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For efficient mechanical harvesting, low grain moisture content at harvest time is
essential. Dry-down rate (DR), which refers to the reduction in grain moisture content
after the plants enter physiological maturity, is one of the main factors affecting the
amount of moisture in the kernels. Dry-down rate is estimated using kernel moisture
content at physiological maturity and at harvest time; however, measuring kernel water
content at physiological maturity, which is sometimes referred as kernel water content
at black layer formation (BWC), is time-consuming and resource-demanding. Therefore,
inferring BWC from other correlated and easier to measure traits could improve the
efficiency of breeding efforts for dry-down-related traits. In this study, multi-trait genomic
prediction models were used to estimate genetic correlations between BWC and water
content at harvest time (HWC) and flowering time (FT). The results show there is
moderate-to-high genetic correlation between the traits (0.24–0.66), which supports
the use of multi-trait genomic prediction models. To investigate genomic prediction
strategies, several cross-validation scenarios representing possible implementations
of genomic prediction were evaluated. The results indicate that, in most scenarios,
the use of multi-trait genomic prediction models substantially increases prediction
accuracy. Furthermore, the inclusion of historical records for correlated traits can
improve prediction accuracy, even when the target trait is not measured on all the plots
in the training set.

Keywords: kernel water content, dry-down rate, genomic prediction, MT-GBLUP, correlated traits

KEY MESSAGE

- When data are limited on difficult to measure traits in historical datasets or in sparse
phenotyping approaches, the use of correlated traits in multi-trait predictions models
significantly increases prediction accuracy.

INTRODUCTION

Maize (Zea mays L.) is one of the most widely grown food crop across the world (Lawrence et al.,
2008; Shiferaw et al., 2011). With efforts to increase maize grain yield/production to meet the
growing global food demand (Ray et al., 2013), mechanization of grain harvesting has become
a common practice in many countries (Pari et al., 2020). In maize, low grain moisture content
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at harvest is essential for efficient mechanical harvesting
(Brooking, 1990; Singh et al., 1998; Liu et al., 2020). When
the moisture content is low, mechanical harvesting becomes
more efficient due to easier grain shelling (Chowdhury and
Buchele, 1978), and low grain moisture content at harvest time
is highly desirable by farmers as it allows long-term grain storage
(Weinberg et al., 2008). Many developed countries have fully
implemented mechanical harvesting in maize (Du Plessis, 2003);
however, due to differences in technological advancements and
climatic conditions, implementation is still limited in many
countries (Du Plessis, 2003). In northern China, for example,
efficient mechanical harvesting requires grain moisture content
of maize hybrids to be between 25 and 40% (Nielsen, 2011),
making the reduction in grain moisture at harvest a main
objective of maize breeders in China.

Grain moisture content, at harvest time, depends on the
dry-down rate at maturity (Liu et al., 2020). Dry-down rate,
which refers to the reduction in grain moisture content after
physiological maturity, is an important trait for reaching the
desired level of grain moisture content at harvest time (Cross,
1985; Cross and Kabir, 1989; Martinez-Feria et al., 2019).
Varieties with a fast dry-down rate can stay-green late into the
season to provide nutrients to the grain (Arriola et al., 2012)
while ensuring lower grain moisture content at harvest. Dry-
down rate is a polygenic quantitative trait (Li et al., 2021) and
is usually inferred from grain moisture content at physiological
maturity and grain moisture content at harvest time (Cross and
Kabir, 1989; Kebebe et al., 2015). To determine the physiological
maturity of maize, time of black layer formation on the grain,
an indication of physiological maturity of the grain (Rench and
Shaw, 1971; Daynard, 1972; Carter and Poneleit, 1973), needs to
be recorded. Grain moisture content at physiological maturity
or at black layer formation is very difficult and time-consuming
to measure since it requires diligent monitoring of the grain for
black layer formation (Knittle and Burris, 1976; Tekrony and
Hunter, 1995). Therefore, predicting grain moisture content at
black layer formation from genomic information and readily
available correlated trait(s), such as grain moisture content at
harvest time (HWC) and flowering time (FT), is desirable and
beneficial to drive genetic improvement using multi-trait genome
prediction methods (Schulthess et al., 2016).

