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The Plant V-ATPase
Thorsten Seidel*

Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, Bielefeld, Germany

V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic
pH homeostasis and energizes transport processes across endomembranes of the
secretory pathway. Its localization in the trans Golgi network/early endosomes is
essential for vesicle transport, for instance for the delivery of cell wall components.
Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase’s
rather complex structure and multiple subunit isoforms enable high structural flexibility
with respect to requirements for different organs, developmental stages, and organelles.
This complexity further demands a sophisticated assembly machinery and transport
routes in cells, a process that is still not fully understood. Regulation of V-ATPase
is a target of phosphorylation and redox-modifications but also involves interactions
with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by
reversible assembly, as reported for yeast and the mammalian enzyme, has not be
proven in plants but seems to be absent in autotrophic cells. Addressing the regulation
of V-ATPase is a promising approach to adjust its activity for improved stress resistance
or higher crop yield.
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INTRODUCTION

The secretory pathway provides membrane-bound proteins, luminal proteins, and lipids to cells.
Furthermore, it is responsible for posttranslational modifications like glycosylation and serves as
a sorting point for transport of the extracellular material regardless of its direction, endocytosis,
or exocytosis. Organelles of the secretory pathway are characterized by a specific luminal pH,
which is highest and close to the cytosolic pH of 7.2 at the ER (pH 7.1) and decreases with the
following compartments, cis-Golgi (pH 6.8), trans-Golgi network (TGN, pH 6.3), multivesicular
bodies (MVBs, pH 6.2), late endosomes (pH 5.3), and the vacuole (pH 5.2) (Grabe and Oster,
2001; Shen et al., 2013). The luminal pH ensures an environment of matching the required reaction
conditions in organelles, and the proton gradient across endomembranes provides the required
driving force for transport across membranes (Grabe et al., 2000). Proton-translocating ATPases of
vacuolar type acidify the lumen of Golgi, TGN, late endosomes, and the vacuole as demonstrated by
their concanamycin A-sensitivity. Treatment with the V-ATPase inhibitor concanamycin A results
in increased pH of TGN and the vacuole, while the pH of ER, cis-Golgi, and MVBs is unaffected,
but Golgi swelling has been observed in BY2-cells (Robinson et al., 2004; Shen et al., 2013). The
function of V-ATPases in TGN and the vacuole has been intensively investigated in recent years.
In the vacuole, at least two proton pumps exist, the vacuolar proton translocating pyrophosphatase
(V-PPase) and V-ATPase (Figure 1). V-PPase is the dominant proton pump in early developmental
stages of plants like fruits or organs, whereas V-ATPase takes over in later stages and becomes
the dominant pump (Shiratake et al., 1997). Both proton pumps are required in tonoplasts
during embryo development, and lack of V-PPase and V-ATPase results in altered vacuolar
morphology and defects in auxin transport by dislocation of PIN1 in tonoplasts (Krebs et al., 2010;
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FIGURE 1 | Localization of proton pumps. V-ATPase is present in all
endomembranes of the secretory pathway, including ER membranes.
V-PPases are localized in the vacuole and rarely in the Golgi, while
PM-ATPases are present in the plasma membrane and, in some tissues, even
in tonoplasts. Two transport routes exist for V-ATPases. Proton pumps
destined for TGN/EE bear VHA-a1 and travel along the secretory pathway,
while VHA-a3-bearing pumps are destined for the vacuole and take a direct
route from the ER to the vacuole. The structure of V-PPase relies on pdb file
6afs and that of the plasma membrane on file 5 ksd (Croll and Andersen,
2016; Tsai et al., 2019). The structure of V-ATPase is based on pdb 3j9t
(Zhao et al., 2015).

Jiang et al., 2020). However, V-PPases are capable of
compensating for loss of active V-ATPases in vma1− yeast
cells lacking VHA-A (Perez-Castineira et al., 2011), whereas in
Arabidopsis and rice lack of V-ATPase cannot be compensated
by V-PPases because of limitations in subcellular distribution
(Zhang et al., 2013; Kriegel et al., 2015). In later developmental
stages, the major role of V-PPases seems to be the cytosolic
pyrophosphate (PPi) scavenging to avoid PPi toxicity by forming
insoluble complexes with Mg2+ or Ca2+(Segami et al., 2018).
V-PPases were also reported to function in a reversible manner,
producing PPi using the proton gradient of V-ATPase. Such
conversion of the energy stored in the proton gradient may
transform the energy back into a biochemically accessible form
Scholz-Starke et al. (2019). In some specialized cell types, even
P-type proton-translocating ATPases were found (Figure 1),
for instance the pump AHA10 in the seed coat endothelium of
Arabidopsis thaliana (Appelhagen et al., 2015). In petunia, two
P-type ATPases, PH1 and PH5, function as a heteromeric pump
in tonoplasts, and control the color of flowers (Verweij et al.,
2008; Faraco et al., 2014). Interestingly, loss of V-ATPase function
results in internalization of the plasma membrane proton pump
Pma1p in yeast, although such compensation mechanism has
not been observed in plants (Velivela and Kane, 2018).

In 1997, Matsuoka et al. (1997) reported that a non-vacuolar
V-ATPase is required for sorting of vacuolar protein precursors.
It turned out later that the V-ATPase in TGN/EE is essential
for many processes in plants including salt tolerance, delivery of
cell wall components, recycling of plasma membrane proteins,
and compensated cell expansion, and that it contributes to
vacuolar acidification so loss of vacuolar proton pumps can
be counterbalanced (Bruex et al., 2008; Ferjani et al., 2013;
Kriegel et al., 2015; Luo et al., 2015; Tsuyama et al., 2019).
In the vacuole, V-ATPase energizes mainly transport processes,
contributes to nitrate storage and zinc deposition, ensures resting
calcium concentration in the cytosol (Krebs et al., 2010; Han
et al., 2016), and plays a role in guard cell by regulating stomatal
opening (Allen et al., 2000; Zhang et al., 2013). In contrast
to the equal distribution of V-PPases in tonoplasts, V-ATPase
was found in specific regions that might represent vacuolar
microdomains and facilitate the interplay with secondary active
transporters (Yoshida et al., 2013; Siek et al., 2016). Last but not
least, V-ATPases were found in peribacteroid membranes and
endosidin bodies, the latter containing the TGN-specific subunit
VHA-a1 and seem to originate from endosomes by interference
of endosidin 1 and endocytosis (Saalbach et al., 2002; Robert et al.,
2008).

Due to its impact on cellular transport and regulation of
luminal and cytosolic pH-homeostasis, V-ATPase is of different
importance for different cell types. Especially, regions of cell
elongation depend on active V-ATPases. Failure of V-ATPase
activity in pollen results in cytoplasmic acidification and finally
affects mitochondrial function by collapse of the membrane
potential, which leads to retarded pollen growth in Pyruspyrifolia
(Gao et al., 2015). Pollen-specific VHA-E isoforms are reported
for higher plants, but they have no essential function in
gametophyte development and are incapable of compensating for
loss of other isoforms (Strompen et al., 2005; Dettmer et al., 2010).

