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The development of automated, image-based, high-throughput plant

phenotyping enabled the simultaneous measurement of many plant

traits. Big and complex phenotypic datasets require advanced statistical

methods which enable the extraction of the most valuable traits when

combined with other measurements, interpretation, and understanding of

their (eco)physiological background. Nutrient deficiency in plants causes

specific symptoms that can be easily detected by multispectral imaging,

3D scanning, and chlorophyll fluorescence measurements. Screening of

numerous image-based phenotypic traits of common bean plants grown

in nutrient-deficient solutions was conducted to optimize phenotyping and

select the most valuable phenotypic traits related to the specific nutrient

deficit. Discriminant analysis was used to compare the e�ciency of groups

of traits obtained by high-throughput phenotyping techniques (chlorophyll

fluorescence, multispectral traits, and morphological traits) in discrimination

between nutrients [nitrogen (N), phosphorus (P), potassium (K), magnesium

(Mg), and iron (Fe)] at early and prolonged deficiency. Furthermore, a recursive

partitioning analysis was used to select variables within each group of traits that

show the highest accuracy for assigning plants to the respective nutrient deficit

treatment. Using the entire set of measured traits, the highest classification

success by discriminant function was achieved using multispectral traits. In

the subsequent measurements, chlorophyll fluorescence and multispectral

traits achieved comparably high classification success. Recursive partitioning

analysis was able to intrinsically identify variables within each group of traits

and their threshold values that best separate the observations from di�erent

nutrient deficiency groups. Again, the highest success in assigning plants

into their respective groups was achieved based on selected multispectral

traits. Selected chlorophyll fluorescence traits also showed high accuracy for

assigning plants into control, Fe, Mg, and P deficit but could not correctly
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assign K and N deficit plants. This study has shown the usefulness of combining

high-throughput phenotyping techniques with advanced data analysis to

determine and di�erentiate nutrient deficiency stress.

KEYWORDS

chlorophyll fluorescence imaging, multispectral imaging, 3D multispectral scanning,

discriminant analysis, recursive partitioning, nutrient deficiency

Introduction

Feeding a world population of almost 10 billion people in

2,050 would require raising overall food production by more

than 54% from the base year of 2012 (FAO, 2018). To obtain

stable and high yields, crop production relies on the application

of significant amounts of plant nutrients, especially nitrogen

(N), phosphorus (P), and potassium (K) (Stewart et al., 2005).

However, modern agriculture faces several challenges that will

affect current fertilization practices and other management

practices. Through the changes in land use and utilization

of different management practices, agriculture significantly

contributes to the global greenhouse gas emissions causing

climate change (Lynch et al., 2021). In contrast, global climate

change will increase the occurrence and intensity of unfavorable

environmental conditions subjecting crops to various abiotic

stresses (IPCC, 2014), degrading arable soils, and reducing crop

nutrient acquisition and utilization from soils (St.Clair and

Lynch, 2010). Thus, future agriculture management practices

would need to increase productivity, especially on less fertile

croplands, increase resource efficiency, and simultaneously

decrease its effect on climate by reducing inputs such as fuel,

pesticides, and fertilizers (FAO, 2018). The above-mentioned

unfavorable conditions in crop production will increase the

frequency and severity of plant nutrient deficiencies. Because

of their involvement in key physiological processes within

the plant, inadequate nutrient supply causes specific nutrient

deficiency symptoms (Marschner, 1995). Since each nutrient is

included in several physiological and developmental processes,

most deficiency symptoms are multisystemic, and it is often

hard to connect the visible symptoms with the deficiency of

the specific nutrient. The misclassifications among different

nutrient deficiencies are frequent. Therefore, there is a need for

accurate, early, objective, and non-destructive identification of

nutrient deficiency symptoms. For this purpose, modern non-

destructive phenotyping techniques combined with advanced

data analytics could be used (Zhao et al., 2019; Yang

et al., 2020; Singh et al., 2021). Both the United Nations

Framework Convention on Climate Change (UNFCCC) and

the Fifth Assessment Report of Working Group Two of the

Intergovernmental Panel on Climate Change (IPCCWGII AR5)

had highlighted technology as a critical resource for ensuring

effective adaptation of agriculture to the approaching constraints

(UNFCCC, 2013; IPCC, 2014).

Due to the integration of new technologies from computer

sciences, engineering, and math sciences with agronomy and

life sciences, plant phenotyping evolved from traditional low-

throughput, time-consuming, labor-intensive, and subjective

task to one of the most advanced research fields in crop sciences

(Furbank et al., 2019; van Eeuwijk et al., 2019; Zhao et al., 2019;

Yang et al., 2020; Singh et al., 2021).

Plant phenotyping techniques were previously used for

discrimination among different nutrient deficiency symptoms.

Pacumbaba and Beyl (2011) used spectral reflectance for the

nutrient deficiencies analysis in lettuce (Lactuca sativa L.)

and reported difficulties in discriminating specific nutrient

stresses because of the overlapping spectral signatures of

nutrient deficient plants. Several authors reported that spectral

reflectance at specific wavelengths could detect nutrients within

the leaves (Zhang et al., 2013) and discriminate among nutrient-

deficient leaves (Debnath et al., 2021). Chlorophyll fluorescence

measurements combined with machine-learning methods were

sufficient to discriminate among control (no deficiency) and

slight, moderate, and strong iron deficiency in rapeseed (Brassica

napus L.) leaves (Kalaji et al., 2018) and among different

nutrient deficiencies in common bean (Phaseolus vulgaris L.)

(Aleksandrov, 2022) and sunflower (Helianthus annuus L.)

(Cadet and Samson, 2011).