Genomic selection (GS) is a popular method that implements
and improves upon marker-assisted selection (MAS). Genomic
selection (GS) is especially beneficial when dealing with complex
traits that are affected by many quantitative loci each with
very small effects (Goddard and Hayes, 2007; Hayes et al.,
2009; Heffner et al., 2009; Jannink et al., 2010; Crossa et al.,
2017). Genomic selection (GS) takes advantage of genome-wide
molecular markers, single-nucleotide polymorphisms (SNPs),
and has been successfully implemented in both animal and plant
breeding to predict genomic breeding values (GEBVs) (Ceballos
et al., 2015; Hickey et al., 2017; Zenger et al., 2019). Multi-trait
genome prediction (MTGP) models have emerged as a promising
approach for joint analyses of multiple traits (Guo et al., 2014;
Lyra et al., 2017; Lado et al., 2018; Runcie and Cheng, 2019).
MTGP benefits from the information of genetically correlated
traits in order to improve genomic prediction accuracies for traits

that are difficult to measure/record and can be otherwise inferred
from readily available correlated traits (Schulthess et al., 2016).

In this study, multi-trait genomic best linear unbiased
prediction (MT-GBLUP) models were used to estimate genetic
correlations between BWC and HWC and FT. MT-GBLUP
was performed using different model training approaches
to investigate optimal prediction strategies and investigate
prediction accuracy for BWC when using HWC and FT as
secondary traits.

MATERIALS AND METHODS

Materials
The population used in this study contained 397 diverse maize
inbred lines with a wide genetic background. These lines were
sourced from China (281 lines), United States (105 lines),
and CIMMYT (11 lines). Most of the inbred lines from the
United States and China are from a temperate environment
background, whereas the inbred lines from CIMMYT are from
tropical backgrounds.

All 397 inbred lines were planted in three locations in China:
Shenyang City in 2019 (19SN) located in northeastern China
(N40◦82’, E123◦56’), Shenfu City in 2017 (17SF) located in
northeastern China (N41◦51’, E123◦54’), and Hainan Province
in 2017 (17HN) located in southern China (N18◦45’, E109◦10’).
Figure 1 shows the location of the three field trials in the
experiment, where the blue, red, and green circles represent
SN, SY, and HN, respectively. All lines were planted using a
randomized complete block design with two replicates per line.
The lines were planted in a single row plot of 2-m long, 0.6-m
wide, with a 0.4-m aisle between rows.

Since grain moisture at physiological maturity is a component
of dry-down rate calculations (Cross and Kabir, 1989; Yang
et al., 2010), it was important to determine when the inbred
lines entered maturity. Using black layer as a mark for maturity
(Daynard and Duncan, 1969; Daynard, 1972; Carter and Poneleit,
1973), all maize inbred lines were phenotyped for time to
black layer formation. This was done by observing all plants
after pollination until the starch layer of maize grains gradually
decreased and the black layer formed. When the black layer
appeared, the water content of the kernels was measured for
six plants that were randomly selected from each inbred line
and showed uniform growth. The water content of the kernels
was measured with a moisture meter to a depth of 3 mm at
two time points, first when the black layer appeared, and then
either 15 or 7 days, for temperate or tropical, respectively. Hainan
province is located in the tropical zone with little rainfall and
high temperatures, so the dry-down rate of kernels is faster than
in temperate zones. A preliminary experiment was done and
found that approximately 90% of the lines were ready for harvest
after 15 and 7 days after physiological maturity in temperate
or tropical zones, respectively. Therefore, a modification to dry-
down rate was made to ensure correct comparisons between
tropical and temperate zones, after the black layer formation as
the moisture content at harvest. Days to flowering was defined
as the time taken from planting for 50% of the plants in a
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FIGURE 1 | Locations of the three field trials. The blue, red, and green circles represent SN, SY, and HN, respectively.

plot to commence flowering. The experiment was conducted in
two ecological zones, the temperate and tropical. The temperate
ecological zone had two locations (SN and SF), while the tropical
ecological zone had only one location (HN). All phenotypes were
collected on the 397 inbred lines.

Genotyping-by-sequencing data with 600 K single-nucleotide
polymorphism (SNP) markers were available for the 397 inbred
lines. After quality control for missing rate (< 10%), minor
allele frequency (MAF > 0.05), and LD pruning (at 0.9), missing
genotypes were imputed using TASSEL 5.0 (Bradbury et al.,
2007).1 A total of 56,563 SNP markers were used.

