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Automatic detection of
pesticide residues on the
surface of lettuce leaves
using images of feature
wavelengths spectrum

Lei Sun*, Xiwen Cui, Xiaofei Fan, Xuesong Suo, Baojiang Fan
and Xuejing Zhang

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
The inappropriate application of pesticides to vegetable crops often results in

environmental pollution, which seriously impacts the environment and human

health. Given that current methods of pesticide residue detection are

associated with issues such as low accuracy, high equipment cost, and

complex flow, this study puts forward a new method for detecting pesticide

residues on lettuce leaves. To establish this method, spectral analysis was used

to determine the characteristic wavelength of pesticide residues (709 nm),

machine vision equipment was improved, and a bandpass filter and light source

of characteristic wavelength were installed to acquire leaf image information.

Next, image preprocessing and feature information extraction were

automatically implemented through programming. Several links were

established for the training model so that the required feature information

could be automatically extracted after the batch input of images. The pesticide

residue detected using the chemical method was taken as the output and

modeled, together with the input image information, using the convolutional

neural network (CNN) algorithm. Furthermore, a prediction program was

rewritten to generalize the input images during the prediction process and

directly obtain the output pesticide residue. The experimental results revealed

that when the detection device andmethod designed in this study were used to

detect pesticide residues on lettuce leaves in a key state laboratory, the

coefficient of determination of the equation reached 0.883, and the root

mean square error (RMSE) was 0.134 mg/L, indicating high accuracy and that

the proposed method integrated the advantages of spectrum detection and

deep learning. According to comparison testing, the proposed method can

meet Chinese national standards in terms of accuracy. Moreover, the improved

machine vision equipment was less expensive, thus providing powerful support

for the application and popularization of the proposed method.
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Introduction

Chemical approaches still play a dominant role in pest

control in agriculture and forestry, and inappropriate

application of chemical pesticides results in pesticide waste

and environmental pollution (Pandiselvam et al., 2020;

Anbarasan et al., 2022; Pandiselvam et al., 2022). Traditional

artificial pesticide spraying is relatively extensive, while

unmanned aerial vehicle-assisted pesticide spraying is greatly

affected by environmental factors, such as wind (Zangina et al.,

2021). The determination of pesticide residue quantity on the

surface of crop leaves is a precondition for precise and targeted

pesticide application (Tsagkaris et al., 2021). Excessive and non-

uniform pesticide spraying can be reduced by accurately

detecting crop leaf surface pesticide residues, thus protecting

the environment and human health (Sun et al., 2021). Crop

protection has evolved from the age of botanical pesticides and

inorganic synthetic pesticides into the present-day era of organic

pesticides, which are very effective at controlling pests. Chemical

pesticides already account for 80% of pest control, but 3R

phenomena (residue, resurgence, and resistance) have

occurred due to the excessive reliance on them, thus

influencing the whole environment (Dai et al., 2019). Starting

with the precise detection of pesticide residues, research

institutes have carried out technical studies regarding pesticide

reduction and their precise applicat ion, exploring

environmentally friendly and resource-saving crop planting

methods that contribute to food security (Zheng and Xu, 2021).

Current pesticide residue detection methods mainly involve

gas chromatography (GC) (Chen et al., 2021a), liquid

chromatography (LC) (Zhou et al., 2021), and GC-mass

spectrometry (GC-MS) (Li et al., 2020), which, although

characterized by high detection sensitivity, strong specificity,

and high accuracy, are associated with tedious sample

preprocessing, high equipment costs, large instrument

volumes, cumbersome data processing, and poor portability,

thus failing to satisfy the desire for real-time fast pesticide

residue detection (Nzarloo et al., 2021). In recent years,

various spectroscopic methods have brought about substantial

advancement in the field of pesticide residue detection (Lin et al.,

2020). Teixeira combined enhanced Raman scattering

spectroscopy with paper-based gold nanoparticles to detect

pesticide residues on mango skin (Teixeira et al., 2020), and

Guo L Q et al. successfully detected fluorescent 4-methyl

umbelliferone using fluorescence spectrometry (Guo et al.,

2017). However, these instruments are mainly used for

detecting pesticide residues in an aqueous solution system, and

there are few portable instruments that can directly detect

pesticide residues on the surface of plant leaves; therefore, the

rapid detection required by the agricultural industry cannot be

achieved using these methods. When the hyperspectral

technique is used to detect pesticide residues, differences in the
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internal physicochemical properties of the target can be

determined to some extent. The spectral curves of crops

sprayed with different pesticides are varied, and besides,

regression models of spectra, pesticide type, and concentration

can be established by acquiring the scalar values of parameters

based on traditional chemical detection methods, facilitating

pesticide residue detection and analysis. Gui J S et al.

qualitatively detected pesticide residues on the surface of

broccoli using a hyperspectral imaging technique that involved

preprocessing, the selection of characteristic wavebands, and the

construction of a prediction model (Gui et al., 2018).