V-ATPase might further be involved in homotypic vacuolar
fusion as described for yeast V-ATPase, in particular its V0-sector,
by forming stacks of proteolipid rings that form a fusion pore
subsequently (Peters et al., 2001; Wilson et al., 2021). V-ATPases
might also be involved in vacuolar-endosomal fusion (Wilson
et al., 2021). Proteolipids are capable of forming a conductance
pore, which supports the hypothesis of a function in membrane
fusion (Couoh-Cardel et al., 2016). Other findings indicated the
requirement of V-ATPase activity for vacuolar fusion and not
direct involvement of the V0-structure (Coonrod et al., 2013).
Vacuolar acidification by V-ATPases plays also a role for cellular
aging in yeast (Stephan et al., 2013; Ghavidel et al., 2018); they
act as a cellular timer of vacuoles and vacuoles increase by size
and undergo more frequent contact with other organelles and,
thus, have been denominated as hubs of cellular homeostasis
(Aufschnaiter and Buttner, 2019).

COMPOSITION OF THE COMPLEX

Initially, structural analysis relied on X-ray analysis of isolated
subunits and low resolution images by transmission electron
microscopy. Thus, the assembly of the complex has been a hassle
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FIGURE 2 | V-ATPase complex. V-ATPase comprises of the membrane integral subsector V0 and the membrane-associated subsector V1. V0 is responsible for
proton transport and dominated by a ring composed of ten molecules of proteolipid VHA-c. A single proteolipid is highlighted in blue (VHA-c”). ATP hydrolysis takes
place in V1, in particular in VHA-A, and drives the rotation of the central stalk by VHA-D and VHA-F. The peripheral subunits serve as a scaffold and anchor the
complex to the membrane via VHA-a. The structure is based on pdb7tmr (Vasanthakumar et al., 2022).

and resulted in well-meant but less precise superposition of
electron micrographs and single pdb files. The structural analysis
of V-ATPase has benefitted from the improvement of high
resolution cryo-electron microscopy and enzyme reconstitution
in nano-discs. In recent years, multiple structures of yeast and
human V-ATPases of dissociated and fully assembled states and
three different rotational states were published.

The complex has a bipartite structure of more than 800 kDa,
formed by the subcomplexes V0 and V1, which represent
the proton transporter and the transport-driving ATPase,
respectively (Figure 2). V0 consists of the subunits VHA-a,
VHA-c, VHA-c”, VHA-d, and VHA-e, while V1 consists of
subunits VHA-A to VHA-H (Sze et al., 2002). Both subsectors
are dominated by central symmetric arrangement of subunits;
for V0 it is a ring of the proteolipids VHA-c and VHA-c”, which
bear conserved glutamic acid residues as proton-binding sites
in a flexible transmembrane helix (Wang et al., 2004). Initially,
the proteolipid ring was thought to consist of six proteolipids,
but recent data from yeast and mammals demonstrated that ten
proteolipids actually form the proteolipid ring (Roh et al., 2018,
2020; Abbas et al., 2020). The yeast or fungal-specific proteolipid
VHA-c’ is not present in plants and other higher eukaryotes,
although it is required for assembly of the complex in fungal
cells (Sze et al., 2002; Chavez et al., 2006). Every proteolipid
VHA-c has a molecular mass of 16 kDa and consists of four
transmembrane helices, VHA-c” also has four helices, but it has
a molecular mass of 18 kDa (Seidel et al., 2008). The proton
binding glutamate residue is located in the fourth and second
helix of VHA-c and VHA-c”, respectively (Figure 3; Wang et al.,
2004). In Arabidopsis, three isoforms of VHA-c exist and are
encoded by five genes. The isoforms VHA-c1, VHA-c3, and VHA-
c5 are identical at the protein level. VHA-c” is encoded by two

genes, resulting in the isoforms VHA-c”1 and 2. Both VHA-
c” isoforms were identified in the ER and were absent in the
vacuole in plants (Jaquinod et al., 2007; Seidel et al., 2008). In
the ring structure, the distance between proton binding sites is
constant except for rings bearing VHA-c”. The uneven spacing
caused by VHA-c” has been suggested to enable auto-inhibition
in yeast, fixing the proteolipid ring in a position with VHA-c”,
which is close to transmembrane helices 7 and 8 of VHA-a in
the inhibited state (Roh et al., 2018). However, VHA-c” has also
been shown to be part of the binding pocket of VHA-d during
V-ATPase assembly (Roh et al., 2018), so it might take over the
function of VHA-c’ for complex assembly in higher eukaryotes.
The proteolipid ring is flanked by the C-terminal domain of
VHA-a, which forms two water-filled hemi-channels for cytosolic
proton access to the proteolipid ring, and their final release into
the organelle lumen and might further serve as a pH sensor that
communicates the endosomal pH to the cytosolic side (Grabe
et al., 2000; Marshansky, 2007; Roh et al., 2020). Based on the
topology of the yeast VHA-a subunit Vph1p, VHA-a consists
of eight transmembrane helices, and helices 7 and 8 form the
cytoplasmic hemi-channel and helices 3, 4, and 7 the luminal
one (Figure 3); both semi-channels are characterized by charged
and polar amino acid residues (Toei et al., 2011; Vasanthakumar
et al., 2019). VHA-a further carries a positive barrier charge with
a conserved arginine residue (Arg 735 in yeast) in its center,
which affects the pKa of proton-binding glutamate residues and
supports the release of protons. The helix bearing this barrier
charge shows dynamic flexibility, which might be required for
proper channel gating and positioning of the barrier charge
(Duarte et al., 2007; Vos et al., 2007). The N-terminal domain
of VHA-a is hydrophilic and exposed to the cytosol. It serves
as a membrane anchor for the V1 sector and interacts with
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FIGURE 3 | Structure of proteolipids VHA-c and VHA-c” and subunit VHA-a.
(A) VHA-a has a bipartite structure of the cytosolic N-terminal domain and the
C-terminal membrane integral domain. The N-terminal domain serves as part
of stator and bears the TGN localization domain in the case of VHA-a1
(position is indicated by dark green color). Helices of the C-terminal domain
form semi-channels for proton loading and unloading of VHA-c (light green
helices), and the barrier charge surrounds a conserved arginine residue on
helix seven (red colored). (B–D) The proteolipids consist of four
transmembrane helices [refer to the view from the cytosolic side: (C,E)], and
the protein binding site is a conserved glutamate residue (red color) located in
the fourth helix [VHA-c; (B)] or the second helix [VHA-c”, (D)]. A cytosolic loop
of VHA-c (green color) serves as a binding site for VHA-d. Structures were
obtained with Phyre2 (Kelley et al., 2015), and a complete set of pdb files for
A. thaliana VHA subunits is available as Supplementary Data.

the proteolipid ring in the absence of V1 (Roh et al., 2018).
VHA-a isoforms define the subcellular localization of V-ATPase,
differing between TGN/EE- and vacuolar isoenzymes in plants.
This difference in localization has been observed in yeast first;
here, the isoform Stv1p locates to the Golgi, and Vph1p was
found in the vacuolar membrane (Manolson et al., 1994). Stv1p
targeting to the Golgi relies on a WKY-motif, which interacts with
phosphatidylinositol 4-phosphate (PI(4) in the Golgi (Finnigan
et al., 2012; Vasanthakumar et al., 2019). Furthermore, a more
negative surface charge of Vph1p results in higher proton
concentration in the cytoplasmic hemi-channel and, hence, in
higher activity than Stv1p (Vasanthakumar et al., 2019). In

Arabidopsis, the isoforms VHA-a2 and VHA-a3 were identified
in the vacuolar membrane, while VHA-a1 was found in the TGN
(Dettmer et al., 2006). Lupanga et al. (2020) identified a plant-
specific motif for TGN-targeting in VHA-a1 that is different from
the WKY-motif. To avoid ion leakage, the 41-kDa subunit VHA-d
resides on the cytosolic side of the ring, interacts with cytoplasmic
loops of VHA-c, and blocks the central pore (Roh et al., 2018).
The open proteolipid ring would form such a central pore with a
conductance of 8.3 nS (Ouyang et al., 2008; Couoh-Cardel et al.,
2016), and without VHA-d, V0 would be a passive proton channel
(Ouyang et al., 2008). Early reports of VHA-d being part of the
stator were not confirmed by recent structures (Thaker et al.,
2008; Roh et al., 2020). In Arabidopsis, two isoforms, VHA-d1
and VHA-d2, exist and are encoded by two neighboring genes
(Sze et al., 2002). Two isoforms are also known for the small 9 kDa
subunit VHA-e in Arabidopsis. It consists of two membrane
integral helices and a cytosolic C-terminal tail but the function of
the subunit remains elusive. It may not be essential for V-ATPase
activity in yeast and is absent in the vacuole in plants, but it might
be required for V-ATPase assembly, since its absence results in a
Vma− phenotype in yeast (Sambade and Kane, 2004; Compton
et al., 2006; Jaquinod et al., 2007; Seidel et al., 2008; Bueler and
Rubinstein, 2015).

