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Echinatin and licochalcone A (LCA) are valuable chalcones preferentially

accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata). The

licorice chalcones (licochalcones) are valued for their anti-inflammatory,

antimicrobial, and antioxidant properties and have been widely used in

cosmetic, pharmaceutical, and food industries. However, echinatin and LCA

are accumulated in low quantities, and the biosynthesis and regulation of

licochalcones have not been fully elucidated. In this study, we explored

the potential of a R2R3-MYB transcription factor (TF) AtMYB12, a known

regulator of flavonoid biosynthesis in Arabidopsis, for metabolic engineering

of the bioactive flavonoids in G. inflata hairy roots. Overexpression of

AtMYB12 in the hairy roots greatly enhanced the production of total

flavonoids (threefold), echinatin (twofold), and LCA (fivefold). RNA-seq

analysis of AtMYB12-overexpressing hairy roots revealed that expression of

phenylpropanoid/flavonoid pathway genes, such as phenylalanine ammonia-

lyase (PAL), chalcone synthase (CHS), and flavanone 3’-hydroxylase (F3’H),

is significantly induced compared to the control. Transient promoter

activity assay indicated that AtMYB12 activates the GiCHS1 promoter

in plant cells, and mutation to the MYB-binding motif in the GiCHS1

promoter abolished activation. In addition, transcriptomic analysis revealed

that AtMYB12 overexpression reprograms carbohydrate metabolism likely

to increase carbon flux into flavonoid biosynthesis. Further, AtMYB12

activated the biotic defense pathways possibly by activating the salicylic

acid and jasmonic acid signaling, as well as by upregulating WRKY TFs. The

transcriptome of AtMYB12-overexpressing hairy roots serves as a valuable
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source in the identification of potential candidate genes involved in LCA

biosynthesis. Taken together, our findings suggest that AtMYB12 is an

effective gene for metabolic engineering of valuable bioactive flavonoids

in plants.

KEYWORDS

Glycyrrhiza inflata, flavonoids, echinatin, licochalcone A, AtMYB12 gene, metabolic
engineering

Introduction

Glycyrrhiza species of the family Fabaceae, including
Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch., and
Glycyrrhiza inflata Bat., are valued greatly for their roots
and rhizomes (licorice), which are widely used in cosmetics
and herbal medicines (Zhang and Ye, 2009; Jiang et al., 2020).
The bioactivity of licorice is mainly attributed to two groups
of specialized metabolites:, namely, triterpene saponins and
flavonoids (Wang D. et al., 2020; Wang Z.-F. et al., 2020).
Glycyrrhizin is the most abundant saponin in licorice and has
long been recognized as a potent sweetening agent (Pandey
and Ayangla, 2018). Glycyrrhizin also has been explored for
anti-coronavirus properties in the current COVID-19 pandemic
(Luo et al., 2020; Chrzanowski et al., 2021). The other major
group of bioactive components present in licorice are flavonoids
(Zhu et al., 2016; Cheng et al., 2021). The licorice flavonoids
are known to possess anti-inflammatory, antioxidant, and
antimicrobial properties (Wang Z.-F. et al., 2020; Husain
et al., 2021). Among the different flavonoids, echinatin and
licochalcone A (LCA) are predominantly present in G. inflata
(Lin et al., 2017; Rizzato et al., 2017; Song et al., 2017). A high
LCA cosmetic formulation reduces UV-induced erythema
formation in human healthy volunteers possibly by modulation
of dendritic cell activity (Kolbe et al., 2006). Because of its
anti-inflammatory and antimicrobial properties, LCA has been
used for the treatment of facial skin diseases such as acne and
rosacea (Schoelermann et al., 2016; Yang et al., 2018). Therefore,
there is a great demand of LCA in cosmetic industries (Nguyen
et al., 2020; Cerulli et al., 2022). However, LCA is naturally
accumulated at low levels in wild G. inflata, even less in
cultivated G. inflata plants. Metabolic engineering is thus
viewed as a rational alternative to increase LCA production.

Chalcones are a subgroup of polyphenol compounds
that are synthesized through the phenylpropanoid pathway
(Figure 1A). The precursor phenylalanine (Phe) is derived
from the primary metabolic pathways, including glycolysis, the
shikimate pathway, and Phe biosynthetic pathway (Tzin and
Galili, 2010). Chalcone synthase (CHS) is the first rate-limiting
enzyme specific for flavonoid pathway (Saito et al., 2013).
Regulation of the flavonoid biosynthesis has been extensively