Sun J and Cong S L established a support vector machine

(SVM) and an optimization model to qualitatively analyze

pesticide residue types on lettuce leaf surfaces using the

hyperspectral imaging technique, and then quantitatively

detected pesticide residues using PLS-SVM (Sun et al., 2018).

The detection of pesticide residues on the leaf surface using the

spectral method can be easily affected by internal and external

factors, such as light irradiation angle (Meng et al., 2014; Gong

et al., 2016), leaf surface smoothness (Zheng et al., 2016), and

leaf position (Yang and Wu, 2009), which give rise to inaccurate

results. Therefore, it is difficult to provide precise pesticide

residue detection, and, as such, the development of a portable

detecting instrument has been scarcely explored (Cai et al.,

2007). For the detection of pesticide residues in fruits and

vegetables, establishing a relationship model between the

detection object and the pesticide residue will be of great

significance in terms of detection accuracy (Li and Peleato,

2021; Lu et al., 2021; Nazarloo et al., 2021). Traditional

modeling methods, such as multiple linear regression (MLR)

and the BP neural network, are increasingly unable to meet

researchers’ demands for prediction accuracy. In recent years,

the deep learning method, based on big data size, has provided a

powerful guarantee of precise modeling prediction (Zhu et al.,

2020; Chen et al., 2021b; Nie et al., 2021). The convolutional

neural network (CNN)-based deep learning algorithm has been

extensively considered and applied by experts and scholars

within the industry (Yan et al., 2021).

The novelty of this study is as follows:
1. The advantages of spectral analysis and machine vision

detection of pesticide residue on crops, and low cost,

were combined in this study.

2. By using the CNN algorithm as the training method,

this study integrated the advantages of spectrum

detection and deep learning.

3. Given the excessive modeling workload associated with

traditional complex image processing methods, an

automated training and detection program was

developed; therefore, training and detection could be

automatically extracted after the batch input of images,

allowing efficient and rapid pesticide residue detection.
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For the purposes of detecting pesticide residue on the surface

of lettuce leaves in this study, the optimal characteristic

wavelength of imidacloprid pesticide residue was acquired

using IR spectroscopy. Next, improved machine vision

equipment was used to capture images under the characteristic

wavelength and extract their feature information. Afterward, the

detected pesticide residue was modeled using the deep learning

algorithm, i.e., CNN, to obtain the relationship model between

the feature information of photos and pesticide residue under

the characteristic waveband. Next, the CNN automatic image

modeling method was put forward and the data preprocessing

and extraction programs were merged with the packaged model.

The model was then able to be rapidly established by importing

the images. The result could be directly obtained by inputting

one image into the model during each prediction process.

Therefore, the modeling process was greatly simplified,

modeling accuracy was improved by increasing the sample

size, and the goal of rapid and accurate pesticide residue

prediction in crop leaves was achieved, fulfilling the ambition

of protecting the environment and human health, lowering

equipment costs, and making the large-scale promotion of a

tractable detection device and method possible.
Experimental design

For detecting pesticide residues on the surface of lettuce leaves,

the optimal characteristic wavelength of imidacloprid pesticide

residue was obtained using IR spectroscopy. The machine vision

equipment was then improved, and a bandpass filter and the light

source of characteristic wavelength were installed to acquire leaf

image information under the light of characteristic wavelength. The

details of this process are described in this section.
Experimental materials

Imidacloprid is a common pesticide that is harmful to

human health, and was banned in China in 2020. However,

many farmers still use imidacloprid, so we used it in our

experiments. Imidacloprid with 70% active ingredient was

diluted into a 10% solution using clear water; four dilutions

(1:500, 1:800, 1:1500, and clear water [used as a control]) were

prepared for sample treatment. A total of 120 lettuce leaf

samples of similar size and free of surface damage were

chosen, and divided into four groups (30 leaves per group),

according to the concentration of pesticide to be sprayed in the

validation experiment. Before the experiment, the sample

surfaces were wiped using clean semiwet towels and

sequentially labeled. The front and back surfaces of samples in

different groups were sprayed with pesticides at the same dosage.