Methods
Dry-down rate was calculated for the temperate and tropical
regions as follows in Equations 1 and 2.

DRTRO =
(BWC −HWC)

7
(1)

DRTEM =
(BWC −HWC)

15
(2)

1https://tassel.bitbucket.io/

where DRTRO and DRTEM are dry-down rate (DR) for the tropical
and temperate climate zone, respectively. BWC is grain moisture
content when black layer appeared, and HWC is grain moisture
content at harvest time.

Single-trait genomic best linear unbiased predictions (ST-
GBLUP) were used to estimate genetic and residual variances
in each location using the following model for each trait (BWC,
HWC, and FT):

y = µ+ Xb+ Zu+ e (3)

where y is the vector of raw phenotypes, µ is the overall mean,
b is the fixed effect of replication, u is the vector of random
additive genetic effects for inbred lines, X is a design matrix for
the fixed effect of replicate, Z is the design matrix for additive
genetic effects, and e is the vector of residuals. The distribution
of the random effect u was assumed to be u ∼ N

(
0, σ2

u
⊗

G
)
,

where σ2
u is the additive genetic variance and the G is the additive

genomic relationship matrix between the inbred lines (Vanraden,
2008) calculated as follows:

G =
WW′

2
∑

pj(1−pj)
(4)
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Elements of matrix W are wij where wij is the genotype
represented as the number of copies of the major allele of line i at
marker j, denoted as 0 or 2 for the minor and major homozygous
genotypes, respectively, and pj is the allele frequency at marker j.
Each column of W is mean centered prior to calculation of G.

Narrow sense heritability (h2) explains the proportion of
phenotypic variation due to additive genetic variance. Heritability
was calculated as follows:

h2
=

σ2
u

σ2
u+σ2

e
(5)

Where σ2
u is the additive genetic variance, and σ2

e is the
residual error. Variance components were estimated by fitting a
ST-GBLUP model with the genomic relationship matrix (GRM).

A MT-GBLUP model was fit to estimate the genetic and
residual covariance between three traits: black layer water content
(BWC), harvest time water content (HWC), and flowering time
(FT). The general MT-GBLUP model within each ecological zone
was as follows:

 y1
y2
y3

 = µ1
µ2
µ3

+

X1 0 0
0 X2 0
0 0 X3

 b1
b2
b3

+
 Z1 0 0

0 Z2 0
0 0 Z3

 u1
u2
u3

 + e1
e2
e3

(6)

where y1, y2, and y3 are the vectors of phenotypes for BWC,
HWC, and FT, respectively, µ1, µ2, and µ3 are the overall mean
for each trait, b1, b2, and b3 are the fixed effects of location and
replication nested within location, u1,u2, and u3 are vectors of
the random additive genetic effects for each trait, X1, X2, and X3
are the design matrices for the fixed effect of replication, Z1, Z2,
and Z3 are the design matrices for the random genetic effect,
and e1, e2, and e3 are the vectors of residuals. It was assumed
that [u1, u2, u3] ∼ N

(
0, Go

⊗
G
)
, where Go is the variance–

covariance matrix of the genetic effect of the traits as follows:

G0 =

 σ2
g1 σg12 σg13

σg21 σ2
g2 σg23

σg31 σg32 σ2
g3

 (7)

where G0 represents a symmetrical 3 × 3 variance–covariance
matrix of the genomic effect of genotypes in the environments.
The diagonal of the G0 matrix is the additive genetic variance for
three traits, while the off-diagonal elements represent the genetic
covariance between the traits.

G is the same as Eq. 3, and residual errors were assumed to be
distributed as [e1, e2, e3] ∼ N(0, I

⊗
R), where I is the identity

matrix and R is a symmetrical unstructured matrix of the residual
(co) variances:

R =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3

 (8)

ST-GBLUP and MT-GBLUP models were fit separately for each
ecological region. For the temperate zone where there were two
locations, both Eqs 3 and 6 were modified to account for the
random location effect and the effect of replicate was nested
within location. However, since there is only one location in

the tropical ecological zone, the location effect in both Eqs 3
and 6 was ignored.