studied in numerous plant species including Arabidopsis
thaliana (Saito et al., 2013). In Arabidopsis, three closely
related MYB transcription factors (TFs), MYB11, MYB12,
and MYB111, from subgroup 7 of the R2R3-MYB family,
redundantly regulate the biosynthesis of flavonoids, especially
flavonols (Mehrtens et al., 2005; Stracke et al., 2007). These
MYBs bind to the promoters of key flavonoid biosynthetic
pathway genes, such as CHS, to activate expression (Mehrtens
et al., 2005; Stracke et al., 2007). The three MYBs exhibit distinct
expression patterns, and AtMYB12 mainly controls flavonoid
biosynthesis in Arabidopsis roots (Stracke et al., 2007). The
regulatory role of AtMYB12 on flavonoid pathway has been
further investigated through heterologous expression in tobacco
leaves and tomato fruits (Luo et al., 2008; Pandey et al., 2015;
Zhang et al., 2015). AtMYB12 induces the accumulation of
flavonoids in tomato fruits by reprogramming the primary
metabolism and directing the carbon flux toward flavonoid
pathway (Zhang et al., 2015). Chlorogenic acid (CGA) is a
subclass of polyphenols present in Solanaceous species (tomato
and tobacco) and coffee, but not in Arabidopsis (Luo et al.,
2008; Naveed et al., 2018). In addition to flavonoids, ectopic
expression of AtMYB12 in tobacco significantly increases CGA
biosynthesis (Luo et al., 2008; Zhang et al., 2015). AtMYB12
also activates CGA biosynthetic genes in tomato fruits (Luo
et al., 2008; Zhang et al., 2015). AtMYB12 overexpression in kale
increases total flavonoid and phenolics in leaves (Lännenpää,
2014). These findings suggest that AtMYB12 is a potential
candidate for metabolic engineering to induce flavonoids and
flavonoid-derived metabolites in heterologous plant species.

As the biosynthetic pathway and gene regulation of licorice
chalcones are not well elucidated, we aimed to explore the
potential of AtMYB12 for metabolic engineering of licorice
chalcones in G. inflata. We hypothesized that ectopic expression
of AtMYB12 in G. inflata will lead to higher accumulation
of licorice chalcones and identification of potential chalcone
pathway genes. As protocol for the generation of stable
transgenic lines is not established in G. inflata, we thus
generated hairy roots overexpressing AtMYB12. Molecular
and biochemical analyses of AtMYB12-overexpressing hairy
roots showed higher expression of phenylpropanoid/flavonoid
pathway genes, including GiCHS, and increased accumulation
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FIGURE 1

Proposed biosynthetic pathway of licorice chalcones and measurement of metabolites in empty vector (EV) control and AtMYB12-OX hairy
roots of G. inflata. (A) A simplified, schematic diagram of the proposed licorice chalcone and general flavonoid biosynthetic pathway. PAL, phe
ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate; CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase. Solid arrows
indicate known enzymes; dotted arrows indicate pathway enzymes are not known. (B,C) Echinatin and licochalcone A contents on dry weight
basis. Data are presented as the mean ± SD (n = 3). Asterisks indicate statistically significant differences compared with EV lines (∗p < 0.05,
∗∗p < 0.01, Student’s t-test). Total flavonoids based on dry weight (DW).

of total flavonoids and licorice-specific flavonoids, such as
echinatin and LCA, confirming the regulatory roles of AtMYB12
on early flavonoid pathway genes in a heterogeneous plant
species. In addition, RNA-seq data showed that the carbon
flux was reprogrammed toward the flavonoid pathway. Our
findings suggest that AtMYB12 is an effective regulator
for engineering the production of licorice chalcones in
G. inflata.

Materials and methods

Plant materials

Arabidopsis thaliana Col-0 accession was used for RNA
isolation and AtMYB12 cloning. G. inflata seeds were provided
by Gansu Jin You Kang Pharmaceutical Technology Co., Ltd.,
Lanzhou, China. G. inflata seeds were soaked in H2SO4 for
30 min, washed with water five times, then treated with
1% NaClO for 10 min, and washed with sterilized distilled
water five times. Surface-sterilized seeds were germinated
on Murashige and Skoog (MS) medium and kept in dark
for 2 days before being transferred to light condition.
Then, 8-day-old G. inflata seedlings were used for DNA,
RNA isolation, transient gene expression, and generation of
transgenic hairy roots.