Subsequently, all samples were placed in a shady, cool, and

ventilated environment for 48 h. After new and old leaves were
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eliminated, leaves at the same position on each lettuce plant that

were minimally different in leaf area, with no disease spots on the

leaf surface, were equally divided into 10 portions to make the

samples similar, and then preserved in sealed and labeled plastic

bags. Some samples are shown in Figure 1A.
Spectral information acquisition device

A diagram of the data acquisition system is shown in

Figure 1B and features the following components:

1, objective table; 2, sample; 3, darkroom; 4, bracket; 5,

spectrometer; 6, camera; 7, light source under feature

wavelengths; 8, halogen lamp; 9, computer.

As shown in Figure 1C, the dark room was set up as the

hardware platform of the detection system and to obstruct the

penetration of external natural light. The spectrometer or image

acquisition device were used to acquire leaf sample information only

under the light source of the detection system to avoid disturbance

from the external environment. The spectrometer and target object

were placed so that the detection object was 20 cm from the

spectrometer, and the object stage was fixed so that the sample

could be fully covered by the viewing field. During the experimental

process, the spectrometer was kept perpendicular to the sample, the

field of view was set, and the halogen lamp (35 W, 230 V) was

adjusted so that it was at least 25 cm from the spectrometer to

prevent heat damage to the front-end camera of the spectrometer.

The parameters of the acquisition device are listed in Table 1.
Data acquisition and processing

Using the spectrometer, we acquired the spectral reflectivity

of individual leaf samples. Data acquisition and modeling were

implemented through the following steps:
1. Use the spectrometer to acquire the spectral reflectivity

of each leaf sample under different pesticide residues.

2. Preprocess spectral reflectivity information (the

processing is described subsequently).

3. Calculate the spectral characteristic wavelength of

imidacloprid pesticide residue in lettuce leaves.

4. Take photos of samples in different groups using the

camera installed with a light filter and light source of

characteristic wavelength (the device was refitted in this

study, as described subsequently).

5. Detect pesticide residues in the photographed samples.

6. Extract the average gray value, three-component mean,

three-component standard deviation, and three-

component coefficient of variation of the sample

picture as the model input, and the pesticide residue

as the output to establish and train the mathematical

relationship model.
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Spectral data processing

The spectral reflectivity acquisition device used in this study

was a PSR-1100F (Spectral Evolution, USA) spectrometer, with a

wavelength range of 320-1100 nm, 5 nm precision, and 1 nm

resolution. DAR Winp software was used to collect spectral data

and change their format from SED to CSV. Then MATLAB 2018

was used for data processing. The original spectral data were

preprocessed by combining standard normalization and SG

convolutional smoothing to eliminate the effects of dimension,

variable size, and value, and remove distortion data.
A

B

C

FIGURE 1

Sample data collection. (A) Lettuce samples. (B) Diagram of the data acquisition system. (C) Actual photographic of the data acquisition system.
TABLE 1 Main equipment list for the hardware platform of the
detection system.

Equipment Specification and type

Whiteboard for calibration 15 mm×15 mm×600 mm

Spectrometer 320-1100 nm

Composite-light-source 235 W-230 V

Light source under feature wavelengths Customized light source

Camera Canon EOS70D
frontiersin.org
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As different pesticide residues could not belong to the same

order of magnitude, the input data had to be normalized before

the mathematical model was established. The normalized

mapping formula was as follows in Equation (1):

f : x ! y =
x − xmin

xmax − xmin
(1)

x, y∈Rn;xmin=min(x);xmax=max(x). x is the original data, y is

the normalized data.

Smoothing filtering was implemented in this study via SG

convolutional smoothing, which improved the smoothness of

the hyperspectral surface and reduced noise. This method was an

improvement on mobile smoothing. Application needs in

multiple scenarios could be satisfied by selecting different

window widths. The calculation process was as follows: the

filtering width was set as n=2m+1, and the polynomial fitting

of measurement points x=(-m,-m+1,0,…0,1,…m-1,m)was

implemented within the window using a polynomial with k-1

orders, as seen in Equation (2):

y = a0 + a1x + a2x
2 +⋯+ak−1x

k−1 (2)

a, polynomial coefficient.

