a total of 45 × 60 = 2, 700 F2 individuals.

Again, the GEBVs of F2 individuals were calculated via the

trained multi-trait GBLUP models in Step 1. The individuals

with the top 45 selection index values in the F2 generation

were selected, and those produced 2,700 F3 individuals (each F2

individual produced 60 F3 individuals).

Step 4

The procedure of generating genotypic data, predicting the

GEBVs, and selecting the top 45 individuals was performed

repeatedly, to produce 2,700 F10 individuals presumed to

constitute a fixed population of inbred lines.

Step 5

For the final 2,700 F10 individuals generated from each

subset of 10 parental lines, the best F10 inbred line with the

highest index value was identified. The above analysis procedure

was repeated 30 times to obtain the best F10 inbred lines

from each repetition per strategy. To evaluate improvements

in both the larger-the-better and the smaller-the-better target

traits attained by each strategy, the genetic gain was calculated

this way:

genetic gain = GEBVF10 − GEBVP (9)

where GEBVF10 is the GEBV average among the 2,700 F10

individuals, and GEBVP is the GEBV average among the 10

TABLE 1 GEBV averages of the best F10 inbred lines for the tropical

rice dataset.

Traits2

Strategy1 Index weights YLD PH FT

GEBV-O (1, 0, 0) 6,943.55a 99.59c 82.81d

(0.6, 0.2, 0.2) 6,752.50b 94.34a 77.54a

IR (%) −2.85 −5.27 −6.36

GD-O (1, 0, 0) 6,960.07a 102.98d 83.27d

(0.6, 0.2, 0.2) 6,791.71b 96.90b 80.67c

IR (%) −2.42 −5.90 −3.12

GEBV-GD (1, 0, 0) 6,984.92a 99.98c 83.24d

(0.6, 0.2, 0.2) 6,766.03b 95.36ab 78.90b

IR (%) −3.13 −4.62 −5.21

1GEBV-O, Subset of the 10 accessions with the highest selection index values; GD-O,

Subset of the 10 accessions with the maximal D-scores chosen from the candidate set Sc ;

GEBV-GD, Subset of the top two accessions with the highest selection index values, and

another eight accessions chosen from the reminder of Sc .
2YLD, grain yield; PH, plant height; FT, flowering time.

Different lowercase letters indicate significant differences between the strategies for a

given trait (p < 0.01; LSD test).

IR= [GEBV of (0.6, 0.2, 0.2)− GEBV of (1, 0, 0)]÷ GEBV of (1, 0, 0)× 100%.

selected parental lines. For the nominal-the-best target trait,

genetic gain was defined as follows:

genetic gain
(

nominal
)

= mean
(
∣

∣GEBVF10 − δ
∣

∣

)

−mean
(
∣

∣GEBVp − δ
∣

∣

)

(10)

where mean
(∣

∣GEBVF10 − δ
∣

∣

)

is the averaged deviation

of the F10 inbred lines from the nominal value δ, and

mean (
∣

∣GEBVp − δ
∣

∣) is the averaged deviation of the parental

lines from δ.

The GEBVs of the target traits on their original measuring

units were obtained via back-transformation from their

normalized GEBVs. Furthermore, pairwise comparisons among

the GEBV averages for each trait were carried out using the least

significant difference (LSD) test.

Results

Hereafter, GEBVs are reported for the target traits based on

their original scales.

Tropical rice genome dataset

The GEBV averages of the best individuals from the

30 repetitions per generation are displayed in Figure 1.

Evidently, the sought-after GEBV average decreased from

parental generation to F1 generation. In contrast to YLD, which

improved from F1 down through the F10 generation under every
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TABLE 2 GEBV average for parental lines, GEBV average for F10 inbred lines, and genetic gain for the tropical rice dataset.

Strategy1 Index weights GEBVp GEBVF10 Genetic gain2

YLD (grain yield)

GEBV-O (1, 0, 0) 5,772.16 6,936.65 1,164.79d

(0.6, 0.2, 0.2) 5,667.37 6,742.90 1,075.53e

GD-O (1, 0, 0) 5,250.25 6,954.57 1,704.33a

(0.6, 0.2, 0.2) 5,223.77 6,782.19 1,558.41b

GEBV-GD (1, 0, 0) 5,575.64 6,979.08 1,403.43c

(0.6, 0.2, 0.2) 5,561.36 6,759.18 1,197.81d

PH (plant height)

GEBV-O (1, 0, 0) 105.47 99.89 −5.59d

(0.6, 0.2, 0.2) 97.84 94.57 −3.27e

GD-O (1, 0, 0) 111.00 103.27 −7.73cd

(0.6, 0.2, 0.2) 111.33 97.17 −14.17a

GEBV-GD (1, 0, 0) 108.52 100.27 −8.25c

(0.6, 0.2, 0.2) 106.14 95.50 −10.64b

FT (flowering time)