Generation of transgenic AtMYB12
hairy roots

AtMYB12 was amplified from Arabidopsis cDNA and cloned
into the pCAMBIA2301 vector containing CaMV35S promoter
and rbcS terminator to generate pCAMBIA2301-AtMYB12.
Primers used for cloning of AtMYB12 and other genes in this
study are all listed in Supplementary Table 1. The empty vector
(EV; pCAMBIA2301) and pCAMBIA2301-AtMYB12 plasmids
were separately transformed into Agrobacterium rhizogenes
R1000 by freeze–thaw method. The hypocotyl segments from 8-
day-old G. inflata seedlings were submerged in the A. rhizogenes
R1000 suspension for 30 min, blot-dried on sterile filter paper,
and then placed on MS medium at 22◦C in darkness. After co-
cultivation for 2 days, the hypocotyl segments were transferred
to MS medium supplemented with 400 mg/l cefotaxime. After
2–3 weeks of culture, hairy roots developed from hypocotyls
and the rapidly growing hairy roots were excised and cultivated
individually on solid MS medium supplemented with 400 mg/l
cefotaxime and 100 mg/l kanamycin for 2 weeks at 25◦C in dark.
Rapidly growing root lines that showed kanamycin resistance
were selected for further analysis. These hairy root lines were
cultured in 125 ml flasks each containing 10 ml MS liquid
medium on an orbital shaker at 100 rpm at 25◦C. The hairy roots
clones were routinely subcultured every 2 weeks and harvested
after 2 months for RNA isolation and metabolite extraction.
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cDNA synthesis and determination of
transgenic status of the hairy roots

Total RNA was isolated from EV control and AtMYB12-
overexpressing seedlings and hairy roots using the RNeasy
Plant Mini Kit following the instructions of the manufacturer
(QIAGEN, United States). Approximately 2 µg of total RNA
was used for DNase I digestion. Synthesis of first-strand
cDNA was performed using Superscript III reverse transcriptase
(Invitrogen) in a total volume of 20 µl. To verify the transgenic
status of AtMYB12-OX and EV control hairy root lines, gene-
specific primers were used to PCR-amplify the rol B, rol C, vir
C, and kanamycin-resistant (nptII) genes. PCR products were
analyzed on a 1% ethidium bromide-stained agarose gel.

Determination of the contents of
flavonoids in hairy roots

Total flavonoid contents were determined by sodium
nitrite–aluminum nitrate colorimetric method using rutin as
standard (Hao et al., 2018). The standards rutin, echinatin, and
LCA were purchased from Biosynth Carbosynth, United States.
The contents of echinatin and LCA were determined by LC-
MS/MS.

Library construction and RNA
sequencing

Three independent lines of both EV and AtMYB12-OX
hairy roots were used for RNA-seq. Total RNA was isolated
from hairy roots using the RNeasy Plant Mini Kit (QIAGEN,
United States) following the instructions of the manufacturer.
The RNA samples with RNA integrity number (RIN) 8 or
above were used for library preparation and sequencing. The
TruSeq RNA Sample Prep Kit (Illumina, United States) was
used for making libraries according to the protocol of the
manufacturer. Individually indexed libraries were combined
at equal proportions and loaded onto a single lane of a flow
cell. A 50-cycle single-end sequencing run was performed on
the Illumina HiSeq2500 at the Duke Center for Genomic and
Computational Biology.

Data processing, identification of
differentially expressed genes, and
gene ontology enrichment analysis

Raw Illumina sequence reads were processed as described
previously (Singh et al., 2015). Read mapping was performed
by Bowtie2 (Langmead and Salzberg, 2012) using an in-
house-generated G. inflata transcriptome (unpublished data).

Differential gene expression analysis was carried out using the
DESeq2 Bioconductor package in R (Love et al., 2014). The
differentially expressed genes (DEGs) were identified following
two criteria: (i) fold change ≥ 2 and (ii) false discovery rate
p-value correction of ≤ 0.05. Heatmaps were constructed using
the Complex Heatmap (Gu et al., 2016) function in R through
the Bioconductor package (R Core Team, 2022). Functional
annotation of DEGs was performed with eggNOG 4.5 (Huerta-
Cepas et al., 2016) database. Gene Ontology (GO) analysis of
the enriched functional categories was performed using BiNGO
(version 2.44) (Maere et al., 2005).

Reverse transcription quantitative PCR

Reverse transcription quantitative PCR (RT-qPCR) was used
to measure transcripts levels of GiCHS genes. The GiActin gene
was used as an internal control. Relative gene expression was
measured as previously described (Liu et al., 2019). All qRT-
PCRs were performed in triplicate and repeated twice. Primers
used in qRT-PCR are listed in Supplementary Table 1.

Transient overexpression of AtMYB12 in
Glycyrrhiza inflata seedlings

The EV and pCAMBIA2301-AtMYB12 were transformed
into Agrobacterium tumefaciens GV3101 by freeze–thaw
method and was plated on Luria–Bertani (LB) medium
containing 100 µg ml−1 kanamycin, 50 µg ml−1 gentamicin,
and 30 µg ml−1 rifampicin. A single colony was transferred
to 1 ml liquid LB medium containing the same antibiotics
and incubated at 250 rpm and 28◦C overnight. The overnight
culture was diluted in 25 ml liquid LB medium and grown for
16 h at 250 rpm and 28◦C. The cells were then centrifuged, and
the pellet was resuspended in infiltration buffer (10 mM MgCl2,
10 mM MES, 100 µM acetosyringone) to an OD600 of 1.0, and
incubated at 28◦C for at least 3 h. Then, 8-day-old G. inflata
seedlings were immersed in the infiltration solution under
vacuum pressure for 1 h. After vacuum infiltration, seedlings
were washed five times with sterile distilled water and laid on
sterile wet filter papers in Petri dishes. After 5 days of incubation
at room temperature, the transfected seedlings were collected
for RNA isolation.