Hence, there are n such equations to form a set of k-element

homogeneous equations. To ensure a solution to this equation

set, n should be greater than k, and the fitting parameter A is

determined by least squares fitting, as seen in Equation (3):

y−m

y−m−1

⋮

ym

0
BBBBB@

1
CCCCCA

=

1 -m ⋯ ( −m)k−1

1 −m + 1 ⋯ ( −m + 1)k−1

⋮ ⋮ ⋮ ⋮

1 m ⋯ mk−1

0
BBBBB@

1
CCCCCA

a0

a1

⋮

ak−1

0
BBBBB@

1
CCCCCA

+

e−m

e−m+1

⋮

em

0
BBBBB@

1
CCCCCA

(3)
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m , e , coefficient to be determined by the least

squares method.

The above equation is expressed in the following matrix

form:

Y(2m+1Þ�1 = X(2m� 1)�k · AK�1 + EK�1 + E(2m+2)�1 (4)

Y,X,A,E, matrix form of y,x,a,e.

Where the solution obtained through the least squares

method of A is:

A = (XT · X)−1 · XT · Y (5)

The model prediction value or filtering value of Y is:

Y = X · A = X · (XT · X)−1 · XT · Y = B · Y (6)

B = X · (XT · X)−1 · XT (7)

After the spectral information was acquired, the original

data, standard normalized data and the data after SG

convolutional smoothing were depicted (Figure 2).

As shown in Table 2, to find the best preprocessing scheme,

we used eight different methods to build a partial least squares

(PLS) model for spectral data and compared it with the effect of

model prediction. The eight kinds of spectral data include

original spectral data, spectral data preprocessed by standard

normalization, multivariate scattering correction, first derivative,

convolution smoothing, convolution smoothing and first

derivative, convolution smoothing and second derivative, and

mean centralization. Most of the correlation coefficients of PLS

modeling sets based on the preprocessing of the original

spectrum were higher than the correlation coefficient of

original spectral band modeling sets (0.6327), whereas the

correlation coefficient of derivative modeling sets was 0.6218,

lower than that of the original spectral band modeling,

indicating that the derivative method was not applicable.

According to the modeling effect, data modeling after

convolution smoothing pretreatment can better reflect

pesticide residues in lettuce leaves. Therefore, using spectral
A B C

FIGURE 2

Data processing of spectral reflectance. (A) The original spectrogram. (B) The standard normalization spectrogram. (C) The convolution
smoothing spectrogram.
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data preprocessed by convolution smoothing, the predictive

effect of PLS modeling was better than the data obtained by

the method. With the preprocessing method of convolution

smoothing, Rc and Rp were up to 0.81332 and 0.7936,

respectively, and SEC and SEP were up to 0.0743 and 0.0578,

respectively. Compared with the original data, modeling

accuracy was higher after using this method. Based on the

above analysis, this study used the preprocessing method of

convolution smoothing to extract feature wavelengths.

First, the characteristic wavelength was extracted using the

correlation coefficient method. Further data processing was also

performed using this method, after data obtained by spectral

preprocessing was logarithmically (lg1/l) transformed. As

shown in Figure 3, data processing revealed that the

correlation coefficient R2 reached as high as 0.9 within

the waveband of 725 nm, and of particular note, reached the

maximum value of 0.94 at 709 nm. Second, the characteristic

waveband with the highest correlation coefficient, highest

scoring coefficient, and strongest comprehensive capacity was

taken as the characteristic central light source by combining the

principal component analysis (PCA). By standardizing the

original light reflectivity data under different pesticide residues,
Frontiers in Plant Science 06
the results showed that the proportion of variance sum of the

first three principal components y1, y2, and y3 in the total

variance reached as high as 95.72%, the total variance of the

variance sum of the three principal components accounted for

97.72%, and only a small quantity of information was missing,

namely, the information of original indexes was basically

reserved. Each principal component was a linear combination

of all the original variables, the absolute value of scoring

coefficient decided the comprehensive capacity of each index

in the principal component, and in this linear combination, the

principal components were mutually uncorrelated. The data

processing effect is shown in Figure 4. The first principal

component nearly averagely integrated all the original

variables, with a high scoring coefficient, whereas the second

and third principal components were weaker than the first,

manifesting that the variables within this waveband were of

relatively strong comprehensive capacity.

The characteristic wavebands 355, 545, 680, 709, 844, 935,

and 1025 nm were screened out using the correlation coefficient

method and PCA, according to the correlation coefficient

diagram and reciprocal diagram of the original standard

coefficient and wavelength coefficient with PCA. Least squares
TABLE 2 Partial least squares modeling comparison of original spectral data and preprocessed data.