GEBV-O (1, 0, 0) 84.54 82.96 −1.58e

(0.6, 0.2, 0.2) 82.29 77.63 −4.66c

GD-O (1, 0, 0) 87.79 83.40 −4.39c

(0.6, 0.2, 0.2) 87.97 80.81 −7.16a

GEBV-GD (1, 0, 0) 86.15 83.43 −2.72d

(0.6, 0.2, 0.2) 84.55 78.98 −5.57b

1GEBV-O, Subset of the 10 accessions with the highest selection index values; GD-O, Subset of the 10 accessions with the maximal D-scores chosen from the candidate set Sc ; GEBV-GD,

Subset of the top two accessions with the highest selection index values, and another eight accessions chosen from the reminder of Sc .
2Different lowercase letters indicate significant differences among the strategies for a given trait (p < 0.01; LSD test).

strategy tested, the desirability in the GEBV average for both PH

and FT improved going from the F1 to F3 or F4 generation, but

gradually declined in later generations. A strategy with the index

weight of 0.2 provided the best F10 inbred lines, these having a

better PH and FT than those generated from the same strategy

whose index weight was 0.

The end-point of the GEBV averages for the best F10

individuals from the 30 repetitions and the improvement of

Eq. (7) are presented in Table 1. For any of the three strategies

GEBV-O, GD-O, and GEBV-GD, using selection index weights

of 1, 0, 0 (i.e., the single-trait selection for YLD) always

outperformed 0.6, 0.2, and 0.2 for YLD in terms of statistical

significance. Conversely, any strategy with selection index

weights of 0.6, 0.2, and 0.2 led to greater improvement in the

two secondary target traits PH and FT than when using 1, 0, and

0 instead. The GEBV-GD had the largest GEBV average for YLD

among the three strategies when using index weights of 1, 0, and

0, and the GD-O had the largest one when 0.6, 0.2, and 0.2 index

weights were used. However, for YLD, there was no significant

difference among the three strategies when applying either set

of index weights. The GD-O performed worst with respect to

GEBV averages for both PH and FT among the three strategies,

with index weights of 0.6, 0.2, and 0.2. For the GEBV-O strategy,

the secondary traits of PH and FT were respectively improved

by 5.27 and 6.36%, but the primary trait of YLD fell by 2.83%,

when the index weights 1, 0, and 0 were changed to 0.6, 0.2,

and 0.2. The improvements obtained under GD-O amounted

to 5.90% (gain in PH), 3.12% (gain in FT), and 2.85% (loss

in YLD). Moreover, corresponding percentages for the GEBV-

GD were 4.62% (gain in PH), 5.21% (gain in FT), and 3.13%

(loss in YLD). Consequently, for this dataset, either GEBV-GD

or GEBV-O with index weights of 0.6, 0.2, or 0.2 may be used

to select a suitable set of parental lines for producing high-

performing inbred lines simultaneously featuring high YLD, low

PH, and low FT traits.

The average genetic gain for a given target trait, as calculated

by Eq. (9), from the 30 repetitions appears in Table 2. Based

on these results, the GEBVP can be ranked as GEBV-O >

GEBV-GD > GD-O in descending desirability when using

selection index weights of 0.6, 0.2, 0.2 or 1, 0, 0. The ranking

of genetic gains is reversed to GD-O > GEBV-GD > GEBV-

O with any of the two index weights used for all the three

target traits, except that GEBV-GD > GD-O > GEBV-O ensues

with index weights of 1, 0, and 0 for PH. Nevertheless, the

genetic gain in PH from GEBV-GD (−8.25 cm) did not differ

significantly from GD-O (-7.73 cm). Any strategy applied had

a greater genetic gain in YLD with index weights of 1, 0,

and 0 than 0.6, 0.2, and 0.2. Conversely, any strategy had a

greater genetic gain on both PH and FT with index weights

of 0.6, 0.2, and 0.2 than 1, 0, and 0, except in the case of
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FIGURE 2

GEBV averages of the best individuals at each generation for the 44k rice dataset based on the index weights of 1/3, 1/3, and 1/3. GEBV-O,

Subset of the 10 accessions with the highest selection index values; GD-O, Subset of the 10 accessions with the maximal D-scores chosen from

the candidate set Sc; GEBV-GD, Subset of the top two accessions with the highest selection index values, and another eight accessions chosen

from the reminder of Sc. FT-Ark, flowering time in Arkansas; FT-Far, flowering time in Faridpur; FT-Abe, flowering time in Aberdeen.
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GEBV-O upon PH (the former had −3.27 cm and the latter

had−5.59 cm).