The hexamer of alternating subunits VHA-A and VHA-B
form the core complex of the subsector V1 and resemble the
catalytic head of F-ATP synthases (Grüber et al., 2001). Both
subunits are capable of binding nucleotides, but only VHA-A
maintains hydrolase activity during evolution and VHA-B takes
over regulatory and structural functions via interactions with
aldolase and the cytoskeleton (Chen et al., 2004; Lu et al., 2007).
VHA-A consists of four domains, I–IV, with a nucleotide-binding
P-loop in domains III and IV. Domain II has no counterpart
in the F-ATP synthase subunit β and thus is called a non-
homologous region (Shao et al., 2003; Maegawa et al., 2006).
The first P-loop is responsible for ATP-hydrolysis and the target
of redox modulation (Seidel et al., 2012). The hexameric head
forms a central cavity, which is occupied by the central stalk, a
heterodimer of subunits VHA-D and VHA-F, which are single
copy genes in A. thaliana. These two transduce conformational
alterations caused by the catalytic cycle of VHA-A into rotation
while they are connected to the proteolipid ring via VHA-d. This
arrangement demands a rigid structure to prevent co-rotation
of the catalytic head (Figure 4). This structure is provided by a
cage-like composition of three vertical peripheral stalks out of the
elongated subunits VHA-E and VHA-G, which are crosslinked
by the horizontally orientated VHA-C and VHA-H (Kitagawa
et al., 2008; Zhao et al., 2015). Last but not least, interactions
with VHA-a anchor the peripheral stalks to the membrane. The
VHA-H and VHA-C from yeast have been the first V-ATPase
subunits that were crystallized (Sagermann et al., 2001; Drory
et al., 2004). The data revealed a bipartite structure of VHA-H
with multiple domains for protein-protein interactions, which
can even be divided into two independent peptides without loss
of function (Liu et al., 2005), while VHA-C consists of a globular
head and a foot domain connected by a bundle of α-helices.
The N-terminal domain of VHA-H binds the VHA-E/VHA-G
dimer with moderate affinity, and its interaction depends on ATP

Frontiers in Plant Science | www.frontiersin.org 4 June 2022 | Volume 13 | Article 931777

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-931777 June 25, 2022 Time: 16:0 # 5

Seidel V-ATPase

FIGURE 4 | Structure-function relationship of the subunit arrangement. (A) Subunits that are directly involved in catalysis of proton pumping are given, starting with
ATP-hydrolysis at the catalytic head, transformation of conformational changes into rotation of the central shaft by VHA-D and VHA-F, and VHA-d-mediated
transduction of the rotation to the proteolipid ring, are given. VHA-a contributes the semi-channels for loading and unloading of proton binding sites. (B) The
peripheral stalk subunits form a structure that resembles a rigid cage. It anchors the catalytic head to the membrane and prevents its co-rotation. Subunits of the
peripheral stalk have a direct impact on coupling ratio. (C) Top view of the V1 sector reveals the arrangement of VHA-A subunits with VHA-D located in the center.
The structures are based on pdb 3j9t (Zhao et al., 2015).

hydrolysis in yeast, whereas VHA-C binds to the heterodimer
with high affinity (Sharma et al., 2018). Like VHA-B, VHA-C has
been reported to interact with the actin cytoskeleton (Vitavska
et al., 2005). VHA-B, VHA-E, and VHA-G are encoded by three
genes in A. thaliana and ensure high flexibility in the formation
of the V1-sector and, in particular, the peripheral stalk, and
subunits VHA-A, VHA-C, VHA-D, VHA-F, and VHA-H are
encoded by single-copy genes and might be the highly conserved
and less flexible part of V1 (Sze et al., 2002). The expression
of VHA-E isoforms is best analyzed. It is organ-specific and of
developmental relevance in A. thaliana. During embryogenesis,
VHA-E1 is the most important isoform, and VHA-E3 can be
found in the endosperm (Strompen et al., 2005).

ASSEMBLY OF THE V-ATPASE
COMPLEX IN THE ER

Knowledge of the assembly of the entire complex is scarce, and
although progress has been made in understanding the assembly
of the V0-sector in yeast and mammals, there are only little data
on the biosynthesis of plant V-ATPases. The situation becomes
confusing because of the regulatory mechanism of reversible
disassembly in yeast and mammals, which is often referred to
as complex assembly in the literature. An early study on oat
showed that V-ATPase is fully assembled already in the ER, so
the entire biosynthesis of the complex takes place in the ER
of plant cells where the assembly is assisted by the chaperones
Calnexin and BiP (Herman et al., 1994; Li et al., 1998). This
is supported by the observation that VHA-E locates first to the
ER before its transport to the Golgi and finally to the vacuole,
and that VHA-A interacts with the membrane before it interacts

with VHA-B (Frey and Randall, 1998; Seidel et al., 2005). On the
other hand, a concerted assembly pathway of V0 and V1 and a
separate assembly of V0 and V1 with subsequent union in the
Golgi were suggested as alternate assembly mechanisms in yeast
in the past; all reported and suggested mechanisms might even
co-exist (Kane, 1999).

The formation of the membrane integral sector requires a
couple of additional assisting proteins like Vma12p, Vma21p,
Vma22p, Voa1p, and the ribonuclease YPR170W_B in yeast.
Vma21p interacts with VHA-c’ for proteolipid ring assembly,
while a heterodimer of Vma12p and Vma22p facilitates the
assembly of the proteolipid ring with VHA-a (Malkus et al.,
2004). VHA-e also interacts with Vma21p, and it is suggested
to complete the assembly (Compton et al., 2006). Next, the
membrane integral α-helix of Voa1p interacts with VHA-c” and
VHA-c and thereby forms a binding pocket for VHA-d (Ryan
et al., 2008; Roh et al., 2018). The incorporation of VHA-d was
thought to allow for the release from the ER and subsequent
binding to the V1 sector in a sequential scenario (Graham et al.,
1998; Ryan et al., 2008; Abbas et al., 2020).