Preprocessing method Modeling set Prediction set

Rc SEC Rp SEP

Original spectrum 0.6327 0.0664 0.6347 0.0436

Standard normalization 0.7321 0.0632 0.7562 0.0432

Multivariate scattering 0.6903 0.0639 0.6703 0.0562

First derivative method 0.6218 0.0692 0.6156 0.0593

Convolution first order differential 0.6593 0.0693 0.6892 0.0673

Convolution second order differential 0.7843 0.0621 0.7729 0.0697

Convolution smoothing 0.8132 0.0743 0.7936 0.0578

Mean value centralization 0.7689 0.0539 0.7539 0.0562
frontie
FIGURE 3

Correlation between logarithmic spectral reflectance and moisture content of drying base.
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modeling was implemented according to the extracted

characteristic wavelength, and the characteristic waveband

after convolutional smoothing preprocessing modeling effect

and full-waveband modeling effect were compared (Table 3).

Full-waveband modeling a and characteristic waveband

modeling b were implemented under full waveband. The fitted

correlation coefficients of the modeling sets were 0.8132 and

0.8234, respectively, and 0.7936 and 0.8052, respectively, for the

prediction sets, with standard deviations of 0.0578 and 0.0742,

respectively. The comparison showed that the characteristic

waveband modeling effect was higher than the full-waveband

modeling effect, and characteristic waveband modeling

prediction accuracy was higher.

Comprehensive analysis of the correlation coefficient

method and PCA suggested that spectral reflectivity at 709 nm

had the highest correlation with the pesticide residue, and had

the highest scoring coefficient, indicating that the principal

components showed the strongest comprehensive capacity at

709 nm. Hence, 709 nm was selected as the characteristic

wavelength, the corresponding characteristic light source was

chosen according to the characteristic waveband, and image

information under the characteristic light source was extracted

to detect pesticide residues on leaves.
Detection device and method

As mentioned previously, each leaf sample was divided into

10 portions according to the field of view of the image
Frontiers in Plant Science 07
acquisition equipment, so the sample size was enlarged to

1,200 for the large sample size data analysis. All parts of each

leaf sample were considered in the established model.
Acquisition device

A Canon EOS70D camera (shutter speed, 30-1/8000; ISO,

100-25600; Canon Japan) was used for image acquisition.

Sample images were obtained with an ISO setting of 12800

and shutter speed of 1/6000s. After the built-in light filter was

removed from the camera lens, the customized 709 nm bandpass

filter was installed in the lens to filter light from other

wavebands. Additionally, eight 709-nm characteristic light

sources were customized and uniformly distributed around the

front-end lens of this camera. The lettuce leaves were shot using

this tailor-made acquisition device; the characteristic light

sources enhanced the irradiation on the leaf surface at a light

wave of 709 nm, the bandpass filter filtered lights at other

wavebands in natural light, and only the leaf images under the

characteristic wavelength of 709 nm were acquired, thus

enhancing modeling and detection accuracy. The images taken

during the characteristic wavelength spectrum are shown

in Figure 5.
Modeling and model training

In this study, the leaf images acquired by the acquisition

device were taken as the input. Four characteristic parameters—

average gray value, three-component mean, three-component

standard deviation, and three-component coefficient of

variation—of the leaf images were extracted as the model

input, and the pesticide residues on leaves detected by the

State Key Laboratory of North China Crop Improvement and

Regulation were taken as the model output. Ultra-high

performance LC-tandem MS was performed, in line with
frontiersin.org
FIGURE 4

Correlation between the standard quantity coefficient and the wavelength coefficient with PCA.
TABLE 3 Modeling results of full-wave band and characteristic
waveband with optimal pretreatment.

Rc SEC Rp SEP

Full-waveband modeling a 0.8132 0.0743 0.7936 0.0578

Characteristic waveband modeling b 0.8234 0.06732 0.8052 0.0742
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national standards, in the State Key Laboratory with third party

inspection. The general modeling steps were as follows:
Fron
1. Import the images acquired by the camera (using the

software provided by the Canon).

2. Image preprocessing (target area extraction, image

expansion corrosion, etc.).

3. Import images into the program to obtain intermediate

data: average gray value, three-component mean, three-

component standard deviation, and three-component

coefficient of variation as the model input (these

parameters are treated as the direct input).

4. Train the model input and laboratory-determined

pesticide residues in Equation (3) to obtain the model

(the model will be packaged in the program).
After the data in Equation (1) were obtained, the program

was compiled to merge Equations (2)-(4) into the main program

to facilitate the automatic implementation of three steps: batch

preprocessing, extraction of model input, and pesticide residue

modeling after the images were imported. Furthermore, the

manual workload was reduced so that modeling accuracy

could be improved by increasing the training samples.