44k rice genome dataset

The GEBV averages of the best individuals from the 30

repetitions per generation are shown in Figure 2, for which the

two GEBV averages of the parental and F10 generations are

in Table 3. From Figure 2, it is interesting to see that all the

curves approached the nominal value of 80 days. From Table 3,

the three end-point values of GEBVF10 for GEBVF10 for FT-Far

TABLE 3 GEBV averages of the best F10 inbred lines for the 44k rice

dataset based on the index weights of 1/3, 1/3, and 1/3.

Trait1 Strategy2 GEBVP GEBVF10
3

FT-Ark GEBV-O 82.141 79.983c

GD-O 84.131 79.979c

GEBV-GD 84.256 79.969c

FT-Far GEBV-O 72.776 74.497d

GD-O 73.252 74.588d

GEBV-GD 73.474 74.718d

FT-Abe GEBV-O 85.435 81.797b

GD-O 92.561 81.928b

GEBV-GD 91.931 82.569a

1FT-Ark, flowering time in Arkansas; FT-Far, flowering time in Faridpur; FT-Abe,

flowering time in Aberdeen.
2GEBV-O, Subset of the 10 accessions with the highest selection index values; GD-O,

Subset of the 10 accessions with the maximal D-scores chosen from the candidate set Sc ;

GEBV-GD, Subset of the top two accessions with the highest selection index values, and

another eight accessions chosen from the reminder of Sc .
3Different lowercase letters indicate significant differences between the strategies for a

given trait (p < 0.01; LSD test).

are about 74 days, this slightly less GEBVF10 values of FT-Far

differed significantly from those of FT-Ark and FT-Abe, and the

FT-Far seems less improved than either FT-Ark or FT-Abe. At

these three locations, based on the LSD testing for GEBVF10 , the

GEBV-O, or GD-O implemented with equal index weights can

be used to select a set of parental lines for producing inbred lines

with FT being close to the nominal value of 80 days.

The genetic gains for these nominal-the-best traits calculated

using Eq. (10) are displayed in Table 4. Evidently, FT-Far

undergoes a relatively smaller genetic gain among the three

target traits, and the GD-O and GEBV-GD strategies lead to

greater genetic gain than does GEBV-O.

Discussion

As suggested in Figure 1 for the tropical rice dataset, it is

reasonable to infer that the secondary traits of PH and FT did

not improve with the primary trait of YLD when using the

single-trait selection strategies for YLD; i.e., those with the index

weights of 1, 0, 0. Conversely, employing multi-trait selection

strategies that used index weights of 0.6, 0.2, and 0.2 resulted in

some improvement for both PH and FT. However, these results

do not generally imply that grain yield will be improved more by

not selecting for other traits simultaneously. There were several

studies revealing that grain yield can be improved by multi-

trait instead of single-trait selection. For example, selecting for

grain yield and nutation content in cereal crops simultaneously

(Jia and Jannink, 2012; Schulthess et al., 2016), and selecting for

grain yield and yield-related traits such as harvest index, spike

fertility, and thousand grain weight in wheat simultaneously

(Guo et al., 2020).

The FT at three different locations in the 44k rice dataset

was used to demonstrate that the proposed approach can

be applied to select parents for producing inbred lines with

TABLE 4 GEBV average for parental lines, GEBV average for F10 inbred lines, and genetic gain for the 44k rice dataset based on the index weights of

1/3, 1/3, and 1/3.

Trait1 Strategy2 Mean of |GEBVP−δ| Mean of3 |GEBVF10−δ| Genetic gain3(nominal)

FT-Ark GEBV-O 2.224 0.044a −2.180d

GD-O 4.137 0.085a −4.053c

GEBV-GD 4.256 0.073a −4.184c

FT-Far GEBV-O 7.224 5.503d −1.721de

GD-O 6.748 5.412d −1.336e

GEBV-GD 6.526 5.282d −1.244e

FT-Abe GEBV-O 5.435 1.797b −3.638c

GD-O 12.561 1.956c −10.606a

GEBV-GD 11.931 2.569c −9.361b

1FT-Ark, flowering time in Arkansas; FT-Far, flowering time in Faridpur; FT-Abe, flowering time in Aberdeen.
2GEBV-O, Subset of the 10 accessions with the highest selection index values; GD-O, Subset of the 10 accessions with the maximal D-scores chosen from the candidate set Sc ; GEBV-GD,