Although novel phenotyping platforms combine different

imaging techniques (RGB, fluorescent, thermal, multispectral,

etc.), previous studies of nutrient deficiencies in plants were

often focused on a single technique, making it difficult to

compare their effectiveness in detecting nutrient deficiency

stress. Moreover, complete phenomics information is the

foundation of the research in the “-omics” era (Zhao et al., 2019).

On the other hand, by phenotyping lots of plants for

lots of parameters simultaneously, such platforms generate a

large amount of data that needs to be processed to extract

phenotypic information, shifting the phenotyping bottleneck

from collecting images to data analysis (Ubbens et al., 2020). In

addition, one of the major impediments in plant phenotyping

is how to precisely and efficiently evaluate, understand, and

interpret these digital image-based features (Zhao et al., 2019).

To address this problem, Furbank et al. (2019) suggest the data
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reduction approach in which advanced statistical methods are

used to map and extract traits of interest. Various statistical

or machine learning methods, such as linear discriminant

analysis, random forests, and support vector machines, are

used for biological-image analysis (Rahaman et al., 2019).

Linear discriminant analysis (LDA) (Rao, 1948) assumes linearly

independent and normally distributed variables and aims to

find their linear combinations that best separate the data into

predefined classes. A more robust classification approach is to

use classification trees (Breiman et al., 1984) which are built

using a process of binary recursive partitioning. In this process,

data are iteratively split into partitions that best represent

classes, which are then further split until no better split can

be made. The result is a set of rules, consisting of selected

most efficient variables and their thresholds for classifying the

data into predefined categories. These rules are less complex

than discriminant functions, are generated on original variables

(unlike LDA which uses synthetic discriminant functions), and

can be easily applied to a new set of data.

This study aims (i) to compare groups of traits obtained

by high-throughput phenotyping techniques (chlorophyll

fluorescence, multispectral traits, and morphological traits) in

their efficiency to discriminate among deficiency symptoms of

five different plant nutrients [nitrogen (N), phosphorus (P),

potassium (K), magnesium (Mg), and iron (Fe)], (ii) to generate

rules, based on the variables within each group of traits, for

classification of plants with different nutrient deficit treatments

at early and prolonged nutrient deficiency stress, and (iii) to

compare the efficiency of two different classification methods

(LDA and recursive partitioning) for the classification of plants

based on the specific nutrient deficiency.

Materials and methods

Experimental setup

The experiment was conducted in a growth chamber

under 25/22◦C, 16/8 h day/night photoperiod, 65% relative air

humidity, and 250 µmol m−2 s−1 of photosynthetic photon

flux density (PPFD) provided by NS12 LED lights (Valoya Oy,

Helsinki Finland). Common bean seeds (Phaseolus vulgaris L. cv.

Ferguson) were planted in two germination trays (containers)

with 84 cells (168 in total) and filed with 44 mL/cell of

quartz sand. Nine days after planting, 60 equally developed

plants were selected, sand was washed from their roots, and

they were transferred to six plastic hydroponic trays (60 ×

40 × 32 cm) filled with 30 L constantly aerated ½ strength

modified Hoagland’s solution (Hoagland and Arnon, 1950).

Before applying the treatments, plants (10 plants per tray) were

left to recover from transplantation for 3 days. Treatments

were applied when plants fully developed their first true leaf

(unifoliolate). Treatments were represented as nutrient solutions

from which different nutrients [nitrogen (N), phosphorus (P),

potassium (K), magnesium (Mg), and iron (Fe)] were omitted.

These nutrients were selected as the main representatives of five

different nutrient groups based on their physiological role in

plants (Mengel and Kirkby, 2001). Deficiencies of these nutrients

were chosen as treatments since they cause strong effects on

plant morphology (Jacob and Lawlor, 1991; Gerardeaux et al.,

2010; Rout and Sahoo, 2015; Guo et al., 2016; Mu et al.,

2018) as well as metabolic processes, such as photosynthesis,

protein and pigment synthesis, osmoregulation, cell wall, and

membrane stability (Richter and Rao, 2005; Kalaji et al., 2018;

Mu and Chen, 2021; Aleksandrov, 2022). Such effects can be

quantified by image-based plant phenotyping. Chemicals used

to prepare nutrient solutions are shown in Table 1, whereas the

final composition of all treatment nutrient solutions is shown

in Table 2. Four measurements (MT1-MT4), every 3 days, were

taken during 12 days of growth in treatment solutions. Nutrient

solutions were replenished at each measurement time.

Phenotyping measurements

Chlorophyll fluorescence imaging
The whole plant chlorophyll fluorescence imaging was

performed using the CropReporterTM (PhenoVation B.V.,

Wageningen, The Netherlands). Plants were imaged from 70 cm

distance. The measurements followed the protocol described

in Lazarević et al. (2021) and are briefly described here. Before

measurements, plants were dark-adapted for 30min. For the

excitation of photosynthesis, 4,000µmol m−2 s−1 red LED light

was used. The integration time for capturing the chlorophyll

fluorescence image was 200 µs. The minimum chlorophyll

fluorescence (F0) and maximum chlorophyll fluorescence (Fm)

images were captured after 10 µs and 800ms, respectively.

After the measurement, leaves were relaxed in the dark for

15 s and then adapted to the light using actinic light of 250

µmol m−2 s−1 for 5min. Steady-state fluorescence yield (Fs’)

was measured before the onset of the saturating pulse, and

maximum chlorophyll fluorescence (F
′

m) of light-adapted

leaves was measured at saturation, using the saturating pulse

intensity (4,000 µmol m−2 s−1). After the measurement,

actinic light was turned off, and in the presence of far-red

light, minimal fluorescence yield of the illuminated plant

(F
′

0) was estimated. All measured and calculated chlorophyll

fluorescence parameters are shown in Table 3. Images of

selected chlorophyll fluorescence parameters are shown

in Figure 1.