Multi-Trait Genomic Prediction and
Cross-Validations
Genomic predictions were performed using MT-GBLUP and
ST-GBLUP using Eqs 6 and 3 for different cross-validation
scenarios. This was done to assess prediction accuracy for
BWC using information on correlated traits, HWC and FT, in
each ecological zone. For that purpose, three cross-validation
scenarios were considered.

Figure 2 shows an example of the first cross-validation
scenario (CV1). In CV1, a standard 5-fold cross-validation
scenario was used; however, the phenotypic value for BWC
was set to missing for an additional randomly selected 20, 40,
or 60% of the training set. The phenotypic information for
HWC and FT was either kept as complete (Figure 2A) or set
to missing (Figure 2B) when BWC was missing. The purpose
of this scenario was to examine a genomic selection approach
in which historical data are used to predict performance of
untested lines and to determine the value of including historical
records for correlated traits, even when the target trait (BWC)
was missing. This represents a likely scenario as the cost of
phenotyping BWC on all tested lines at all test locations will likely
be cost prohibitive.

Figure 3 shows an example of the second cross-validation
scenario (CV2). CV2 tested prediction accuracy using 10-, 5-,
3-, and 2-fold cross-validation. In each case, the entire dataset
was subdivided to groups, with one of the groups used as a
validation set (BWC set to missing), with the rest of the group
used as a training set. Figure 3B shows an additional scenario
(CV_90), in which the validation set was constructed by setting
the BWC phenotype of 90% of the maize inbred lines to missing.
In this scenario, 90% of the population were randomly selected
and BWC was set to missing and fit using MT-GBLUP model.
This process was replicated 10 times. In all CV2 scenarios, the
phenotypic value for BWC was set to missing in the validation set,
while keeping the phenotypic information for HWC and FT. This
scenario was used to compare the prediction accuracy in a sparse
phenotyping scenario where only a subset of lines are phenotyped
for the difficult to measure BWC trait. To examine the impact of
using genomic information on prediction accuracy, as opposed
to only using correlated trait information, the MT-BLUP model
was also fit with an identity matrix in place of the GRM.

In the third scenario (CV3), the validation and training sets
were constructed in such a way that one replication or one
location was selected and used as a validation set, with the
remaining locations and replications used as a training set. In the
validation set, the phenotypic value for BWC was set to missing
while keeping phenotypic information for HWC and FT. The
purpose of this scenario was to simulate a breeding program
where BWC is measured only in one replicate or in one location
while HWC and FT are recorded in all replicates and locations.

The prediction models were run 10 times, and the Pearson
correlation between phenotypic values for BWC (corrected for
fixed effects) and predicted values was calculated in each run. The
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FIGURE 2 | Data used for ST-GBLUP and MT-GBLUP prediction in CV1. Each box indicates the presence or absence of phenotypic data for a particular trait in
either the training or validation set. The presence and absence of phenotypic data are indicated by blue dotted (phenotypic data present in the training set), gray
(phenotypic data absent in the validation set), and blue vertical stripes (phenotypic data absent in the training set). The phenotypic information for HWC and FT was
either kept as complete in the training set (A) or set to missing when BWC was missing (B).

FIGURE 3 | Data used for ST-GBLUP and MT_GBLUP prediction modeling in CV2 (A) and the CV_90 scenario where 90% of the inbred lines were randomly
selected and had BWC phenotypes set to missing (B). Each box indicates the presence or absence of the phenotypic data for a particular trait on either the training
or validation set. The presence and absence of phenotypic data are indicated by dotted blue and gray filled, respectively.

result presented here is the average of the 10 runs. All single- and
multi-trait analyses were done using ASReml 4 (Gilmour, 1997)2.

RESULTS

Heritability and Genetic Correlations
Heritability estimates for BWC, HWC, and DR were obtained
using the ST-GBLUP model. As shown in Table 1, small (0.22)-
to-moderate (0.69) heritability estimates were obtained for BWC
across the different locations and ecological zones. Heritability
estimates for HWC ranged from small (0.27) to moderate (0.51)
across locations and ecological zones, and heritability estimates
for DR ranged from 0.15 to 0.26. Table 2 shows MT-GBLUP
genetic correlations, genetic variance, and genetic covariance
between BWC, HWC, and FT in temperate ecological zone.
Genetic correlations between the BWC, HWC, and FT ranged
from 0.24 to 0.66, with the highest genetic correlation between
BWC and HWC and the lowest between BWC and FT. Low-to-
moderate heritability estimates for BWC and HWC indicate that
effective selection pressure can be placed on these traits, and high
genetic correlations between BWC, HWC, and FT suggest that

2https://www.vsni.co.uk/software/asreml

multi-trait genomic selection may represent the best approach for
genomic prediction for these traits.