Subset of the top two accessions with the highest selection index values, and another eight accessions chosen from the reminder of Sc .
3Different lowercase letters indicate significant differences between the strategies for a given trait (p < 0.01; LSD test).
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FIGURE 3

GEBV averages of the best individuals at each generation for the 44k rice dataset based on the index weights of 0.3, 0.4, and 0.3. GEBV-O, Subset

of the 10 accessions with the highest selection index values; GD-O, Subset of the 10 accessions with the maximal D-scores chosen from the

candidate set Sc; GEBV-GD, Subset of the top two accessions with the highest selection index values, and another eight accessions chosen from

the reminder of Sc. FT-Ark, flowering time in Arkansas; FT-Far, flowering time in Faridpur; FT-Abe, flowering time in Aberdeen.
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high adaptability to different environments. As suggested in

Figure 2, the performance of FT-Far may be further improved

by increasing its index weight. Hence, we modified the index

weights to 0.3, 0.4, and 0.3, and re-ran the procedure; these

results are displayed in Figure 3. Evidently, the curve for FT-

Far got a little closer to the target value of 80 days compared

with Figure 2; however, the other two traits were also affected,

incurring some diminished improvement, particularly for FT-

Abe. There is no golden standard for assigning the index weights

to the traits because those traits can change from time to time or

vary from one location to another in breeding programs (Ceron-

Rojas and Crossa, 2021). Fortunately, the user can fine-tune

the index weights and re-run the procedure easily using our

R package, until the simulated progeny populations satisfy the

desired breeding goals.

Incorporating the multi-trait GBLUP model and the

selection index into the framework for single-trait selection

presented in our previous article (Chung and Liao, 2020),

we extended this multi-trait selection approach. Our proposed

multi-trait approach was also able to conduct single-trait

selection by assigning the index weight as 1 for the trait

of interest, and 0 for the remaining traits. This multi-trait

model-based approach is advantageous over those selected

for an independent trait because it takes into account

the information among the correlated traits. Moreover, our

proposed approach has merit over the approach promoted

by Schulthess et al. (2016), in which the selection index

was treated as a new trait using a single-trait model

for selection. That is, our proposed approach enabled us

to assess the performance of each target trait in the

progeny populations.

When conducting a breeding program to improve several

quantitative traits at once, selection using a selection index

is long known to be more efficient than that relying on

independent culling levels or tandem selection (Hazel and Lush,

1942). Recently, Ceron-Rojas and Crossa (2021) provided a

review on the statistical theory of linear selection index from

phenotypic to genomic selection, in which a linear selection

index was defined as a linear combination of unobservable

individual traits’ breeding values, weighted by the trait economic

values. The proposed selection index in this study basically

meets the requirements of the definition. Overall, this proposed

selection index is arguably a straightforward and easy way

to evaluate the composite performance of individuals. The

GD quantified by the D-score is kind of different from the

genetic diversity quantified by the genetic variances of traits.

The former used in our study was calculated from genotypic

data of individuals alone, but the latter used in the genomic

usefulness function (Lehermeier et al., 2017; Yao et al., 2018)

was estimated from both phenotypic and genotyped data. This

means that the GD measures the genomic information for

a set of individuals and is independent of the traits under

investigation. Anderson et al. (1998) found that the introduction

of the dominance variance has only a small positive effect on

the selection response. As discussed in Ceron-Rojas and Crossa

(2021), themulti-trait GBLUPmodel used in our study assuming

that only additive effects are transmitted from generation to

generation seems acceptable.

We generated the R package IPLGP to facilitate the wider

application of the proposed approach. A user can install the

package from the R official repository CRAN or GitHub. IPLGP

provides the required R functions to replicate the results of this

study. Note that a user needs to provide the linkage distances

between SNP markers when running the procedure for her/his

dataset. A training population consisting of both phenotypic

and genotypic data is needed to build the required multi-trait

GBLUP model. If historical phenotypic data are not available,

a pilot experiment is recommended to phenotype a set of

individuals, which can be determined using an optimization

algorithm (Ou and Liao, 2019).

We addressed the crucial issue of how adequately

incorporating genomic diversity into conventional truncation

selection could improve the likelihood of identifying superior

parental lines for multiple traits in plant breeding efforts.

More importantly, we have shown that combining GP with

simulated progeny populations could help breeders to discover

superior parental lines before conducting field experiments.

However, the phenotypic value of a trait is affected by the

genotype (G), environment (E), and their G × E interaction.

In reality, the local environment can significantly influence

the performance of progeny populations during the growth

period of each generation until they reach the F10 generation.

As such, parental lines selected from our simulation study may

not necessarily perform as expected. Therefore, conducting

more field experiments with various plant species to validate

our study’s key findings would be worthwhile.
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