Multispectral imaging
After chlorophyll fluorescence measurement, plants

were again illuminated with 250 µmol m−2 s−1 and

color, and spectral reflectance images were captured

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.931877
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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TABLE 1 Chemicals used for the preparation of the stock solution and volume of the stock solutions used to produce the treatment solutions.

Source Molecularweight

(g mol−1)

Stock

(mol L−1)*

Volume added to the final (treatment) solutions

(mL L−1)

Control N P K Mg Fe

Ca(NO3)2 × 4H2O 236.16 1 2.5 - 2.5 2.5 2.5 2.5

NH4NO3 80.04 1 1 - 1 1 1 1

K2SO4 174.26 0.5 2 2 2.5 - 2 2

KH2PO4 136.09 1 1 1 - - 1 1

MgSO4 × 7H2O 246.48 1 1 1 1 1 - 1

Fe-citrate 244.94 0.01 5 5 5 5 5 -

CaCl2 110.98 1 0.1 2.5 0.1 0.1 0.1 0.1

NH4H2PO4 115.03 1 - - - 1 - -

H3BO3 61.83 46.3* 1 1 1 1 1 1

ZnSO4 × 7H2O 287.56 0.76* 1 1 1 1 1 1

CuSO4 × 5H2O 249.69 0.32* 1 1 1 1 1 1

MnSO4 ×H2O 169.02 6.51* 1 1 1 1 1 1

H2MoO4 161.95 0.12* 1 1 1 1 1 1

*Micronutrients were produced as a single stock solution, concentrations expressed in mmol L−1 .

TABLE 2 The concentration of plant nutrients in treatment solutions.

Plant nutrient The concentration of nutrients in final (treatment) solutions (mg L−1)

Control N P K Mg Fe

N 98.0 0.00 98.0 112.0 98.0 98.0

P 31.0 31.0 0.00 31.0 31.0 31.0

K 117.3 117.3 97.8 0.00 117.3 117.3

Ca 104.3 100.3 104.3 104.3 104.3 104.3

Mg 24.3 24.3 24.3 24.3 0.00 24.3

S 64.2 64.2 72.2 32.2 32.2 64.2

Fe 2.85 2.85 2.85 2.85 2.85 0.00

Cl 7.09 177.3 7.09 7.09 7.09 7.09

B 0.50 0.50 0.50 0.50 0.50 0.50

Zn 0.05 0.05 0.05 0.05 0.05 0.05

Cu 0.02 0.02 0.02 0.02 0.02 0.02

Mn 0.36 0.36 0.36 0.36 0.36 0.36

Mo 0.01 0.01 0.01 0.01 0.01 0.01

using CropReporterTM (PhenoVation B.V., Wageningen,

The Netherlands). Multispectral images were captured

at red (RRed-640 nm), green (RGreen – 550 nm), blue

(RBlue – 475 nm), specific green (RSpcGrn – 510–590 nm),

chlorophyll reflectance (RChl – 730 nm), near infra-red (RNIR
– 769 nm), and far-red (RFarRed – 710 nm) reflectance. From

measured reflectance chlorophyll index (CHI) (Gitelson

et al., 2003), anthocyanin index (ARI) (Gitelson et al., 2001),

Hue (0–360◦), saturation (SAT), and value (VAL) were

calculated (Table 4).

3D multispectral scanning
Plants were scanned from a 70-cm distance using the

PlantEye F500 multispectral 3D scanner (Phenospex, Heerlen,

The Netherlands) in red (peak wavelength 620–645 nm), green

(peak wavelength 530–540 nm), blue (peak wavelength 460–

485 nm), near-infrared (peak wavelength 820–850 nm), and the

3D laser (940 nm). A detailed description of the PlantEye,

the scanning resolution, and the reconstruction of the 3D

plant model are given in Lazarević et al. (2021). From

the 3D plant model, different morphological parameters and
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TABLE 3 List of analyzed chlorophyll fluorescence traits (CFT) with abbreviations, equation for calculation, and the reference if appropriate.

Abbrev Trait Wavelength/equation

F0 Minimum fluorescence of dark-adapted leaves See description in Material and methods Section

Fm Maximum fluorescence of dark-adapted leaves See description in Material and methods Section

Fs ’ Steady-state fluorescence yield See description in Material and methods Section

Fm ’ Maximum chlorophyll fluorescence of light-adapted leaves See description in Material and methods Section

Fo ’ Minimum fluorescence yield of illuminated plant See description in Material and methods Section

Fv/Fm Maximum efficiency of photosystem two Fv/Fm = (Fm-F0)/Fm

(Kitajima and Butler, 1975)

Fq ’/Fm ’ Effective quantum yield of photosystem two Fq ’/Fm ’= (Fm ’ - Fs ’)/Fm ’

(Genty et al., 1989)

ETR Electron transport rate ETR= Fq ’/Fm ’×PPFD×(0.5)

(Genty et al., 1989)

NPQ Non-photochemical quenching NPQ= (Fm - Fm ’)/Fm ’

(Bilger and Björkman, 1990)

qP Coefficient of photochemical quenching qP= (Fm ’ - Fs ’)/Fv

(Schreiber et al., 1986)

qN Coefficient of non-photochemical quenching qN= 1 – (Fm ’ – Fo ’)/(Fm – Fo)

(Schreiber et al., 1986)

qL Estimation of “open” reaction centers on basis of a lake model qL= ((Fm ’ - Fs ’)× Fo ’))/((Fm ’ - Fo ’)× Fs ’))

(Kramer et al., 2004)

(8nq) Quantum yield of non-regulated non-photochemical energy loss in PSII 8nq= 1/(NPQ+ 1+ qL(Fm/Fo - 1))

(Genty et al., 1996)

(8npq) Quantum yield of regulated non-photochemical energy loss in PSII 8npq= 1 - 8psII - 1/(NPQ+ 1+ qL(Fm/Fo - 1))

(Genty et al., 1996)

vegetation indices were calculated using the HortControl

software (Phenospex, Heerlen, The Netherlands). Examples of

3D plant models with some analyzed traits are given in Figure 2.