Cloning of the GiCHS1 promoter

Genomic DNA was extracted from G. inflata seedlings
for promoter cloning. A forward primer (CHS1-pro-F) was
designed based on the genomic sequence upstream of the coding
region of G. uralensis homolog of GiCHS1. A reverse primer
(GiCHS1-cds-R) was designed within the coding sequence of
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GiCHS1. PCR product of GuCHS1-pro-F and GiCHS1-cds-R
was sequenced. CHS1 promoter sequences of G. inflata and
G. uralensis were aligned using ClustalW software (Thompson
et al., 2003). Based on the GiCHS1 promoter sequence, another
pair of primers (GiCHS1-pro-F2 and GiCHS1-pro-R2) was
designed for vector construction.

Promoter activity assay in tobacco
protoplasts

Tobacco cell line described before (Pattanaik et al., 2010)
was used for protoplast isolation and promoter activity assay.
The effector plasmid was constructed by cloning AtMYB12 into
a modified pBS vector under the control of the CaMV35S
promoter and rbcS terminator. The reporter plasmid was
generated by cloning GiCHS1 promoter in a modified pUC
vector containing the firefly luciferase (LUC) reporter and rbcS
terminator. The MYB binding motif in GiCHS1 promoter
was mutated by site-directed mutagenesis to generate mutant
promoter. The GUS reporter driven by CaMV35S promoter
and rbcS terminator was used as an internal control in
the protoplast assay. The reporter, effector, and internal
control plasmids were electroporated into tobacco protoplasts
in different combinations; luciferase and GUS activities in
transfected protoplasts were measured as described previously
(Pattanaik et al., 2010).

Results

Ectopic expression of
AtMYB12-induced total flavonoids and
licorice-specific chalcones in
Glycyrrhiza inflata hairy roots

We generated transgenic hairy roots overexpressing
AtMYB12 (AtMYB12-OX) aiming to increase flavonoid
production. EV hairy root lines (EV-1, EV-2, and EV-3) served
as control. Three independent AtMYB12-OX hairy root lines
(AtMYB12-OX-1, AtMYB12-OX-2, and AtMYB12-OX-3) were
selected for further analysis. The transgenic status of the
independent EV and AtMYB12-OX hairy root lines was verified
by PCR (Supplementary Figure 1). Total flavonoid contents
of the three AtMYB12-OX lines were significantly higher
(threefold) than those of the EV lines (Figures 1A,B). While
echinatin and LCA in EV hairy root lines were approximately
18–24 and 25–31 ng mg−1, respectively (Figures 1A,C);
AtMYB12-OX lines showed a significant increase in the
accumulation of echinatin (30–59 ng mg−1;∼2.2-fold increase)
and LCA (119–174 ng mg−1; ∼5.2-fold increase) (Figure 1C).
The metabolic outcomes of AtMYB12 overexpression suggest

that AtMYB12 is an effective gene for metabolic engineering of
the licorice flavonoid pathway.

AtMYB12-induced expression of
phenylpropanoid/flavonoid pathway
genes in Glycyrrhiza inflata hairy roots

The metabolic outcomes of AtMYB12-OX hairy roots
prompted us to generate and analyze the transcriptome data
of EV and AtMYB12-OX lines. Sequencing of RNA libraries of
EV and AtMYB12-OX lines generated a total of 1,110 million
(M) clean reads. Each biological replicate was represented by
an average of more than 170 M reads. On average, more
than 70% of the total reads from EV and overexpression
line libraries were successfully mapped to the G. inflata
transcriptome (Supplementary Figure 2). Compared to the EV
lines, 3,236 genes were differentially expressed in AtMYB12-OX
lines, in which 1,722 genes were upregulated and 1,514 genes
were downregulated (Supplementary Table 2). We particularly
examined genes in the phenylpropanoid/flavonoid pathway.
CHS is a key rate-limiting enzyme in flavonoid biosynthetic
pathway (Zhang et al., 2017). Noticeably, 13 GiCHSs were
identified among the DEGs, and 12 of them were upregulated
in AtMYB12-OX hairy roots (Figure 2A and Table 1). In
addition, we identified three G. inflata phenylalanine ammonia-
lyase (PAL) and 9 flavanone 3’-hydroxylase (F3’H) genes among
the DEGs, and all of them were induced in AtMYB12-OX hairy
roots (Table 1). To verify the expression of selected DEGs in
RNA-seq, we conducted RT-qPCR to measure the expression
of two CHS genes, Gin33862 (hereafter designed as GiCHS1)
and Gin35437, using independently isolated RNAs from the
AtMYB12-OX hairy roots. The results confirmed the induction
of both CHS genes in AtMYB12-OX hairy root lines (Figure 2B).
These results suggest that the upregulation of GiPALs, GiCHSs,
and GiF3’Hs likely leads to the enrichment of flavonoids in
G. inflata hairy roots.