Leaf images were three-channel RGB color images with a

size of 6×6×3 channels, and the size of the convolution kernel

was 3×3, i.e., a convolution kernel with three color channels, and

thus a 4×4 characteristic pattern was generated. Next, gray

processing of the RGB image was carried out to obtain the

average gray value of the leaves, and the convolution kernel was
tiers in Plant Science 08
converted into a single-channel convolution kernel to obtain the

average gray value, three-component mean, three-component

standard deviation, and three-component coefficient of

variation. Appendix A shows the automatic data processing

component in the main program, including steps (1)-(3).

The model training part of the main program only needed to

invoke the results of the automatic processing component, thus

realizing the one-key automatic operation of steps (1)-(4). First,

the four groups of numerical values obtained in Equation (3)

were standardized, the weight matrix was initialized, and the

normally distributed noise with a standard deviation of 0.1 was

added to improve training accuracy. The bias was initialized,

some small positive values were added to avoid death nodes, and

their tf.constant function was returned to the shaped matrix,

with a function value of 0.1. When the pooling layer was defined,

padding was selected for one stride each time, i.e.,

strides[1]=strides[2], to obtain more image information. To

reduce the parameters and further mitigate system complexity,

sparsification processing was carried out for the parameters via

pooling; maximum pooling was adopted, and the size and step of

the pooling kernel function were 2×2 and 2, respectively. The

original data were converted into 6×6 two-dimensional images

using x_image.

As the original RGB image underwent gray processing, the

number of channels was set as 1. The first convolution layer was

added, the size of convolution kernel was 2×2, the number of

image channels was 1, the number of convolution kernels was

16, and the corresponding bias was 16. Next, the second

convolution layer was added, the size of the convolution
A B

D E F

C

FIGURE 5

Targeted image extraction process during the characteristic wavelength spectrum. (A) Origin graph. (B) R single channel image. (C) Gray Level
Binarization. (D) R-channel de-background image. (E) G-channel de-background image. (F) B-channel de-background image.
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kernel was unchanged (2×2), the number of channels was 16, the

number of convolution kernels was 32 (the number of

convolution kernels was increased by multiples of 16), and the

bias was set as 32. The third convolution layer, which was a fully

connected layer, was added, and 4×4 three-dimensional images

with a height of 64 were stretched into a one-dimensional array

512 in length. The output layer was added, the one-dimensional

array was compressed into an array with a length of 1, and the

bias was set as 1.

The rectified linear unit (ReLU) layer executed nonlinear

mapping of the convolution layers, and the calculation formula

was as follows (Equation 8):

f (x) = max(0 x) (8)

The proportion of training sets to test sets was set as 8:2, the

learning rate as 0.01, and the number of training times as 10,000,

and one loss value was exported every 100 times of training. The

sample training results are displayed in Figure 6. As the number

of training times was increased, the loss value was continuously

reduced, approaching 0, while the accuracy continued to rise

until reaching close to 100%, thus proving the favorable

modeling effect of the proposed method. The model was saved

after being established, and was directly fetched for the

prediction element. The lettuce leaf images were then

imported, and imidacloprid pesticide residues on the leaf

surface could be directly obtained.

The precision of the modeling test data was verified. The

curve fitting can be seen in Figure 7. The coefficient of

determination (R2) of equation was obtained as 0.969 and the

RMSE value was 0.037, verifying the high accuracy and favorable

convergence of the proposed modeling method. The detection

results are as shown in Table 4. During testing, the press was

0.331, RMSE was 0.086mg/kg, and the MAE was 0.051mg/kg.
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According to Chinese testing standards (State Bureau of

Technical Supervision, 2021), the maximum residue limit for

pesticides in lettuce is 3mg/kg, and the detection accuracy is

0.15mg/kg. Therefore, the method proposed in this paper meets

Chinese standard accuracy requirements.

To verify the effectiveness of the proposed method at

detecting pesticide residues, a comparison validation was made

between the predictive values and real values. Validation

procedures were as follows:

Validation preparation: 30 lettuce leaves were selected and

sprayed with imidacloprid pesticides of different concentrations.

The samples were then naturally dried. Predictive values and real

values will be compared under the same concentrations.

Predicted value acquisition: The method proposed in this

paper was used to obtain the predictive values (represented by

the y-axis in Figure 8).Real value acquisition: The samples were

rapidly sent to the State Key Laboratory of North China Crop

Improvement and Regulation for residue detection using ultra-

high performance LC-tandem MS, in accordance with national

standards. The pesticide residues obtained here were used as the

real values (x-axis).