Subcomplexes like VHA-A2/VHA-B2 and VHA-C1VHA-
E3VHA-G3VHA-H1 were identified, which might represent
intermediate states of assembly, and the same might be true
for VHA-E/VHA-G, since VHA-E is unstable in the absence
of VHA-G (Tomashek et al., 1997; Charsky et al., 2000;
Fethiere et al., 2004; Zhang et al., 2008; Hildenbrand et al.,
2010). These subcomplexes likely represent the building blocks
for the assembly of V1-sectors. Their assembly with V0 is
supported by the RAVE complex consisting of Rav1p, Rav2p,
and Skp1p, and is best characterized as part of the re-assembly
machinery and, thus, re-activation of the yeast V-ATPase after
it dissociates into V0, V1, and VHA-C in the absence of glucose
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to downregulate ATP-consumption. V-ATPases seem to be even
primed to disassemble in mammals (Parra and Hayek, 2018).
However, the RAVE complex is also involved in biosynthesis of
V-ATPases (Smardon and Kane, 2007). The complex is required
to finally incorporate VHA-C into the complex and to ensure
an appropriate orientation of V1 and V0 during V-ATPase (re-)
assembly in yeast (Smardon et al., 2015). The recruitment of
the RAVE-complex depends on intact V0-sectors where it binds
Vph1p and not Stv1p exclusively in the presence of glucose
(Smardon et al., 2014; Jaskolka and Kane, 2020). At the level of
V1, RAVE undergoes a short sequence of interactions, binding
first to V1 followed by VHA-C (Jaskolka et al., 2021). Abe
et al. (2019) complemented yeast V-ATPase mutants with human
subunits and suggested that lack of VHA-F or any V0 subunit
results inVph1p being stalled in the ER and that lack of any V1
subunit results in cytosolic VHA-A. This observation indicates an
efficient checkpoint that is located in the ER, presumably calnexin
or BiP, so V-ATPases might be under the control of the canonical
ER quality control and its calnexin/calreticulin cycle (Araki and
Nagata, 2011).

Many other proteins have been reported as putative assembly
factors in the past but have not been confirmed, such as PKR1
or VTC family proteins (Cohen et al., 1999; Davis-Kaplan et al.,
2006). However, orthologous proteins of Vma12 and Vma21 have
been identified in A. thaliana, and AtVma21a has been shown to
interact transiently with VHA-c”, so VHA-c”, instead of VHA-
c’, might recruit Vma21 for proteolipid ring assembly in plants
(Neubert et al., 2008). This would compensate for the absence
of VHA-c’ in higher eukaryotes. The subsequent transport is still
a subject of investigation; on the one hand, VHA-E and VHA-
a1 take the canonical route of the secretory pathway and Vma21
bears a dilysine motif for recycling back to the ER, on the other
hand, VHA-a3-bearing V0-subunits have been observed to take a
route to the vacuole bypassing the Golgi (Figure 1; Seidel et al.,
2005, 2013; Neubert et al., 2008; Viotti et al., 2013; Lupanga et al.,
2020).

ENZYMATIC PROPERTIES AND ENZYME
REGULATION

V-ATPase couples ATP hydrolysis to proton transport. V1 serves
as ATPase with three catalytically active ATP-binding sites, one
at each VHA-A. The activity of ATPase is in the range of
4.32 µmol ATP or released phosphate h−1 mg−1 protein to
18.7 µmol h−1 mg−1 (Dietz et al., 1998; Kawamura et al.,
2000, 2001; Kłobus and Janicka-Russak, 2004; Chen et al., 2011).
ATP-hydrolysis is well-coordinated and occurs in a defined and
repeated sequence. This involves three different conformational
states of VHA-A, which are dependent on the nucleotide binding
state and drive the clockwise and stepwise rotations of the
central stalk by VHA-D and VHA-F; the rotations create a
torque of 36 ± 4 pN nm (Hirata et al., 2003). The central
stalk transduces the rotations to the proteolipid ring, and
then the proton binding sites are loaded by the cytoplasmic
semi-channel of VHA-a. The ring makes an almost complete
clockwise turn before proton binding interferes with the barrier

charge, and the proton is released into the luminal semi-channel
(Grabe et al., 2000). The coupling efficiency as proton to ATP
ratio varies and depends on pH-difference 1pH of the cytosol
and the lumen. It is affected by an increasing proton shunt
along the gradient with increasing 1pH, and the ratio changes
approximately by 0.7 protons per ATP per 1pH (Kettner et al.,
2003a; Rienmueller et al., 2012). In citrus, a high pH gradient and
improved coupling are supported by the luminal counter ions
malate and citrate (Müller and Taiz, 2002). In general, chloride
acts as a counter-ion, and its uptake by anion channels and
transporters like the endosomal AtCLC-d reduces the impact
of the electrogenic component of the proton motive force and
favors the proton gradient (Beyenbach and Wieczorek, 2006;
Fecht-Bartenbach et al., 2007). The proteolipid ring and hemi-
channels resemble a Brownian ratchet like the F0-sector of F-ATP
synthases (Oster, 2002). Once the motor is stalled, wobbling
of VHA-c proton binding sites between the hemi-channels of
VHA-a facilitates proton slip flux together with high luminal
proton concentrations (Grabe et al., 2000). A decrease in cytosolic
pH further increases the affinity to ATP to counteract cytosolic
acidification and the regulation pays attention to cytosolic and
luminal pH; information on the pH might be transported to
the other side of the membrane, possibly by protonation of
proteins (Davies et al., 1994; Rienmueller et al., 2012). For
completeness, ATP-synthesis was observed on the V-ATPase
of maize vacuoles in the presence of a Me2SO-containing
medium, which decreases the Km for phosphate because of the
altered solvation energy of phosphate, and this reaction was
observed even in the absence of a proton gradient (Façanha and
Okorokova-Façanha, 2008). The authors suggest that this might
also occur as an energy-conserving mechanism in dehydrating
environments like, for instance, seed cells. In yeast, the function
of V-ATPase was reversed by applying an appropriate voltage
(Kettner et al., 2003b).

Lipids might play a role in activating V-ATPase in their
final destination. The phosphatidylinositol phosphate lipid
composition of endomembrane compartments differs, whereas
endosomes can be characterized by the presence of PI(3)P; the
Golgi is enriched with PI(4)P, which interacts with the yeast
VHA-a isoform Stv1p, while its vacuolar counterpart Vph1p
interacts with PI(3,5)P2 in tonoplasts (Banerjee and Kane, 2020).
PI(3,5)P2 might additionally contribute to luminal acidification
in guard cells by blocking secondary active transport, and
PI(3,5)P2 targets CLC-a and inhibits its anti-port activity
and thus minimizes the consumption of proton motif force
(Carpaneto et al., 2017; Scholz-Starke, 2017). This includes
phosphatidyl 3-kinase, which interacts with VHA-B2 in the
tonoplasts of Arabidopsis (Liu et al., 2016).

Biochemical Regulation of V-ATPase
The activity of V-ATPase is modulated at the short-term level
with respect to illumination of plants. This regulation is driven
by cytoplasmic ATP/ADP-ratio, which is altered upon dark-light
transitions, and blue light-driven phosphorylation of VHA-A
and subsequent binding of 14-3-3 proteins. Light-dependent 14-
3-3 protein binding might be one mechanism to coordinate
the activity of proton pumps in the plasma membrane and
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endomembrane compartments (Dietz et al., 1998; Klychnikov
et al., 2007; Cosse and Seidel, 2021). The main regulatory
nucleotide binding sites might be located in VHA-C with its
conformational alteration upon ADP-binding and its high affinity
for ADP in yeast. This might also explain the diffuse stator
arrangement of the V-ATPase from Kalanchoe daigremontiana
in the absence of nucleotides; however, additional nucleotide
binding sites of possible regulatory relevance can be found
in VHA-B and VHA-A (Forgac, 1999; Domgall et al., 2002;
Armbruster et al., 2005; Maegawa et al., 2006). An additional
nucleotide-dependent mechanism is the blocking of anion
channels of the CLC- and the ALMT-family by free ATP, which
communicates the cellular energy status to the membranes
and indirectly regulates V-ATPase activity (Angeli et al.,
2016). In mammalian cells, the presence of cyclic AMP
enables the trafficking of V-ATPases to the apical surface
(McGuire et al., 2017).