GiCHS1 is highly expressed in roots

LCA and echinatin are preferentially accumulated in
G. inflata roots and rhizomes. We therefore analyzed the
transcriptomes (SRA accession: PRJNA574093) of G. inflata
leaves and roots, collected from two geographical locations
in China (Guangzhou and Ningxia), to determine the tissue-
specific expression of CHS. Among the 12 GiCHSs upregulated
in AtMYB12-OX roots, expression of two GiCHSs was not
detected in leaf and root transcriptomes. Among the other
10 GiCHSs, Gin33862 (GiCHS1) is preferentially expressed in
G. inflata roots from both locations (Figure 2C). Two other
GiCHSs, Gin35437 and Gin16453, showed increased expression
only in the roots collected from Guangzhou (Figure 2C).
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FIGURE 2

Expression profiles of the G. inflata CHS genes induced by AtMYB12. (A) Heatmap shows the expression patterns of 12 GiCHS genes in EV and
AtMYB12-OX (OX) hairy root lines. Gin33862 (GiCHS1) is highlighted in red. (B) Relative expression of two selected GiCHS genes in EV and
AtMYB12-OX hairy root lines measured by qRT-PCR. Values were normalized to the expression level of an internal control, the actin gene
(GiActin). Data presented are the means of three biological replicates ± SD (n = 3). Asterisks indicate statistically significant differences
compared with EV lines (∗∗p < 0.01, Student’s t-test). (C) Heatmap shows the expression patterns of 10 GiCHS genes in two tissues (root and
leaf) collected from two locations (Guangzhou and Ningxia) in China.

Transient overexpression of AtMYB12 in
Glycyrrhiza inflata seedlings induced
GiCHSs expression

To further verify the effect of AtMYB12 on LCA biosynthesis
in G. inflata, we developed an Agrobacteria-mediated transient
gene expression assay in G. inflata seedlings. Similar to that
in the hairy roots, expression of GiCHS1 and Gin35437 was
significantly induced by ectopic expression of AtMYB12 in
G. inflata seedlings (Figures 3A,B). These results indicate
that the heterologous AtMYB12 positively regulates flavonoid
biosynthesis in G. inflata plants.

AtMYB12 directly activates the GiCHS1
promoter activity

We next asked whether AtMYB12 directly activates the
flavonoid pathway gene promoters in G. inflata. As GiCHS1

expression is upregulated by AtMYB12 and highly expressed
in roots, we cloned the GiCHS1 promoter for activity assay.
Due to the lack of genomic sequences for G. inflata, the
GiCHS1 promoter was cloned based on the G. uralensis
genome sequences (Mochida et al., 2017) as G. inflata and
G. uralensis are two closely related species. The amino acid
sequence identity between GiCHS1 and its G. uralensis homolog
is 99%. The promoter of GiCHS1 also shares high sequence
identity (96%) with that of G. uralensis CHS1 (Supplementary
Figure 3). As shown in Figure 3D, transcriptional activity of
the GiCHS1 promoter (GiCHS1-pro) was significantly induced
by AtMYB12, suggesting that AtMYB12 directly activates the
GiCHS1 promoter in plant cells. To further confirm the
activation of the GiCHS1 promoter by AtMYB12, we surveyed
the promoter sequence for MYB recognition element (MRE)
(A[A/C]CTACC) and identified a putative MRE (AACTACC) at
-204 to -198 relative to ATG. This MRE is conserved among the
Arabidopsis CHS, CHI, and FLS promoters and also present in
the CHS promoters from other plants (Figure 3C). It is predicted
to be targeted by R2R3 MYBs, including MYB11, MYB111, and
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TABLE 1 Phenylpropanoid/flavonoid pathway genes
identified in DEGs.

Glycyrrhiza
inflata
gene ID

Log2 fold
change

Arabidopsis
homolog

Description

Gin06540 1.618 AT2G37040 Phenylalanine
Gin12084 2.728 AT2G37040 ammonia-lyase (PAL)
Gin12083 2.426 AT3G10340

Gin31596 -2.659 AT5G13930

Gin15004 1.081 AT5G13930

Gin15005 1.223 AT5G13930

Gin15006 1.121 AT5G13930

Gin16453 2.211 AT5G13930

Gin17304 1.242 AT5G13930

Gin21634 1.167 AT5G13930 Chalcone synthase

Gin23193 1.166 AT5G13930 (CHS)