Calculated vegetation indices are Green leaf index (GLI),

Normalized Differential Vegetation Index (NDVI) (Rouse et al.,

1974), Plant Senescence Reflectance Index (PSRI) (Merzlyak

et al., 1999), and Normalized Pigments Chlorophyll Ratio Index

(NPCI) (Peñuelas et al., 1995; Table 4).

Calculation of morphological parameters starts from the

3D point cloud from which the 3D plant model is built. All

points that belong to the same sector are triangulated. To create

a triangle in the point cloud, the points should be close to

each other with no other point in between (Y-resolution 1mm,

X- resolution 0.19mm, and Z-resolution <0.1mm). Calculated

morphological parameters are plant Height (H; mm), Leaf area

projected (LAP; mm2), Total leaf area (TLA; mm2), Digital

volume (DV; mm3), Leaf area index (LAI, mm2 mm−2), Leaf

inclination (LINC; mm2 mm−2), Leaf angle (LANG; ◦), and

Light penetration depth (LPD; mm). The list of all measured

morphological traits, abbreviations, and equations is given

in Table 5.

Mineral content analysis
Mineral content analysis was performed in the shoots

from the experimental plants, harvested at the end of the

experiment (12 days after the onset of the treatments). Plant

samples were dried at 70◦C until constant weight using VL

180 Prime drying oven (VWR International, Leuven, Germany).

Dried samples were ground using M 20 Universal mill (IKA R©-

Werke GmbH & Co, Germany). To obtain enough dry

samples for the mineral content analysis, three composited

samples were created by combining material obtained from

10 plants from each nutrient deficiency treatment. Total N

was determined using the Modified Kjeldahl method (HRN

ISO 11261:2004). After the digestion of plant material in a

microwave oven (Milestone Ethos Up, Milestone Srl, Italy)

using the mixture of nitric acid (HNO3) and perchloric

acid (HClO4), K was determined using a flame photometer

(PFP-7, Jenway, UK) and P using a spectrophotometer

(Evolution 60 S, Thermo Fisher Scientific, Finland), whereas

concentrations of Mg and Fe were determined using an

atomic absorption spectrometer (AAS Solar, Thermo Fisher

Scientific, Finland).
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FIGURE 1

Common bean color and pseudo-color images of maximum quantum yield of PSII (Fv/Fm), the e�ective quantum yield of PSII (Fq ’/Fm ’), and
non-photochemical quenching (NPQ) captured by CropReporter at four measurements (MT1-MT4), every 3 days during 12 days of growth in
Control [½ modified Hoagland’s solution (Cont)] and solutions without nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron
(Fe).

Statistical analysis
Obtained plant phenotypic traits were grouped into three

groups: chlorophyll fluorescence traits (CFT), multispectral

traits (MST), and morphological traits (MORPH).

We used linear discriminant analysis to estimate the best

possible classification between treatments at each measurement

time (Fisher, 1936) based on each group of traits. This method

projects data from a D dimensional feature space down to a

reduced number of dimensions (to a maximum of the number

of classes−1 dimension) to maximize the variability between

the classes and reduce the variability within the classes. As a

result, it finds discriminant functions (linear combinations of all

predictor variables) that best separate the data into predefined

groups (treatments). The data were then reclassified into

treatments according to the values of the discriminant function

scores for each data point. The efficiency of classification based

on linear discriminant analysis was estimated as the ratio of

correctly classified plants and the total number of analyzed

plants (60). Discriminant analysis was performed using package

MASS (Venables and Ripley, 2002) in R, with the syntax:

lda.model<- lda(treatment∼., data= df).

Within each group of traits (CFT, MST, and MORPH) at

each measurement time (MT), we used recursive partitioning to

identify variables and their threshold values that best separate

the observations from different treatments (Breiman et al.,

1984). This method is used to build classification or regression

models using a multi-stage procedure where the resulting

models can be represented as decision trees, making them easy to

visualize. At each stage, the variable that best separates the data

into groups defined by the classification variable (treatment)

is selected, and data are subsequently split until the model

reaches the best possible classification of data into predefined

groups (treatments). The classification tree shows the nodes

where the tree is split according to the threshold value of the

selected variable and the edges that direct the outcome of the

splits to the next node until they reach the leaves that are

terminal nodes which show the classification outcome. The

efficiency of the selected binary trees was estimated by the ratio

of correctly classified data and the total number of data (60).

Recursive partitioning was performed using R package rpart

(Therneau and Atkinson, 2022), with the syntax: part.model <-

rpart(treatment∼., data= df).

Results

Plant mineral content

Nutrient content in common bean shoots harvested at MT4

is shown in Supplementary Table 1. Nutrient concentrations in
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TABLE 4 List of analyzed multispectral traits (MST) with abbreviations, wavelength for measurement or equation for calculation, and the reference if

appropriate.