Validation result: The comparison between the predictive

values obtained by the method proposed in this paper and the

real values measured by the State Key Laboratory was fitted

(Figure 8). The detection results are shown in Table 5. The press

was 0.489, the RMSE was 0.134mg/kg, the MAE was 0.045mg/

kg, and the R2 value was 0.083. The accuracy was a little lower

than that of the modeling process, but still met Chinese testing

standards (State Bureau of Technical Supervision, 2021),

proving that the proposed modeling method was highly

accurate when practically applied to the detection of

imidacloprid pesticides. The four steps are shown in Figure 9

and describe the method proposed in this paper.
A B

FIGURE 6

Training results. (A) Training loss. (B) Training accuracy.
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Discussion

The method for detecting pesticide residues on lettuce leaves

proposed in this study has the advantages of both spectral
Frontiers in Plant Science 10
detection and deep learning, and achieves rapid and accurate

prediction of pesticide residues on crop leaves. As mentioned

above, chemical analysis and other methods have been mostly

used for traditional pesticide residue detection, but have poor real-

time performance and rely on professional third-party detection

institutions. In recent years, researchers at home and abroad have

investigated the utility of GC, LC, spectral analysis, and other

methods, for detecting pesticide residues on vegetables. However,

the large size of the instruments and cumbersome data processing

associated with these methods have restricted their use.

Additionally, owing to the large amount of data to be extracted,

the above methods are not fit for purpose in the early modeling

process. In this study, the relevant published literature

investigating the application and research status of technology

for detecting pesticide residue in fruit and vegetables was

examined. Based on investigation and analysis, this study

integrated spectral analysis and machine vision methods to

achieve accuracy and simplicity, and improve sample training

modeling methods, paving the way for more accurate detection.

Unlike existing spectral methods for detecting pesticide

residues, spectrometers were only used in the early stages of leaf

characteristic information extraction and training modeling in this

study. After the model was established, an improved machine

vision camera was used to extract information at characteristic

wavelengths, thus avoiding the need for expensive spectrometers.

At the same time, detection was carried out under the characteristic

wavelength. Therefore, this method is more concise than extracting

spectral information in the whole band, and reduces problems such

as overfitting caused by too much related data. After comparing

different preprocessing methods, such as original spectral data,

spectral data preprocessed by standard normalization, multivariate

scattering correction, first derivative, convolution smoothing,

convolution smoothing and first derivative, convolution

smoothing and second derivative, and mean centralization,

convolution smoothing was selected as the preprocessing method

for extracting feature wavelengths in this study. Therefore, this

study initially introduced the extraction process of characteristic

wavelengths, and screened and selected characteristic bands (355

nm, 545 nm, 680 nm, 709 nm, 844 nm, 935 nm, and 1025 nm).

Then, by comparing this method with traditional full-band

modeling, the fitting coefficients of the modeling set (0.8132 and

0.8234, respectively), fitting correlation coefficients of the

prediction set (0.7936 and 0.8052, respectively), and standard

deviations (0.0578 and 0.0742, respectively) were obtained,
FIGURE 7

Test set fitting diagram.
TABLE 4 Detection results of the method proposed in this study.

Parameter Training Testing

Press 0.407 0.331

RMSE(mg/kg) 0.037 0.086

MAE(mg/kg) 0.022 0.051

R2 0.969 0.901
FIGURE 8

Actual detection fitting plot.
TABLE 5 Detection results of the validation experiment.

Parameter Value

Press 0.489

RMSE(mg/kg) 0.134

MAE(mg/kg) 0.045

R2 0.883
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verifying the above analysis. After that, by combining with

coefficient correlation and PCA, it is concluded that there exists

the highest correlation between reflectance value and pesticide

residues and the highest score coefficient appears at 709 nm band.

Therefore, 709 nm was selected as the characteristic wavelength in

this study, and the corresponding characteristic light source was

chosen based on the characteristic band, and thus, the image

information under the characteristic light source was extracted to

detect pesticide residues in leaves, making the modeling and

detection process more convenient.

In this study, a detection and acquisition device was made

in-house, with a filter and light source with characteristic

wavelengths added to the camera, enabling the collection and

detection of pesticide residue images. Compared with common

spectral image detection devices, this device has stronger

pertinence and is less expensive. In view of the overwhelming
Frontiers in Plant Science 11
workload associated with the complicated image processing of

traditional methods, this study has developed an automated

program that integrates image preprocessing, characteristic

information extraction, and training modeling. In addition, the

CNN algorithm was selected as the training method for

automatically extracting the characteristic information needed

after the batch input of images, greatly reducing data processing.