Gin23194 1.258 AT5G13930

Gin33862 1.156 AT5G13930

Gin35437 1.139 AT5G13930

Gin39577 1.862 AT5G13930

Gin40074 1.627 AT5G13930

Gin02931 1.589 AT5G07990

Gin09638 3.125 AT5G07990

Gin09639 4.233 AT5G07990

Gin09641 3.840 AT5G07990 Flavanone

Gin13176 4.344 AT5G07990 3′-hydroxylase (F3′H)

Gin13177 4.586 AT5G07990

Gin13178 4.038 AT5G07990

Gin13179 4.270 AT5G07990

Gin13180 3.766 AT5G07990

MYB12 (Stracke et al., 2007). We speculated that this MRE
(AACTACC) in the GiCHS1 promoter is targeted by AtMYB12.
We mutated this motif (to AAGGGGG) to generate the mutant
GiCHS1 promoter (GiCHS1m-pro) (Figure 3D). Results of
promoter activity assay showed that AtMYB12 is unable to
activate GiCHS1m-pro (Figure 3D), suggesting that AtMYB12
directly binds to the MYB binding site in the GiCHS1 promoter.

RNA-seq revealed reprogramming of
carbohydrate metabolism in
AtMYB12-OX lines

Carbon resources of phenylpropanoids are derived from
monosaccharides, such as glucose. The monosaccharides are
directed to phenylpropanoid pathway through several primary
pathways, including pentose phosphate pathway, glycolysis, and
the shikimate pathway (Zhang et al., 2015). We observed that
three genes related to glycolysis and shikimate pathways were
induced by AtMYB12 in G. inflata hairy roots (Supplementary

Table 3). Glucose also serves as a precursor of the polysaccharide
cellulose, the major component of plant cell wall (Taylor, 2008;
Yang et al., 2018). Further, GO enrichment analysis (Figure 4
and Supplementary Table 4) showed that several pathway genes
related to cellulose synthesis and cell wall synthesis, including
“cell wall biogenesis” and “cellulose metabolic process,” are
downregulated in AtMYB12-OX lines. Cellulose production
during cell wall biosynthesis has been shown to be dependent
on cellulose synthase A (CESA). We identified seven G. inflata
CESA genes in the DEGs that are downregulated in AtMYB12-
OX lines (Table 2). These results indicate an increased carbon
flux toward the phenylpropanoid pathway at the cost of cellulose
synthesis in AtMYB12-OX hairy roots.

Pathogen defense response genes
were activated in AtMYB12-OX lines

GO enrichment analysis showed that, in AtMYB12-OX lines,
most of the upregulated pathways are related to pathogen
defense responses, including “defense response to bacterium,”
“defense response to oomycetes,” “response to fungus,” and
“innate immune response” (Figure 4). Salicylic acid (SA) and
jasmonic acid (JA) are two important phytohormones that
are particularly involved in pathogen defense (Yang et al.,
2019; Chen et al., 2020). We observed that the SA and
JA signaling pathways, including “response to salicylic acid,”
“cellular response to salicylic acid stimulus,” and “response to
jasmonic acid,” were activated (Figure 4 and Supplementary
Table 4). In addition, a number of TF families were identified
among the DEGs. In particular, members of the WRKY
TFs are enriched in the DEGs (Figure 5). A growing
body of research suggests that WRKY TFs are involved
in pathogen resistance (Wani et al., 2021). Therefore, it
is possible that AtMYB12-mediated defense responses are
activated through SA and JA signaling, as well as the
activation of WRKY TFs.

Discussion

TFs are ideal candidates for metabolic engineering because
of their broad regulatory roles in metabolic pathways (Broun,
2004; Lu et al., 2016). Increasing evidence suggests that many
TF functions and regulatory mechanisms are conserved across
the species (Feller et al., 2011; Schluttenhofer and Yuan, 2015).
For instance, ectopic expression of the maize bHLH TF Lc
induces anthocyanin accumulation in tobacco and Arabidopsis
(Lloyd et al., 1992). Similarly, expression of snapdragon R2R3
MYB Rosea1 and bHLH TF Delila, both driven by a fruit-
specific promoter, induces anthocyanin accumulation in tomato
fruit (Butelli et al., 2008). Ectopic expression of the Arabidopsis
R2R3 MYB PAP1 induces anthocyanin accumulation in tobacco
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FIGURE 3