Abbrev Trait Wavelength/equation

RRed , RGreen, RBlue Reflectance in Red, Green and Blue 640, 550, and 475 nm

RSpcGrn, RFarRed, RNIR Reflectance in Specific Green, Far Red, Near Infra-Red 510–590 nm, 710 nm, and 769 nm

RChl Reflectance Specific to Chlorophyll 730 nm

HUE Hue (0–360◦) HUE= 60× (0+ (RGreen - RBlue) / (max-min)), if max= RRed ; HUE

= 60× (2+ (RBlue - RRed) / (max-min)), if max= RGreen ; HUE= 60×

(4+ (RRed - RGreen) / (max-min)) if max= RBlue ; 360 was added in case

HUE < 0

SAT Saturation (0–1) SAT= (max – min) / (max+min) if VAL > 0.5, or SAT= (max –

min) / (2.0 – max – min) if VAL < 0.5, where max and min are selected

from the RRed , RGreen , RBlue

VAL Value (0–1) VAL= (max+min) / 2; where max and min are selected from the

RRed , RGreen , RBlue

ARI Anthocyanin Index ARI= (R550)−1 - (R700)−1

(Gitelson et al., 2001)

CHI Chlorophyll Index CHI= (R700)−1 – (R769)−1

(Gitelson et al., 2003)

NDVI Normalized Differential Vegetation Index NDVI= (RNIR-RRed)/(RNIR+RRed)

(Rouse et al., 1974)

PSRI Plant Senescence Reflectance Index PSRI= (RRed – RGren)/(RNIR)

(Merzlyak et al., 1999)

NPCI Normalized Pigments Chlorophyll Ratio Index NPCI= (RRed – RBlue)/(RRed + RBlue)

(Peñuelas et al., 1995)

GLI Green Leaf Index GLI= (2 x RGreen – RRed – RBlue) / (2 x RGreen + RRed + RBlue)

(Gobron et al., 2000)

plant shoots correspond to the nutrient solution treatments and

confirm the specific nutrient deficiency in plants from each

treatment. The first visible symptoms were detected at MT2 in

N deficiency as pale green leaves and K deficiency as blotching

chlorosis and small necrotic spots. The latest visible symptoms

development was found in Fe deficiency (at MT3) as chlorosis in

young leaves.

Chlorophyll fluorescence traits

Discriminant analysis showed that classification success for

separation among nutrient deficiency treatments (Control, N,

P, K, Mg, and Fe) using chlorophyll fluorescence traits (CFT)

achieved 80% (48/60 correctly classified plants) at MT1 and

98.3% (59/60 correctly classified plants) for MT2, MT3, and

MT4, respectively (Supplementary Table 2).

At MT1, variables belonging to CFT were most successful

for the classification of plants from the control group, with the

misclassification of only one plant into the Fe treatment group.

In contrast, the lowest success was obtained for the K treatment

(70% accuracy). At MT2, one plant from N treatment was

misclassified as Mg treatment, at MT3, one plant from control

treatment was misclassified as Fe treatment, and at MT4, one

plant from K treatment was misclassified as Mg treatment group

(Supplementary Table 2).

For the MT1, a recursive partitioning model based on

chlorophyll fluorescence traits correctly assigned 58.5% of the

plants to their respective treatments. Variables selected by

this model were 8nq, Fm, qL, and F
′

s (Figure 3). This model

performed best for assigning Fe and Mg deficiencies (both

with 80% accuracy) and could not correctly assign any of the

K deficiency plants but instead assigned them as Fe (60%),

Mg, and N treatments (20% in each group). The recursive

partitioning model for the MT2 included variables Fm, F0 and

8nq, and was able to assign 81.7% of all plants correctly.

At MT2, the assignment was 100% accurate for K, Mg, P,

and control treatments, while none of the plants from the N

treatment could be appropriately assigned and was misclassified

as eitherMg (90%) or K (10%) (Figure 3). At theMT3, themodel

included rETR, F
′

0, NPQ, F
′

s, and F0 and achieved 100% accurate

classification. At MT4, the model included F
′

q/F
′

m, Fv/Fm, NPQ,

and Fm, resulting in 81.7% of correctly assigned plants. Same

as for MT1, this model could not correctly assign any of the
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FIGURE 2

Color [Red, Green, and Blue (RGB)] and pseudo-color [Near Infra-Red (NIR) and Normalized Di�erential Vegetation Index (NDVI)] images of 3D
common bean plants scanned by PlantEye F500 grown for 9 days (MT3) in treatment solutions [½ modified Hoagland’s solution (Control), and
solutions without nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe)].

TABLE 5 List of analyzed morphological (MORPH) with abbreviations, equations, or descriptions for calculation.

Abbrev Trait Wavelength/equation

H Plant Height (mm) Calculated as distribution of elementary triangles along the z-axis

DV Digital volume (mm3) Calculated as the product of height and 3D leaf area

LAP Leaf area projected (mm2) Calculated as an area of the projection of all elementary triangles on X-Y plan

TLA Total Leaf Area (mm2) Calculated as sum of all triangle domains, where each domain represents group of triangles that forms a uniform surface

LAI Leaf area index (mm2 mm−2) Calculated as TLA/sector size

LINC Leaf Inclination (mm2 mm−2) Describes how leaves on plant are erected and calculated as TLA/LAP

LANG Leaf angle (◦)

LPD Light penetration depth, mm) Measured by the deepest point in which the laser can penetrate the canopy along the z-axis

K plants but instead classified them as N (90%) or Mg (10%)

(Figure 3).

Multispectral traits

The highest classification success based on discriminant

functions, when compared among different groups of traits,

was achieved by MST. Namely, discriminant analysis based on

MST correctly classified 91.6% plants at MT1, 93.3% plants at

MT2, 95% plants at MT3, and 100% plants at MT4 into their

respective nutrient deficiency groups (Supplementary Table 3).

At MT1, using variables from MST discriminant analysis

correctly classified plants belonging to the control, N, Mg, and

Fe groups, and misclassified three plants belonging to the K

deficiency group into Mg, N, and P groups and two plants

belonging to the P deficiency group into N deficiency group. At

MT2,mostmisclassifications were found between Fe and control

treatment, whereas at MT3, most misclassifications occurred

between Fe and Mg treatments (Supplementary Table 3).