Another key player in short-term regulation is calcium
ions, which are linked to V-ATPases by calcineurin B-like
(CBL) calcium sensors in plants. CBL2 and CBL3 can be
found in tonoplasts, and as a target of CBL-interacting kinases
CIPK9 and CIPK17, they are directly involved in V-ATPase
activation and subsequent control of plant growth and ion
homeostasis (Tang et al., 2012; Saito and Uozumi, 2020).
A close relationship of calcium- and pH-homeostasis also
results from the calcium transport and maintenance of resting
calcium ion concentrations in the cytosol and is a general
feature due to reports from yeast and protozoan and plants
(Martinoia et al., 2007; Ma et al., 2021; Stasic et al., 2021).
This interplay becomes obvious by the loss of the calcium
proton exchanger Cax1 in A. thaliana, which results in 40%
inhibition of V-ATPase (Cheng et al., 2003). Such coordination
is achieved by calcium-dependent kinases independent of
electrogenic effects on the membrane. The calcium-dependent
kinase 1 (CDPK1) even activates the barley V-ATPase in response
to gibberellic acid, thereby integrating hormonal and calcium-
signaling in aleurone (McCubbin et al., 2004). To complete the
information on regulation by phosphorylation, VHA-C bears
multiple phosphorylation sites and is a target of the without a
lysine kinase 8 (WNK8) (Hong-Hermesdorf et al., 2006).

Furthermore, V-ATPase is subject to redox modulation of
cysteine residues as a highly conserved regulatory mechanism,
and its catalytic activity decreases by addition of oxidants like
hydrogen peroxide, nitric oxide, nitrate, oxidized glutathione
(GSSG), and thioredoxin (TRX), or alkylating reagents like
N-ethylmaleimide (NEM) and iodacetamide (IAA). Accordingly,
reducing agents like glutathione, H2S, and DTT promote the
activity (Hager and Biber, 1984; Hager and Lanz, 1989; Feng
and Forgac, 1992a,b; Dschida and Bowman, 1995; Dietz et al.,
1998; Tavakoli et al., 2001; Seidel et al., 2012; Kabala et al., 2019).
Feng and Forgac suggested that the thiol switch in VHA-A is a
redox-sensitive mechanism of the bovine V-ATPase: The active
state is characterized by a disulfide bridge between cysteinyl
residues Cys277 and Cys532, and the inactive state involves a
disulfide bridge between Cys532 and Cys254. The latter cysteine
residue resides in the ATP-binding P-loop of VHA-A, so disulfide
bridge formation blocks the ATP-binding site (Feng and Forgac,

1992a,b, 1994). The bovine cysteine residues Cys254, Cys277,
and Cys532 are highly conserved and correspond to Cys256,
Cys279, and Cys535, respectively, in A. thaliana (Figure 5; Seidel
et al., 2012). An inhibitory intramolecular disulfide formation
within VHA-A has been ruled out for A. thaliana based on
the data, that exclusively the replacement of Cys256 by a serine
residue abolished the redox-sensitivity of V-ATPase activity
(Kawamura et al., 2001; Tavakoli et al., 2001; Seidel, 2009;
Seidel et al., 2012). The fact that a cysteine residue in an
ATP-binding P-loop is common for many ATP-hydrolyzing
enzymes (Yatsuhashi et al., 2002; Messens et al., 2004; Buhrman
et al., 2005) and the finding that Cys256 is not conserved
between V-ATPases and A-ATPases and is even replaced by
serine in anaerobic and thermophilic Archaebacteria support the
conclusion of redox-regulation exclusively via Cys256 (Maegawa
et al., 2006). Still, the precise redox state of Cys256 in the inhibited
state remains unclear. Possible posttranslational modification
of cysteine residues comprises oxidation of thiolate anions to
sulfenic acid, followed by oxidation to sulfinic and sulfonic acids,
and glutathionylation, nitrosylation, and disulfide formation
(Dietz, 2003; García-Santamarina et al., 2014; Fernando et al.,
2019). Besides VHA-A, one cysteine (Cys179) is conserved in the
VHA-B of all eukaryotes, and Cys134 and Cys186 are conserved
in VHA-E of plants (Tavakoli et al., 2001). An intramolecular
disulfide formation with a midpoint potential of -330 mV has
been observed for VHA-E and linked to the nucleotide-binding
state of VHA-A (Kawamura et al., 2001).

Glucose-Dependent Regulation by
Reversible Dissociation
The V-ATPase of mammalian cells and yeast has evolved a
remarkable regulatory mechanism to inhibit V-ATPase when a
cell runs out of glucose. Under this condition, the V1 sector
detaches from the membrane, and ATP-hydrolysis and proton

FIGURE 5 | Conserved cysteine of VHA-A. VHA-A bears three conserved
cysteines. Their distances of 11–29 Å exceed the maximum distance for
disulfide formation. Cys256 is located in the catalytic ATP-binding P-loop, and
its redox modulation efficiently inhibits V-ATPase activity. The structure is
based on pdb 3j9t (Zhao et al., 2015).

Frontiers in Plant Science | www.frontiersin.org 7 June 2022 | Volume 13 | Article 931777

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-931777 June 25, 2022 Time: 16:0 # 8

Seidel V-ATPase

transport are inhibited (Figure 6). This is controlled by the
glucose-sensitive signaling pathway of Ras-GTPases, Ira1p, Ira2p,
and cAMP, and phosphorylation by protein kinase A (PKA) in
yeast (Bond and Forgac, 2008). The level of glucose is also sensed
by an interaction with a glycolytic aldolase, and the absence
of glucose results in the release of aldolase and detachment
of VHA-C and the residual V1 sector (Lu et al., 2001, 2004,
2007). In the disassembled state, the central pore is arrested
by the N-terminal domain of VHA-a, which prevents rotation
of the proteolipid ring and arrests the ring in a position with
VHA-c” near transmembrane helices 7 and 8 of Vph1p, and
thereby prevents passive transport of protons (Roh et al., 2018).
Rotation of the central stalk and ATP hydrolysis are blocked
by the C-terminal half of VHA-H, which interacts with the
central stalk of VHA-D/-F (Sharma et al., 2018). Released V1
sectors and VHA-C both bind to the actin-cytoskeleton to
maintain the complex close to the membrane and respective
V0 complexes. Re-assembly is mediated by the rabconnectin-3
complexes of higher eukaryotes or the yeast RAVE complex. This
complex consists of Rav1p, Rav2p, and Skp1p, which bind to
V1 and VHA-C in a glucose-independent manner, but binding
to the Vph1p of V0 is sensitive to glucose (Seol et al., 2001;

Smardon et al., 2002, 2015; Smardon and Kane, 2007; Jaskolka
and Kane, 2020). Actually, the RAVE complex brings V0, V1,
and VHA-C in an appropriate position for re-assembly where
the rotational state might become critical (Smardon et al.,
2015; Zhao et al., 2015). The specificity of Vph1p restricts this
regulation to V-ATPase in tonoplasts (Smardon et al., 2014).
Phosphofructokinase 1 (PFK1) senses ATP availability, interacts
with V-ATPase, and contributes in re-assembly (Chan and Parra,
2014; Chan et al., 2016). Together with binding of TORC1,
this results in active V-ATPase supercomplexes (Deprez et al.,
2018; Hayek et al., 2019). However, an investigation of the
V0V1 assembly state in desoxyglucose-fed mesophyll cells of
A. thaliana revealed a fully assembled complex, and only the
conformation of VHA-C was altered. This alteration explains the
tilted structure of Kalanchoe V-ATPase in the absence of ATP
(Domgall et al., 2002; Schnitzer et al., 2011). Although these
data point to the absence of reversible dissociation in plants,
it should be considered that these were gathered with samples
from autotrophic tissue, and that the situation might be different
in heterotrophic plant cells. This would further explain why
components of the RAVE complex can be found in Arabidopsis
(Jaskolka and Kane, 2020).