Prediction Accuracies
Figure 4 shows prediction accuracy for BWC in the temperate
ecological zone from CV1. Only results from the temperate zone
(2 locations) are illustrated, as inconsistent model convergence
was observed for the tropical environment, likely due to the
limited phenotypic data collected in tropical zone. The box plots
on the left side of the dotted line are prediction accuracies where
all individuals in the training set have phenotypes for the three
traits (BWC, HWC, and FT) and when 5-fold cross-validation

TABLE 1 | ST-GBLUP heritability estimates for BWC, HWC, and DR within each
agro-ecological zone and location.

Ecological zone Location Traits

BWC HWC DR

Temperate Shenfu 0.45 0.47 0.22

Shenyang 0.25 0.27 0.15

Combined locations 0.22 0.28 0.18

Tropical Hainan 0.69 0.51 0.26
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TABLE 2 | MT-GBLUP genetic correlation, genetic variance, and genetic
covariance between BWC, HWC, and FT in the temperate ecological zone.

BWC HWC FT

BWC 11.59 0.66 0.24

HWC 4.36 3.78 0.42

FT 4.42 4.29 28.16

Genetic variance of the traits is presented on the diagonal; the upper diagonal
shows the genetic correlation between the traits, and the lower diagonal is the
genetic covariance between the traits.

FIGURE 4 | Prediction accuracy from ST-GBLUP and MT-GBLUP models
from the first cross-validation (CV1) scenario in temperate zone. Method
“_ST_” is the ST-GBLUP model; Method “ALL” is a multi-trait model with all
the three dry-down-related traits set to missing for an additional 20, 40, and
60% of the training set; Method “BWC” is a multi-trait model where only the
phenotype for BWC is missing for an additional 20, 40, and 60% of the
training set; Method “VeSA” is a multi-trait model with complete phenotypic
data for all traits in the training set. The results to the left of the dashed lined
had no missing data for any trait in the training set.

without additional missing data in training set was used (purple
bars). As shown in the Figure 4, when all the three dry-down-
related traits were set to missing for additional 20, 40, and 60%
of the training set (green bars), lower prediction accuracies were
observed compared to the case where only the phenotype for
BWC was set to missing (blue bars). ST-GBLUP model gave the
highest accuracy (red bars) in the cases where the phenotype for
BWC was set to missing for additional 20% of validation set,
but the MT-GBLUP model performed best when all correlated
phenotypes were included in the training set and BWC was set to
40 and 60% missing.

Figures 5A,B shows prediction accuracies for BWC from
CV2 in the temperate and tropical ecological zones, respectively.
Red and blue box plots represent prediction accuracies from
the MT-GBLUP model with genomic relationship matrix (GRM)
or identity matrix (IDM), respectively. The box plots on left
side of the dotted line are the prediction accuracies from 10-,
5-, 3-, and 2-fold cross-validation scenario. The box plots on
right side of the dotted line are the prediction accuracies when
90% of the lines in the population were used as the validation
set (CV_90). As shown in Figure 5A, prediction accuracies in
temperate ecological zone range from 0.45 to 0.79 when the GRM
was fit in the MT-GBLUP model, as compared to accuracies
ranging from 0.4 to 0.65 when the identity matrix was used.
Figure 5B shows prediction accuracies for BWC in the tropical
ecological zone following the CV2 and CV_90 scenarios. When
the GRM was fit in the MT-GBLUP model, prediction accuracies
ranged from 0.5 to 0.87 as compared to accuracies ranging from
0.8 to 0.82 when the identity matrix was used. In general, the

results from CV2 indicate that higher prediction accuracies are
obtained when the GRM is used instead of an identity matrix in
the MT-BLUP model.