Based on MST, for MT1, recursive partitioning model was

able to correctly assign 65% of the plants to their respective

treatments. Variables selected by this model were RNIR, SAT,

HUE, and ARI. This model performed best for assigning P

(with 100% accuracy), Fe (90% accuracy), and N (80% accuracy)

and could not correctly assign any of the Mg deficiency

plants (Figure 4). The recursive partitioning model for the MT2

included variables GLI, RSpcGrn, SAT, and RBlue and assigned

85% of all plants correctly. At MT2, the assignment was 100%

accurate for K, 90% for control and N, 80% for P, and 70% for

Mg treatment (Figure 4). At the MT3, the model included HUE,

GLI, RSpcGrn, RBlue, and RGreen and achieved 90% accuracy
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FIGURE 3

Visualization of classification tree for chlorophyll fluorescence traits (CFT). Each node shows the variable chosen as the best for the split in the
data and the number of observations at that node (N). On the edges, between nodes, are threshold values of the split variables. Bar charts at
each terminal node (leaf) represent the numbers of observations classified into each treatment (indicated by di�erent colors). MT1 to MT4
represent measurement times.
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FIGURE 4

Visualization of classification tree for multispectral traits (MST). Each node shows the variable chosen as the best for the split in the data and the
number of observations at that node (N). On the edges, between nodes, are threshold values of the split variables. Bar charts at each terminal
node (leaf) represent the numbers of observations classified into each treatment (indicated by di�erent colors). MT1 to MT4 represent
measurement times.
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FIGURE 5

Visualization of classification tree for morphological traits (MORPH). Each node shows the variable chosen as the best for the split in the data
and the number of observations at that node (N). On the edges, between nodes, are threshold values of the split variables. Bar charts at each
terminal node (leaf) represent the numbers of observations classified into each treatment (indicated by di�erent colors). MT1 to MT4 represent
measurement times.
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FIGURE 6

Accuracy of the reclassification of data into correct categories by linear discriminant analysis (blue dots) and recursive partitioning (orange dots)
at each measurement time for (A) chlorophyll fluorescence traits (CFT); (B) multispectral traits (MST); and (C) morphological traits (MORPH).
Accuracy is estimated as (Number of correctly classified data/Total number of data).

classification. This model performed best for assigning P (with

100% accuracy, already based on HUE), N (10% accuracy), Mg,

control, and K (each with 80% accuracy) (Figure 4).

At MT4, the model included RRed, RBlue, GLI, and RGreen
and resulted in 98.3% of correctly assigned plants to their

respective groups. This model misclassified only 10% of the N

treatment plant (assigned to K) (Figure 4).

Morphological traits

Compared to CFT and MST, discriminant analysis among

nutrient deficiency groups based on MORPH achieved

the lowest classification success at all measurement times,

58.3% (MT1), 73.3% (MT2), 86.6% (MT3), and 80% (MT4)

(Supplementary Table 4). At MT1 highest classification

achievement was obtained for N treatment (80%) and lowest

for K (30%). However, at latter measurement times, the lowest

classification was achieved for plants from the N treatment

group (50, 80, and 70%, at MT2, MT3, and MT4, respectively).

For other nutrient deficiency groups, classification achievements

varied from 70 to 100% (Supplementary Table 4).

Recursive partitioning models based on MORPH correctly

assigned 50% of the plants to their respective treatments at MT1.

Variables selected by this model were LPD and TLA. This model

performed best for assigning Fe and N treatment (with 90%

accuracy) and could not correctly assign any of the K and P

deficiency plants (Figure 5).

The recursive partitioning model for the MT2 included

variables TLA, DV, and LPD and assigned 63.3% of all plants

correctly. At MT2, the assignment was 100% accurate for K

and control and 90% for Mg and P treatments, whereas it

was not able to correctly assign any of the P and N plants

(Figure 5). At the MT3, the model included TLA and LANG and

achieved a 78.3% accuracy classification. This model achieved

high assignment for Fe and K (both with 100% accuracy) and

the control, Mg, and P with 90%. However, it did not be able to

assign plants from the N treatment correctly (Figure 5).

At MT4, the model included DV, TLA, and H, resulting in

91.6% of correctly assigned plants to their respective groups.

This model misclassified only 10% of plants from N, K, and P

treatment groups (Figure 5).

Comparison of LDA and recursive
partitioning

For almost all measurement times and all sets of variables,

except MT3 for CFT and MT4 for MORPH, LDA outperformed

the recursive partitioning in the percentage of correct

classifications (Figure 6). However, the classification trees

obtained by recursive partition resulted in more specific sets

of classification rules that include only the select number

of original variables and give exact classification thresholds

for them.

Discussion

Techniques that combine new digital technologies with

advanced data processing represent the most promising

scientific tools to overcome modern agricultural production

challenges (UNFCCC, 2013; IPCC, 2014). One of such

techniques is the high-throughput phenotyping which has been

already proven very useful in plant breeding (van Eeuwijk et al.,

2019) as well as for studying complex physiological responses

of plants to various environmental factors (Munns et al., 2010;

Dhondt et al., 2013; Humplik et al., 2015; Wang H. et al., 2018).

Nutrient deficiencies are common in agricultural production,

and optimal nutrition is necessary for achieving high and

stable yields.

This study aimed to compare the efficacy of the traits

obtained by advanced plant phenotyping techniques
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(chlorophyll fluorescence, multispectral imaging, and 3D

multispectral scanning) in the discrimination between

symptoms of deficiency of five different plant nutrients,

nitrogen (N), phosphorus (P), potassium (K), magnesium

(Mg), and iron (Fe), and to identify traits that best separate

observations from different nutrient deficiency treatments in

early and prolonged nutrient deficiency stress.

Compared to reference nutrient content in common

bean leaf (Bergmann, 1992; Hochmuth et al., 2018), plant

nutrient analysis confirmed that the treatments caused

deficiencies of targeted nutrients in the aboveground organs of

experimental plants.