FIGURE 6 | Reversible assembly of yeast V-ATPases. In the absence of glucose, the glycolytic aldolase dissociates from the complex, followed by VHA-C and the
entire V1-sector; VHA-C and the residual V1 sector bind to actin to prevent free diffusion. Supply with glucose results in re-assembly of V-ATPase, mediated by the
RAVE complex. The structure of V-ATPase relies on pdb-file 3j9t, the aldolase on 7ka2, and Skp1 on 5xyl (Zhao et al., 2015; Shukla et al., 2018; Cash et al., 2020).
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V-ATPASE AND ABIOTIC STRESS
RESPONSE: SOME EXAMPLES

The expression of V-ATPase subunits varies with respect to
environmental conditions. It depends on drought, cold stress,
salinity, heavy metals, aluminum stress, osmotic stress, and
oxidative stress, and shows ABA-dependency (Schulze et al.,
2012; Yang et al., 2012; Vera-Estrella et al., 2017; Xu et al., 2017;
Liu et al., 2018; Shi et al., 2018; Wu et al., 2019; Feng et al.,
2020). Due to the multitude of genes encoding for V-ATPase
subunits, regulation of the transcript level is rather complex;
26 genes encode for 13 subunits in A. thaliana, resulting in
high number of possible combinations. Besides environmental
influences, some isoforms show organ-specificity like VHA-E2
and VHA-G3, which are expressed in pollen, but most show
stress-responsive expression patterns (Hanitzsch et al., 2007). In
contrast to A. thaliana where VHA-A is encoded by a single
gene and therefore vulnerable to mutations, it is encoded by at
least two genes in rice, tomato, and carrot, which are organ-
specific expressed (Gogarten et al., 1992; Bageshwar et al., 2005;
Hanitzsch et al., 2007). At the level of the V0 sector, all five VHA-c
isogenes were expressed in leaves, and the same was observed for
VHA-c”1, while the transcript of VHA-c3 was additionally high
in root caps of seedlings and the expression of VHA-c”2 was not
detectable (Padmanaban et al., 2004; Hanitzsch et al., 2007; Seidel
et al., 2008). Because of its role in plant stress response, V-ATPase
has been described as an eco-enzyme. Best characterized is its
importance under salinity and heavy metal stress, and many
reports rely on transcript analysis of crops. Most plants deposit
sodium ions in the vacuole, often within specialized cells or
tissues like the epidermal bladder of the common ice plant. The
transport of sodium ions is driven by sodium/proton exchangers
(NHXs) and thus depends on the proton motif force (Zhou et al.,
2011). Accordingly, salt-tolerant plants like Lobularia maritima,
Suaeda salsa, Mesembryanthemum crystallinum (CAM state),
and Aeluropus lagopoides showed at least higher expression and
often higher activity of V-ATPases under salt stress (Tsiantis
et al., 1996; Wang et al., 2001; Popova and Golldack, 2007;
Ahmed et al., 2013; Cosentino et al., 2013; Sanadhya et al.,
2015; Barkla et al., 2016). V-PPase and V-ATPase contribute
differently in sodium sequestration, and uptake occurs mainly in
the TGN and is driven by TGN-specific V-ATPases, for instance,
in Arabidopsis and M. crystallinum, so V-PPase plays a minor
role in sodium sequestration (Kabala and Klobus, 2001; Wang
et al., 2001; Krebs et al., 2010; Yi et al., 2014; Barkla et al.,
2016). Nevertheless, overexpression of V-PPases of other plant
species like S. salsa, Zoysia matrella enhances the salt tolerance
in A. thaliana (Guo et al., 2006; Chen et al., 2015), resulted
in higher V-ATPase activity. Vice versa knock down of vha-A
resulted in reduced V-PPase activity (Guo et al., 2006; Chen
et al., 2015; Lv et al., 2017). The salinity-dependent activation of
V-ATPases is organ-specific and drives root and shoot growth;
subunits like VHA-c5 have been found to be expressed higher in
root epidermal cells and the root elongation zone of A. thaliana;
overexpression of VHA-B from wheat resulted in improved root
elongation in A. thaliana, while shoot growth was observed

for S. salsa (Yang et al., 2010; Wang et al., 2011; Zhou et al.,
2018). V-ATPase activity is adjusted mostly by protein expression.
Post translational modifications play a minor role under salinity,
though some are known (Wang et al., 2001; Nasiri et al., 2012;
Cosentino et al., 2013). Polyamines decrease proton pumping
activity in cucumber, so salinity-dependent activation of proton
pumps is accompanied by decrease in polyamines; this might
occur by transamidation of proteins, since high expression levels
of transglutamidases result in higher activity of V-PPase and
V-ATPase (Janicka-Russak et al., 2010; Zhong et al., 2020).
In apple, malate accumulates in the fruit under salt stress,
mediated by the kinase SOS2L1, which interacts with VHA-B1,
phosphorylates the subunit in Ser396, and results in shifting from
malate metabolism to storage (Hu et al., 2016).

Heavy metal stress includes a broad range of responses to
cadmium, copper, zinc, and nickel, and the role of V-ATPase
has been analyzed excessively in many plants under heavy metal
stress. The effect of heavy metals on vacuolar proton pumps
has been different in cucumber than in other plants and does
not involve redox modulation. Cadmium, zinc, and nickel have
an inhibitory effect on V-ATPase and V-PPase, the latter is
stimulated by low concentrations of 10 µM zinc or nickel,
while copper stimulates V-ATPase activity, and pre-incubation
with copper even stimulated both pumps. Thus, in cucumber,
V-ATPase is not of importance under zinc and nickel stress, and
the activity of the V-PPase is sufficient (Kabała et al., 2010, Kabala
et al., 2013; Kabala and Janicka-Russak, 2011). In contrast to
salinity and the situation in cucumber, the vacuolar uptake of
zinc relies on the V-ATPase in tonoplasts in A. thaliana (Krebs
et al., 2010). An inhibitory effect of zinc on V-ATPase has also
been observed for A. thaliana, although here the protein level was
decreased (Fukao et al., 2011). Finally, zinc results in alkanization
of vacuoles and inhibits cell expansion via V-ATPase (Fukao
and Ferjani, 2011). Alkanization of vacuoles due to the putative
membrane-permeabilizing effect of cadmium, cobalt, and nickel
is also known in yeast. Copper has a different effect on yeast
vacuoles; it blocks SNARE pairing, inhibits proton pumping, and
thereby prevents vacuolar fusion in yeast (Miner et al., 2019;
Techo et al., 2020).