Table 3 shows prediction accuracies in the temperate
ecological zone following the CV3 scenario. As shown in Table 3,
high prediction accuracies ranging from 0.79 to 0.96 were
obtained for BWC in the temperate ecological zone from the MT-
GBLUP model. This result indicates that unreplicated designs
for BWC data collection can produce accurate results, with
potentially large savings in labor and logistical costs.

DISCUSSION

Development of maize varieties with low HWC is an ideal
situation that ensures efficient mechanical harvesting can be
applied. To achieve this goal, a good breeding strategy which
can reduce the consumption of resources while achieving desired
rates of genetic gain for the target traits is essential. In this
study, we consider the genetic architecture of dry-down-related
traits and effective prediction strategies for genomic-enabled
breeding, leveraging correlated traits (HWC and FT) that are
relatively easy to phenotype (Tsuruta et al., 2011; Jia and
Jannink, 2012; Guo et al., 2014; Okeke et al., 2017; Lozada and
Carter, 2019). Compared with single-trait genomic prediction
model (ST-GBLUP), when a target trait has lower heritability
and phenotypic data on highly correlated traits are available,
multi-trait genomic prediction model (MT-GBLUP) has a great
advantage (Guo et al., 2014). In MT-GBLUP, secondary traits are
used to predict a target trait, which is often difficult to phenotype
or measure (Lozada and Carter, 2019). The use of MT-GBLUP in
US Holstein breeding efforts has improved prediction accuracy
of several traits to varying degrees when compared to ST-GBLUP,
(Tsuruta et al., 2011). Analogously, when multi-trait and multi-
environment mixed models were used to predict agronomic
traits, 40% improvement were obtain in prediction ability in
cassava (Okeke et al., 2017).

The advantage of MT-GBLUP model, however, depends on the
genetic correlation between the target and the secondary traits
(Jia and Jannink, 2012). Estimates of (co) variance components
for maturity and dry-down traits indicate that moderate-to-
strong genetic correlations exist between routinely measured
maturity and harvest moisture traits and the more difficult
to measure traits like BWC and DR (Table 2). These results,
combined with the moderate-to-low heritability found for DR
(Table 1), suggest that genomic-enabled breeding strategies
for selection on DR related traits should consider the use of
correlated traits. The moderate-to-high correlations between
HWC and BWC also indicate that strategies focused primarily
on selection for HWC and yield could be used effectively to apply
indirect selection pressure on DR. In this study, both hold (CV1
and CV2) and instant (CV_90) prediction accuracy calculations
were used. It should be noted that the use of hold prediction
accuracies can create negative bias in the correlations used to
estimate prediction accuracy, this bias increases as the number
of folds increases (Zhou et al., 2016).

The first cross-validation scenario (CV1) focused on breeding
strategies that rely on generating predictions for lines that
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FIGURE 5 | Prediction accuracy for black layer water content (BWC) in temperate (A) and tropical (B) ecological zones from the CV2) scenario (left of the dashed
line) and an CV_90 scenario where 90% of the inbred lines were selected and had BWC phenotypes set to missing (right of the dashed line). Methods “GRM” and
“IDM” refer to multi-trait models using a genomic relation matrix or identity matrix for the genetic effect, respectively.

have yet to be tested in the field. As such, no phenotypic
information on correlated traits is available on lines in the
validation or prediction set. As seen in Figure 4, in situations
where no correlated traits have been measured, MT-GBLUP
model has no comparative advantage over ST-GBLUP when the
training dataset has complete records for BWC. In fact, the
results suggest that in this scenario, the use of ST-GBLUP may
be a more parsimonious model leading to results that are as
good or slightly better than MT-GBLUP. These results agree
with previous findings that the advantage of MT-GBLUP is
largest when the correlated traits were measured on prediction
candidates and included in the model (Maier et al., 2015;
Mehrban et al., 2019).

In the first cross-validation scenario (CV1), we further
investigated the impact of including records in the training
set that have no BWC phenotypic information but do have
phenotypic records for correlated traits like FT and HWC. Many
maize breeding programs record HWC and FT as agronomic
traits for many generations (Abadassi, 2015), while BWC is
rarely phenotyped. As a result, it is likely that historical data
will have far more phenotypic data points for HWC and FT
than for BWC. Historical HWC and FT provide breeders a
considerable amount of historical data on correlated traits that
can be used to predict BWC. The impact of including historical
records without the target trait measured varies depending on
how unbalanced the historical data are, but as the number
of BWC records in the training set decreases, the advantage
of MT-GBLUP increases when all correlated trait records are
included for model training. These results suggest that including
correlated traits in the training set can improve prediction
accuracy substantially when there is sparse information on the
target trait in historical datasets.