At early nutrient deficiency stress (MT1), the highest

classification success for separation among nutrient deficiency

treatments by discriminant analysis was achieved using

multispectral traits (91.6%) whereas the lowest using

morphological traits (58.3%). In the subsequent measurements

(MT2-MT4), chlorophyll fluorescence and multispectral traits

achieved comparable high classification success for separation

among nutrient deficiency treatments by discriminant analysis.

Also, similar to the discriminant analysis, MT1 recursive

partitioning based on selected multispectral traits achieved the

highest success in the assignment of plants into their respective

groups, whereas at later stages (MT2-MT4), assignment success

achieved with chlorophyll fluorescence traits was comparable

to those achieved by multispectral traits and were lowest in the

case of selected morphological traits. These results indicate that

nutrient deficiency has the fastest and most pronounced effect

on leaf light absorption/reflection properties. Furthermore,

plants with different nutrient deficiencies in the early stages of

stress differ most in their reflectance features.

Multispectral traits identified by recursive partitioning show

the possibility for effective separation of the observations from

different nutrient deficiency treatments. However, different

multispectral traits were selected at different measurement

times, indicating temporal changes in leaf absorption/reflection

properties during stress development. From MT2 to MT4, the

most important traits were GLI, RSpcGrn, RBlue, and RGreen,

while at MT4, recursive partitioning analysis also included

the RRed.

Multispectral traits selected by recursive partitioning

showed high assignment accuracy; however, partial

misclassification occurred between Fe and control, N and

Mg, and K and P, at an early stage (MT1 andMT2), and between

Fe and Mg, K and N, and P and control, in the prolonged

stress (MT3 and MT4). Discriminant analysis based on the

whole set of multispectral traits showed higher classification

success. However, it showed a similar misclassification pattern

as described for recursive partitioning. Because multispectral

traits are related to leaf pigment content (Blackburn, 2007) and

the fact that the highest absorption by chlorophyll molecules

occurs in blue and red wavelengths, decreased chlorophyll

content in the N, K, Mg, and Fe deficiency at MT4 caused

the clear separation of these treatments compared to plants

from control and P treatment using only reflection in red

(RRed). Phosphorus deficiency is known for developing dark

green to bluish green leaf color (Marschner, 1995) and was

also separated from control by the RBlue (at MT4). Li et al.

(2006) also found more difficulties in discrimination among

control and P-deficit Brassica chinensis leaves using visible

reflectance spectrum and explained it by a slight reduction of

chlorophyll content under P deficiency treatment compared to

control. Moreover, some experiments (Abadia et al., 1987) show

increased chlorophyll levels per unit of leaf area in P-deficit

sugar beet (Beta vulgaris) leaves.

Further, higher similarities in multispectral traits between

control and Fe treatment at the early phase (MT1 and MT2)

are probably related to lower plant needs for Fe than other

macronutrients, and thus the slower symptom development

under Fe deficiency. At later stages (MT3 and MT4), similarities

in Mg and Fe deficiency are probably related to the impaired

chlorophyll synthesis (Rout and Sahoo, 2015), which caused

similar absorption/reflection properties of leaves from these two

treatments. However, Fe and Mg deficiencies have different

patterns of symptom development on a whole plant level (young

leaves vs. old leaves) (Figure 1). Thus, better classification could

probably be obtained if the signal from the upper and lower

leaves could be separated. Prolonged K deficiency includes

brown scorching and chlorosis, which is directly related to ROS

formation and chlorophyll degradation (Cakmak, 2005) and has

a similar effect on light absorption/reflection as chlorosis caused

by N deficiency, characterized by increased RRed and decreased

GLI at MT4.

Although chlorophyll fluorescence is one of the most

frequently used techniques for the determination and

quantification of abiotic stress (Maxwell and Johnson,

2000; Murchie and Lawson, 2013), low classification success

obtained using chlorophyll fluorescence traits at early nutrient

deficiency stress (MT1) can be explained by several short-

term stress avoidance mechanisms which provided early

protection of photosynthesis from the stress-induced damage

(Rungrat et al., 2016). As with the multispectral traits, during

measurements (MT1-MT4), recursive partitioning selected

different chlorophyll fluorescence traits indicating changes

in photoprotective, photochemical, and non-photochemical

processes during the development of nutrient deficiency

symptoms. In the early stages of stress, best assignment into

their respective nutrient deficiency groups was achieved

using 8nq, Fm, qL, and Fs at MT1 and Fm, F0, and 8nq at

MT2, whereas in the latter stages (MT3 and MT4), recursive

partitioning also included rETR, NPQ, Fv/Fm, and Fq’/Fm’.

These results indicate that early nutrient deficiency stresses

are more related to the less efficient energy transfer among

the antennae complexes toward the PSII reaction centers (F0
and Fm) and with the number of open reaction centers (qL)

(Maxwell and Johnson, 2000; Murchie and Lawson, 2013).
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During the latter stages of stress, selected parameters indicate