V-ATPASE AND BIOTIC STRESS
RESPONSE: TARGET FOR IMPROVED
PATHOGEN DEFENSE

The midgut of insects is easily accessible for insecticides. This
accessibility also concerns V-ATPase, which controls the pH of
the insect midgut and drives nutrient uptake (Zhuang et al., 1999;
Harrison, 2001). Insecticides like destruxin B act on V-ATPase
here (Muroi et al., 1994; Bandani et al., 2001). The disadvantage
of such insecticides is their broad impact on all insects and,
thus, their low specificity for pathogenic insects. Even toxins
of higher species-specificity like tulipaline A, which affects the
V-ATPase of nematodes, were also toxic for mammalian cells
(Caboni et al., 2014), so they likely have unwanted side effects
if applied in the field. Proteins of the knottin or cystine knot
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family like pea albumin 1b (PA1b) bind to VHA-c and VHA-e
and result in selective inhibition of insect V-ATPases. PA1b
represents the first peptidic inhibitor of V-ATPases (Chouabe
et al., 2011; Muench et al., 2014), and other peptidic inhibitors
are Cry-proteins from Bacillus thuringiensis that bind to VHA-B
and actin and function as insecticidal agent (Chen et al., 2010;
Shabbir et al., 2019). It turned out that the Asian corn borer
Ostrinia furnacalis is able to develop resistance against Cry1
and reduces the efficiency of peptidic inhibitors (Shabbir et al.,
2019). Later approaches to target the insect midgut V-ATPase
applied RNAi, which is expressed as dsRNA by plant cells. This
approach is highly specific for a single species and results in
significant larval mortality. Most approaches addressed VHA-
A, for instance, against the cotton bollworm, cotton mealy
bug, tomato leaf miner, whiteflies, potato psyllid, and corn
planthopper (Wuriyanghan and Falk, 2013; Yao et al., 2013;
Thakur et al., 2014; Mao et al., 2015; Khan et al., 2018; Rahmani
and Bandani, 2021). The efficiency as means of larval mortality
can be further improved by addressing two genes of the herbivore
insect and by lectins, which improve dsRNA delivery and increase
the mortality of the army beetworm from 6–8 to 48% (Yao et al.,
2013; Mao et al., 2015; Khan et al., 2018; Martinez et al., 2021).

TRANSGENIC LINES OF ARABIDOPSIS

The analysis of transgenic lines of A. thaliana shed light
into the relevance of individual subunits and revealed the
different functions of V-ATPases in the vacuole and the TGN
(Table 1). The absence of V-ATPase in tonoplasts is achieved by
double knockout of VHA-a2 and VHA-a3, resulting in reduced
zinc tolerance and reduced vacuolar nitrate storage, which is
compensated by higher nitrate assimilation. The transgenic
plants revealed that in the vacuole V-PPase is sufficient for
gametophyte and embryo development. They further showed
reduced calcium content and leaf tip necrosis typical for mutants
of vacuolar calcium/proton exchangers, accompanied by growth
retardation (Krebs et al., 2010). The triple knockouts of VHA-
a2, VHA-a3, and Fugu5, and VHA-a2, VHA-a3, and AVP1, which
lack both proton pumps in tonoplasts, showed reduced vegetative
growth of shoots and roots and produced few or even no seeds,
respectively, but both triple knockouts were viable (Kriegel et al.,
2015). The triple knockout of VHA-a2, VHA-a3, and AVP1 has

TABLE 1 | Characterized lines.

Gene Insertion Mutagenesis Expression References

VHA-A + – Dettmer et al., 2005

VHA-C, Det3 – + Poch et al., 1993

VHA-E1 – + Strompen et al., 2005

Vha-a2/VHA-a3 + – Krebs et al., 2010

VHA-a2/VHA-
a3/AVP1

+ – Kriegel et al., 2015

VHA-a2/VHA-
a3/FUGU5

+ – Kriegel et al., 2015

Vha-a2/VHA-a3 + – PUbi-AVP1 Kriegel et al., 2015

further defects in the early stages of embryo development like
altered vacuolar morphology and defective auxin transport by
disturbed localization of the auxin transporter PIN1 (Jiang et al.,
2020). Still, loss of VHA-a1 and, thus, loss of V-ATPases in
the TGN result in higher salt sensitivity, cell wall defects, and
impaired cell elongation, and link the defects to the TGN (Bruex
et al., 2008; Krebs et al., 2010).

Det3 has been the first characterized line with a mutation
in a VHA-gene generated by 1,2:3,4-diepoxybutane mutagenesis
of ecotype Columbia, which affected VHA-C in this case.
It has been part of a screen for short hypocotyls of dark
grown seedlings and has the phenotype of a light-grown plant.
Accordingly, the mutation caused defects in cell elongation
and stomatal closure, and reduced response to brassinosteroids;
these are caused by pH increases in the TGN that affect the
transport of cellulose synthase and brassinosteroid receptors
(Poch et al., 1993; Schumacher et al., 1999; Allen et al., 2000;
Luo et al., 2015). The peripheral stalk subunit VHA-E1 is
encoded by the TUFF gene, and a mutant was generated by
EMS mutagenesis in the A. thaliana ecotype Landsbergerecta
(Ler), which is characterized by a mutation in a splice site of the
gene. The mutation turned out to be embryo-lethal with drastic
effects at the cellular level like altered Golgi organization and
vacuolar morphology, defects in cell wall synthesis, and large
cells with multiple nuclei (Strompen et al., 2005). Insertion into
AT1G78900, which would result in a truncated form of VHA-
A of 63 kDa instead of 68 kDa, causes male and partial female
gametophyte lethality, if homozygous. At the cellular level, the
effects resemble the observation on the TUFF mutant with its
altered Golgi morphology (Dettmer et al., 2005).

Fluorescent Protein Fusions of V-ATPase
Subunits
Most transgenic lines have been complemented with fluorescent
protein fusions, starting with Det3 in 1999 (Table 2). This line
has been successfully complemented by GFP fusion of VHA-C
and confirmed the presence of V-ATPase in the secretory pathway
(Schumacher et al., 1999). Next was the insertion allele of VHA-
A, which has been complemented by GFP fusion of VHA-A
and has been the second transgenic line expressing a V-ATPase
subunit fused to a fluorescent protein (Dettmer et al., 2005).
Determination of VHA-a’s role in targeting the complex required
the generation of fluorescently labeled VHA-a isoforms. Loss of
VHA-a1 has been complemented by VHA-a1-GFP and VHA-
a1-mRFP, VHA-a2 and VHA-a3 have been complemented with
GFP and mRFP fusions, respectively (Dettmer et al., 2006; Bruex
et al., 2008). VHA-a1-GFP and VHA-a3-mRFP expressing lines
have been crossed to visualize both the TGN- and the tonoplast-
V-ATPase. These combinations revealed the function of VHA-a
in targeting V-ATPase (Viotti et al., 2013). A set of lines with
chimeric proteins of the first 37, 85, 131, 179, and 228 amino
acids of VHA-a1 and VHA-a3 revealed that the targeting domain
(TD) resides between the amino acids L132 and E179 of VHA-
a1; this region was placed in VHA-a3 (VHA-a3-a1-TD-GFP),
and transgenic plants were generated for co-localization with
VHA-a1-mRFP (Lupanga et al., 2020). Mutations and deletions
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TABLE 2 | Fluorescent protein reporter lines.