In CV2, the phenotype for BWC was set to missing for a subset
of the population in order to mimic a breeding program that
collects data on a trait that is expensive and difficult to measure

TABLE 3 | Prediction accuracy from the CV3 scenario for the temperate zone.

Set-to missing Accuracy

Replicate Replicate 1 0.91

Replicate 2 0.79

Location Shenfu 0.86

Shenyang 0.79

Replicate-location Replicate 1—Shenfu 0.96

Replicate 1—Shenyang 0.96

Replicate 2—Shenfu 0.94

Replicate 2–Shenyang 0.92

on a subset of the population and predicts the phenotype for the
rest of the population using routinely collected data on correlated
traits. This is not an uncommon scenario as in most breeding
programs, resource and time efficiency are important factors to
consider (Morris and Bellon, 2004; Ceccarelli, 2015). The results
in Figure 5 indicate that by using MT-GBLUP, BWC can be
predicted with high accuracy for the majority of the population,
thus reducing the cost and time that is required to record BWC
for all lines being tested in the program.

As shown in Figure 5, the inclusion of correlated traits
in the validation set resulted in significantly higher prediction
accuracies (0.77 compare to 0.55) when compared to results from
CV1, as the model exploits genetic correlation with the traits
for which phenotypic data is available (Calus and Veerkamp,
2011; Lyra et al., 2017; Lado et al., 2018; Lozada and Carter,
2019; Runcie and Cheng, 2019). Prediction accuracies decreased
as the number of lines with missing BWC data increased.
Comparison of MT-GBLUP using a GRM with MT-GBLUP using
the identity matrix shows that the GRM contributes significantly
to prediction accuracy when there is more training data available
for BWC. As the number of BWC phenotypic records decreases,
the relative advantage of using the GRM decreases, indicating
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that the prediction accuracy is derived largely from correlated
traits measured on the lines with missing BWC phenotypes
when there are few BWC phenotypic records available to train
the model. This trend is more pronounced in the temperate
environments as compared to the tropical environment. The
presence of several low prediction accuracy outliers for CV_90
is not unexpected given only 10% of the records have BWC
information. The composition of the training set for these outliers
was examined, and no obvious cause (i.e., population structure)
of the lower accuracies was detected.

Multi-location and multi-replication trails play an important
role in agronomic research and plant breeding programs (Crossa,
1990). In such cases, phenotyping a trait that is difficult
or expensive to measure, such as BWC, in one location or
one replication and predicting the phenotype for the other
locations/replicates using correlated traits represents a cost-
effective testing strategy. The CV3 scenario examines a sparse
phenotyping approach in which only one replicate is phenotyped
for BWC, while FT and HWC are phenotyped on all plots.
The results show high accuracies for BWC predictions (>0.79),
indicating that sparse phenotyping approaches can be effectively
used to reduce the cost of BWC phenotyping without making
large sacrifices in BWC predictions. This approach could be
applied in combination with CV2, in which a sparse phenotyping
approach is used for field trails after an initial line selection is
made based on predictions from a MT-GBLUP model trained
using historical BWC records as well data on correlated traits.

CONCLUSION

In this study, multi-trait genomic prediction was tested using
different cross-validation scenarios to investigate prediction
strategies for genomic-enabled breeding for dry-down-related
traits in maize. The results clearly show that the use of correlated
traits, like HWC and FT, and sparse phenotyping can yield
high prediction accuracies while reducing the cost of extensively
phenotyping for difficult to measure traits like BWC. While the
sparse phenotyping approaches consistently yielded very high
prediction accuracies, the need to phenotype selection candidates
on correlated traits places limitations on gains that can be
made by increasing selection intensity and reducing generation
intervals. Examining strategies for predicting untested lines, the
accuracy of model prediction drops substantially when compared
to sparse phenotyping; however, this strategy does enable gains in
response to selection through increased selection intensity and
reductions in the generation interval. Regardless of the breeding
strategy, the results of this study show clear advantages to using
correlated traits when information on the target trait is sparse in
historical datasets.
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