Molecular analysis of G. inflata seedlings transiently overexpressing AtMYB12 and transactivation assay of the GiCHS1 promoter. (A) RT-PCR
analysis showed AtMYB12 expression in G. inflata AtMYB12-OX seedlings but not in EV seedlings. The G. inflata actin gene (GiActin) served as
internal control. (B) Relative expression of the two GiCHS genes in AtMYB12-OX seedlings was measured using qRT-PCR. GiActin was used as
an internal control for normalization. Data are presented as the mean of three biological replicates ± SD. Asterisks indicate statistically
significant differences compared with EV lines (∗∗p < 0.01, Student’s t-test). (C) Similar to the promoters of Arabidopsis CHS, CHI, and FLS,
GiCHS1 and GuCHS1 promoters also contain the MYB recognition elements (MRE). Numbers by the ends of the DNA sequences, such as -130 at
the right end of AtCHS promoter sequence, represent positions relative to translation start site. (D) The diagram in the right shows the MRE in
the GiCHS1 promoter (GiCHS1-pro) and the mutated MRE sequence in the mutant promoter (GiCHS1m-pro). LUC, the reporter luciferase gene.
Left panel shows transactivation of GiCHS1-pro and GiCHS1m-pro after infiltration of the promoter vector alone or in combination with the
AtMYB12-expression vector into tobacco cells. Data presented as the mean of biological replicates ± SD (n = 3). Asterisks indicate statistically
significant differences compared with EV lines (∗∗p < 0.01, Student’s t-test).

(Borevitz et al., 2000). These findings support the conserved
regulatory roles of TFs in metabolic pathways in plants. Licorice
chalcones, including echinatin and LCA, are a characteristic
group of flavonoids that are exclusively produced in G. inflata
roots and rhizomes (Lin et al., 2017; Rizzato et al., 2017;
Song et al., 2017). Although echinatin and LCA possess several
important bioactive properties (Wang D. et al., 2020; Wang
Z.-F. et al., 2020), key enzymes involved in the biosynthesis
and molecular mechanism of regulation have not been fully
elucidated. AtMYB12, along with AtMYB11 and AtMYB111,
regulates flavonoid biosynthesis in Arabidopsis (Stracke et al.,
2007). Heterologous expression of AtMYB12 in tomato not
only activates flavonoid pathway genes but also induces genes
in the upstream primary metabolic pathways (Luo et al.,
2008; Zhang et al., 2015). Here, we demonstrated that ectopic
expression of AtMYB12 upregulates the expression of GiCHSs

and enhances echinatin and LCA accumulation in G. inflata
roots (Figures 1, 3).

A transformation protocol to generate stable transgenic
plants is not available for G. inflata. As licorice-specific
flavonoids are preferentially accumulated in rhizomes and
roots of G. inflata (Lin et al., 2017; Rizzato et al., 2017;
Song et al., 2017), we used transgenic hairy roots to explore
the potential of AtMYB12 to enhance the accumulation of
echinatin and LCA. RNA-seq analysis of three independent
hairy root lines showed upregulation of flavonoid pathway
genes, including PAL, CHS, and F3’H (Table 1). CHS
belongs to the plant polyketide synthase superfamily and
is a key enzyme in the flavonoid pathway (Dao et al.,
2011). CHS catalyzes the condensation of one molecule
cinnamic acid or its derivatives and three molecules of
malonyl Co-A to produce the narigenin chalcone, which
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FIGURE 4

Significantly enriched GO terms in G. inflata AtMYB12-OX hairy roots. Gene Ontology (GO) analyses of differentially expressed genes (DEGs).
Upregulated GO terms are colored in red while downregulated terms are in blue. Each circle represents one GO term. The circle size represents
the number of genes in each GO category while the color represents the significance level. Description of the upregulated GO terms (from top
to bottom): GO:0042742, defense response to bacterium; GO:0071446, cellular response to salicylic acid stimulus; GO:0044550, secondary
metabolite biosynthetic process; GO:0009751, response to salicylic acid; GO:0009753, response to jasmonic acid; GO:0071229, cellular
response to acid chemical; GO:0014070, response to organic cyclic compound; GO:0098542, defense response to other organism;
GO:1900426, positive regulation of defense response to bacterium. Description of the downregulated GO terms (from top to bottom):
GO:0006811, ion transport; GO:0030243, cellulose metabolic process; GO:0045229, external encapsulating structure organization;
GO:0009834, plant-type secondary cell wall biogenesis; GO:1901348, positive regulation of secondary cell wall biogenesis; GO:0071669,
plant-type cell wall organization or biogenesis; GO:0050832, defense response to fungus; GO:0071554, cell wall organization or biogenesis.

serves as a precursor for diverse sets of flavonoids (Dao
et al., 2011). Our RNA-seq data showed that expression of 12
G. inflata CHSs is upregulated by AtMYB12 (Figure 2A and
Table 1).

Agrobacterium-mediated transient transformation of whole
seedlings has been used to study the regulation of metabolic
pathways in different plant species, such as Catharanthus

roseus (Liu et al., 2019; Mortensen et al., 2019). We
transiently transformed G. inflata seedlings with Agrobacterium
harboring AtMYB12 and measured the expression of selected
CHSs. Similar to the hairy roots, expression of two selected
GiCHSs was significantly induced in seedlings transformed
with AtMYB12 (Figure 3B). We demonstrated that AtMYB12
activates the GiCHS1 promoter in plant cells by binding
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TABLE 2 Cellulose synthase A (CESA) genes identified in DEGs.