Construct 1 Construct 2 Construct 3 References

VHA-A-GFP – Dettmer et al., 2005

VHA-C-GFP – Schumacher et al., 1999

VHA-a1-GFP – Dettmer et al., 2006

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a2-GFP – Dettmer et al., 2006

VHA-a3-GFP Dettmer et al., 2006

VHA-a3-mRFP – Bruex et al., 2008

VHA-a1-GFP VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP VHA-a3-mRFP – Viotti et al., 2013

VHA-a2-GFP VHA-a3-mRFP – Bruex et al., 2008

VHA-a3-GFP VMA12-mRFP – Viotti et al., 2013

Vma21-GFP VHA-a3-mRFP – Viotti et al., 2013

VHA-a1NT37a3-
GFP

– Lupanga et al., 2020

VHA-a1NT85a3-
GFP

– Lupanga et al., 2020

VHA-a1NT131a3-
GFP

– Lupanga et al., 2020

VHA-a1NT179a3-
GFP

– Lupanga et al., 2020

VHA-a1NT228a3-
GFP

– Lupanga et al., 2020

VHA-a1-GFP
(E161S)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP
(F134Y)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP
(L159T E161S)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP
(L159T)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP (1
EEI)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP (ELE) VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP
(E156Q)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1-GFP
(E156Q L159T)

VHA-a1-mRFP – Lupanga et al., 2020

VHA-a1 GFP Sar1bGTP-CFP – Lupanga et al., 2020

VHA-a3 GFP Sar1bGTP-CFP – Lupanga et al., 2020

VHA-a1 GFP VHA-a3-mRFP Sar1bGTP-CFP Lupanga et al., 2020

were introduced into the TD and identified the importance
of single amino acids for targeting the complex. Applying an
inducible construct of dominant negative mutation of Sar1, the
Rab-GTPase of COPII vesicles, fused to CFP, proved that the
ER export of VHA-a1 is COPII-dependent but not the export
of VHA-a3. The difference in transport has been discussed in
the context of lacking glycosylation sites in VHA-a3 (Lupanga
et al., 2020). Two lines were generated for co-localization of
the V-ATPase assembly factors Vma12 and Vma21 with VHA-
a3, but co-localization of VHA-a3 and assembly factors was not
observed, pointing to a rapid and efficient ER export via direct
contact sites of the ER and tonoplasts (Viotti et al., 2013). In yeast,
Vma21 seems to be also involved in ER export and escorts the
complex to COPII vesicles (Malkus et al., 2004). Unfortunately,

transgenic lines that allow for co-localization of Vma21 and
VHA-a1 in Arabidopsis are missing.

Available Transgenic Lines
The generation of knockout and knockdown lines is hampered
by the observed (conditional) lethality in different developmental
stages as summarized before. The high number of isoforms
further results in high complexity and makes it difficult to
silence a multi-copy subunit. In the following, the generation of
transgenic lines is discusses based on available insertion lines and
number of isogenes. According to The Arabidopsis Information
Resource (TAIR, 24 March 2022; Lamesch et al., 2012)1 more
than 2,304 transgenic lines exist with insertions or substitutions
in VHA genes and the two Vma21 isoforms (Table 3 and
Supplementary Table 1), and the highest contribution refers
to VHA-c”2 with 1,275 lines. For subunits VHA-A, VHA-B1,
VHA-C, VHA-e2, and the assembly factor Vma21b, there are
no lines available that bear an insertion in an exon. VHA-A,
VHA-C, VHA-D, VHA-F, and VHA-H are encoded by single
copy genes, and knockout or knockdown lines have been already

1www.arabidopsis.org

TABLE 3 | Available insertion lines of VHA genes.

Subunit AGI Number of lines

VHA-A AT1G87900 22

VHA-B1 AT1G76030 31

VHA-B2 AT4G38510 50

VHA-B3 AT1G20260 48

VHA-C AT1G12840 59

VHA-D AT3G58730 20

VHA-E1 AT4G11150 66

VHA-E2 AT3G08560 33

VHA-E3 AT1G64200 17

VHA-F AT4G02260 13

VHA-G1 AT3G01390 28

VHA-G2 AT4G23710 69

VHA-G3 AT4G25950 14

VHA-H AT3G42050 52

VHA-a1 AT2G28520 39

VHA-a2 AT2G21410 41

VHA-a3 AT4G39080 36

VHA-c1 AT4G34720 22

VHA-c2 AT1G19910 15

VHA-c3 AT4G38920 24

VHA-c4 AT1G75630 50

VHA-c5 AT2G16510 63

VHA-c”1 AT4G32530 38

VHA-c”2 AT2G25610 1,275

VHA-d1 AT3G28710 52

VHA-d2 AT3G28715 36

VHA-e1 AT5G55290 34

VHA-e2 AT4G26710 20

Vma21a AT1G05780 28

Vma21b AT2G31710 9
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generated and characterized for VHA-A and VHA-C (refer to
7). Generation of homozygous knockdown or knockout lines
of VHA-D, -F, and –H appears simple, since available lines
(Supplementary Table 1) can be screened for homozygous lines
but with high risk of lethality.

For the two-copy subunits VHA-c”, VHA-d, and VHA-e,
crossing of two transgenic lines might work to generate a
complete knockout of these subunits, and the similarity of
the isoforms point to high redundancy. However, both VHA-d
isoforms are adjacent genes on the same chromosome, making
a required crossover very unlikely. For VHA-e2, most insertions
are located in introns, and the efficiency of these are questionable.
More promising is the crossing of transgenic lines of VHA-c”1
and VHA-c”2 that are located on different chromosomes.

Three copies are present in the genome of A. thaliana for
VHA-a, VHA-E, and VHA-G with a good characterized division
of labor for the organelle-specific VHA-a, the organ-specific
VHA-E, and VHA-G isoforms (Strompen et al., 2005; Dettmer
et al., 2006, 2010; Krebs et al., 2010). According to the localization
of VHA-a isogenes on chromosomes 2 (VHA-a1 and VHA-a2)
and 4 (VHA-a3), insertion lines have been crossed and new lines
have been generated for the combinations VHA-a1/VHA-a3 and
VHA-a2/VHA-a3 (Krebs et al., 2010; Viotti et al., 2013). These
appear less redundant, and transgenic lines with effects on single
isoform are powerful tools.

The situation is totally different for the five VHA-c isoforms
where five genes encode for three different proteins in A. thaliana.
VHA-c1, VHA-c3, and VHA-c5 are identical proteins, but at
least VHA-c1 and VHA-c3 are expressed in different tissues.
This might indicate that VHA-c isoforms are less redundant
than one would expect, so the knockout of single isoforms
can contribute to the understanding of V-ATPase isoenzymes
in A. thaliana. Anyway, addressing all proteolipids requires
techniques like CRISPR/Cas; the same is likely true for genes like
the two encoding for VHA-d isoforms where crossing of available
transgenic lines is not promising to gain a double knockout line.

CONCLUSION

While the structure and rotational catalytic cycle of V-ATPase
are now widely understood, knowledge of the assembly of the
complex is still scarce and has not been the focus in recent years.
Investigation of V-ATPase assembly and ER export remains one

of the main future perspectives. Progress has been made on the
level of regulation, and activating and inhibiting proteins have
been identified and are now promising targets for engineering
and modulating the catalytic activity. This approach appears
superior to genetic modifications or overexpression of single
V-ATPase subunits because of multiple isogenes and the resulting
complexity and flexibility in complex formation. However, a set
of VHA isogenes can, nowadays, be addressed in one step by
gene editing techniques like CRISPR/Cas. This offers a multitude
of new perspectives in the investigation of V-ATPases, facilitates
the generation of transgenic lines, and thus overcomes the lack
of transgenic line collections in other plant species. The current
knowledge of regulation and transport routes reveals that there
are vast differences between plants and mammals (or yeast)
despite the nearly identical structure. These differences might pay
tribute to autotrophic metabolism and the multiple functions of
vacuolar compartments in plants.
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