higher differences in damage of PSII (Fv/Fm and Fq’/Fm’),

decrease in photosynthetic rate (Fq’/Fm’ and rETR), and

regulation of energy dissipation (NPQ) (Maxwell and Johnson,

2000; Murchie and Lawson, 2013). Similar to our results, Kalaji

et al. (2018) quotes increased F0 and Fm and decreased quantum

yield in nutrient-deficit rapeseed plants, whereas Aleksandrov

(2022) found increased F0 and Fm and decreased rETR and

decreased the number of open reaction centers in N, P, and

Fe deficit common bean plants. Based on selected chlorophyll

fluorescence traits, recursive partitioning could not correctly

assign plants from K deficiency treatment at MT1 and MT4 and

N treatment at MT2. Aleksandrov (2022), using chlorophyll

fluorescence, quotes only slight differences between control and

K deficit common bean leaves and stated that K deficiency did

not significantly affect the photosynthetic apparatus. There were

no misclassifications between plants from control and K deficit

treatment in our experiment. Using selected chlorophyll to

fluoresce traits, plants from K deficit treatment were assigned to

N, Mg, and Fe deficiency groups at MT1 and N and Mg groups

at MT4. In addition, at MT2, plants fromN deficiency treatment

were also assigned to the Mg treatment group. These results

indicate similarities in selected chlorophyll fluorescence traits

among common bean K, Mg, and N deficiency. However, using

the whole set of chlorophyll fluorescence traits in discriminant

function, 70 and 90% of classification success were achieved for

the K group at MT1 and MT4, respectively, whereas 90% for the

N group at MT2, indicating the importance of traits which were

omitted by the recursive partitioning for correct assignment of

K and N deficit plants. This close relation among N, Mg, and K

deficit plants in CFT traits at MT2-MT4 could be explained by

their similarities in affecting plant photosynthetic apparatus. For

example, Mu and Chen (2021) quoted that N deficiency reduces

the content of chlorophyll, photosystems, and light-harvesting

centers, and thus reduces light absorption and photochemistry

and increases NPQ. In response to Mg and K deficiency, plants

protect photosystems from damage by increasing the energy

dissipation (NPQ) (Tränkner et al., 2018). In addition, Mg

can enhance photosynthetic N use efficiency (Wang J. et al.,

2018), and like nitrogen, Mg affects light-harvesting through

involvement in chlorophyll biosynthesis Kana and Govindjee,

2016.

Although the effect of nutrient deficiency on morphological

traits is well described in the literature, for example, reduced

leaf area, shoot growth, and shoot dry weight are among the

most often described symptoms of K (Gerardeaux et al., 2010),

P (Jacob and Lawlor, 1991), N (Mu et al., 2018), Mg (Guo

et al., 2016), and Fe (Rout and Sahoo, 2015) deficiency, lower

classification success obtained bymorphological traits compared

to multispectral and chlorophyll fluorescence traits could be

explained by the fact that N, P, and K deficiency cause similar

morphological changes. Namely, the highest misclassification

of plants using morphological traits was found among these

three groups. Similarly, Cadet and Samson (2011) obtained a

significant reduction of leaf area under N, P, and K deficiency

compared to control but did not find a significant difference

in sunflower leaf area among these nutrient deficiency groups.

However, recursive partitioning analysis identified total leaf

area (TLA) and digital volume (DV) as the most important

morphological traits for plant assignment into their respective

nutrient deficiency groups from MT2 to MT4. For example, at

MT2, TLA was used for the correct assignment of plants into

the control group, whereas TLA and DV were used for plant

assignment into the K group. At MT3, plants were assigned

based on TLA into control, Fe, and K groups, whereas at MT4,

DV was used for plants assignment into Fe and control, and

DV and TLA were used for assignment of plants into P and

Mg groups. These results indicate that recursive partitioning

analysis can identify slight differences in the DV and TLA

caused by different nutrient deficiencies and use it for the correct

assignment of plants into their respective groups.

The better overall performance of linear discriminant

analysis over recursive partitioning is in accordance with the

results of Feldesman (2002) who showed that LDA was able

to obtain slightly better correct classification than recursive

partitioning for the set of morphometric variables of hominids.

However, recursive partitioning results in a set of classification

rules that use raw variables instead of canonical variates and are

therefore easier to apply for the classification of new data and to

interpret and relate to the underlying physiological processes.

This study has shown the usefulness of combining high-

throughput phenotyping techniques with advanced data analysis

to determine and differentiate nutrient deficiency stress. This

study was conducted in a controlled environment with a

controlled nutrient supply; thus, lower discrimination accuracy

should be expected in the field, especially considering the

possible co-occurrence of different nutrient deficiencies at

the same time (Kalaji et al., 2018) or even co-occurrence of

multiple abiotic and biotic stresses. However, similar analytical

methods could be applied to develop discrimination models

for other crop species, monocots, and dicots, although they

show different nutrient uptake and use efficiency, as well

as different patterns of nutrient deficiency symptoms. The

classification accuracy of such models could be increased

by increasing the number of plants in the study and using

additional physiological criteria for discrimination among

nutrient deficiency groups. For example, due to the differences

in nutrient mobility within the plant, deficiency symptoms

will occur on young leaves (less mobile nutrients) or old

leaves (mobile nutrients) (Marschner, 1995), and by including

this criterion in the analysis, better classification accuracy

could be expected. Optimization of the classification in further

experiments could provide a solid basis for developing specific

sensor systems that could be used in the future to monitor

the nutritional status of crops in the field. Since multispectral

imaging is more accessible in agriculture than chlorophyll
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fluorescence imaging and because multispectral traits have

shown the earliest response to nutrient deficiency, with high

accuracy in plant assignment into their nutrient deficiency

groups, these techniques/traits could be easier implemented in

agriculture for nutrient deficiency detection/classification.

Conclusions

Traits obtained using high-throughput phenotyping enabled

high discrimination accuracy among studied nutrient deficiency

groups. At early nutrient deficiency stress (MT1), highest

classification success was achieved using multispectral traits

and the lowest using morphological traits. In the subsequent

measurements (MT2-MT4), chlorophyll fluorescence and

multispectral traits achieved comparable classification success.

While linear discriminant analysis achieved better overall

classification accuracy, recursive partitioning was able to

intrinsically identify variables within each group of traits and

their threshold values that best separate the observations from

different nutrient deficiency groups. The highest success in

assigning plants into their respective groups was achieved

based on selected multispectral traits. Selected chlorophyll

fluorescence traits also showed high accuracy for the assignment

of plants into control, Fe, Mg, and P deficit, but some

misclassification occurred in the assignment of K and N

deficit plants.
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