Glycyrrhiza
inflata
gene ID

Log2
fold

change

Arabidopsis
homolog

Description

Gin23691 −1.032 AT4G39350 Cellulose synthase A2 (CESA2)

Gin14785 −1.563 AT5G44030 Cellulose synthase A4 (CESA4)

Gin34862 −1.408 AT5G44030 Cellulose synthase A4 (CESA4)

Gin05128 −1.259 AT5G17420 Cellulose synthase A7 (CESA7)

Gin32817 −1.666 AT5G17420 cellulose synthase A7 (CESA7)

Gin06050 −3.691 AT4G18780 Cellulose synthase A8 (CESA8)

Gin19934 −1.230 AT4G18780 Cellulose synthase A8 (CESA8)

to a MYB-recognition element (MRE), and mutation of the
MRE abolished the activation (Figure 3D). In Arabidopsis
(Mehrtens et al., 2005) and tomato (Zhang et al., 2015),
AtMYB12 is shown to bind and activate the CHS promoter,
further reinforcing the functional conservation of AtMYB12.

In tomato fruits, in addition to flavonoids, ectopic
expression of AtMYB12 upregulates CGA biosynthetic pathway
genes and increases CGA accumulation (Luo et al., 2008;
Zhang et al., 2015). Given the fact that echinatin and LCA
contents were higher in AtMYB12-OX hairy roots (Figure 1),
we speculated that licorice chalcone biosynthetic genes are
regulated by AtMYB12. Although genes encoding enzymes
in licorice chalcone pathway are not fully characterized,
structural differences between echinatin and LCA suggest
two modification steps: O-methylation and prenylation likely
occur in the biosynthetic steps from echinatin to LCA.
From our RNA-seq data set, we identified four genes
that are annotated as O-methyltransferases and two as
prenyltransferases, all differentially expressed in AtMYB12-OX
hairy roots (Supplementary Table 5). These genes are thus
putative candidates of future investigation of LCA biosynthesis.

In tomato fruits, other than increased accumulation of
flavonoids, ectopic expression of AtMYB12 decreases the
contents of carbon resources, including glucose and fructose
(Zhang et al., 2015). Genes in the primary metabolic pathways
were mostly induced by AtMYB12 (Zhang et al., 2015).
Our results confirmed the induction of the genes in the
primary pathways upstream of flavonoids (Supplementary
Table 3). We also found that the genes related to cellulose
synthesis were downregulated (Figure 4 and Table 2),
suggesting that, in both tomato fruits (Zhang et al., 2015) and
G. inflata hairy roots, AtMYB12 redirects carbon flux from
other carbohydrate resources toward the flavonoid pathway.
Therefore, we suggest that the functionally conserved nature
of AtMYB12 makes it a promising candidate for metabolic
engineering in other plant species.

AtMYB12 overexpression improves pathogen resistance in
transgenic tobacco plants (Ding et al., 2021). In transgenic
tobacco, AtMYB12 induces the production of flavonoid
compounds, such as rutin, as well as reactive oxygen species,
H2O2, and NO (Pandey et al., 2015; Ding et al., 2021). Similar
to tobacco, our results revealed that the genes involved in
pathogen resistance pathways (Figure 4), defense-associated
plant hormone signaling (Figure 4), and WRKY TFs (Figure 5)
were significantly enriched in AtMYB12-OX hairy roots. SA
and JA play essential roles in plant defense against different
pathogens (Yang et al., 2019; Chen et al., 2020). WRKY TFs
are among the largest families of transcriptional regulators
and contribute to various plant processes, including disease
defense (Wani et al., 2021). Some WRKYs like AtWRKY33
could regulate SA/JA biosynthesis while others are regulated
by SA/JA signaling (Birkenbihl et al., 2012; Wani et al.,
2021). We speculate that AtMYB12 activated the SA/JA-WRKY
network that contributes to the pathogen defense responses in
G. inflata hairy roots.

Metabolic engineering offers an excellent approach for
producing various bioactive, health-promoting phytochemicals

FIGURE 5

Transcription factor (TF) families identified in DEGs in EV and AtMYB12 transcriptomes. (A) Upregulated TFs represented by gene numbers (the
lighter the color, the higher the number); e.g., the most upregulated TFs belong to WRKY family. (B) Downregulated TFs represented by gene
numbers (the lighter the color, the higher the number); e.g., the bHLH family is most affected.
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in plants. This study underscores the importance of
metabolic engineering for enhancing accumulation of valuable
metabolites, such as licorice chalcones in G. inflata, through
heterologous expression of a known flavonoid regulator.
Metabolic pathways of non-model plants are relatively less
studied. Transcriptomic and genomic resources will help
unravel the biosynthetic pathways in non-model plants, such as
G. inflata, and aid the bioengineering of bioactive compounds.
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