Therefore, this study reprograms the prediction program to

obtain image input in the generalized prediction process and

directly acquire output pesticide residues. Analysis of the

detection results revealed that the determination coefficient R2

of the equation was 0.883, and the RMSE value was 0.134. The

method proposed in this study satisfied Chinese national

standards (State Bureau of Technical Supervision, 2021) in

terms of accuracy, thus verifying its practical utility for

detecting imidacloprid residues on crop leaves.
FIGURE 9

Flow chart of the method proposed in this paper.
frontiersin.org

https://doi.org/10.3389/fpls.2022.929999
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.929999
Conclusion

As part of the process for detecting pesticide residues on the

surface of lettuce leaves in this study, the optimal characteristic

wavelength of imidacloprid pesticide residue was obtained using IR

spectroscopy and found to be 709 nm. Next, the machine vision

equipment was improved, and a 709-nm bandpass filter and light

source were customized and installed on the camera. Photos were

taken under the characteristic wavelength, and their feature

information were extracted. Given the excessive modeling

workload associated with the complex image processing of

traditional methods, an automated program was developed to

carry out image preprocessing, extraction of feature information,

and construction of a training model. Moreover, the CNN

algorithm was used as the training method so that the required

feature information could be automatically extracted after the batch

input of images, which considerably reduced data processing. Based

on the our program, the prediction program was rewritten to

generalize the input images in the prediction process and directly

obtain output pesticide residues; as a result, pesticide residues were

efficiently and rapidly detected.

The precision of the modeling test data was verified; the R2

value was 0.969, and the RMSE value was 0.037, verifying the high

accuracy and good convergence of the proposed modeling method.

When randomly collected lettuce leaf samples were tested, an R2

value of 0.883 and an RMSE value of 0.134 were obtained,

confirming the high accuracy of the proposed modeling method

when practically applied to imidacloprid detection, and satisfying

Chinese national standards. Additionally, this modeling method

provides accurate spectral detection, and the improved machine

vision equipment, which is both accurate and pragmatic, reduces

equipment costs and provides a powerful guarantee of mitigating

the environmental pollution caused by excessive pesticide use in

crop planting and protecting human health. However, more

research on miniaturization and high efficiency is needed.

Additionally, we intend to test the application of this system and

method in the field with natural light, so that farmers and

consumers are able to obtain relevant pesticide data.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Frontiers in Plant Science 12
Author contributions

LS, XC, and XF: Conceived the idea and proposed the

method. LS , XS, XF, and XC: Contr ibuted to the

preparation of equipment and acquisition of data, and

wrote the code and tested the method. LS, XC, BF, and

XZ: Validation results. LS, XS, and XF: Wrote the paper. LS

and XC: Revised the paper. All authors read and approved

the final manuscript. XC and XF are joint first authors. All

authors contributed to the article and approved the

submitted version.
Funding

This work was supported by the National Natural Science

Foundation of China (32072572 and 32202474), the Key R&D

Program of Hebei Province (20327403D), the Hebei Talent

Support Foundation (E2019100006), the Talent Recruiting

Program of Hebei Agricultural University (YJ201847), Funded

by Science and Technology project of Hebei Education

Department (QN2020444), the State Key Laboratory of North

China Crop Improvement and Regulation, and Hebei

Agricultural University.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2022.929999
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.929999
References
Anbarasan, R., Jaspin, S., Bhavadharini, B., Pare, A., Pandiselvam, R., Mahendran, R.,
et al. (2022). Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone
treatments. LWT 159, 113193. doi: 10.1016/j.lwt.2022.113193

Cai, S., You, W., and Li, Y. (2007). Rapid determination of carbendazim in
lentinulaedodes by derivative synchronous fluorescence spectrometry. Chin. J. Anal.
Test. 2007 (1), 117–119.

Chen, C., Huang, Y., Li, Y., et al. (2021b). Identification of fruit tree pests with
deep learning on embedded drone to achieve accurate pesticide spraying. IEEE
Access 9, 21986–21997. doi: 10.1109/ACCESS.2021.3056082

Chen, H., Wang, X., Liu, P., Jia, Q., Han, H., Jiang, C., et al. (2021a). Determination of
three typical metabolites of pyrethroid pesticides in tea using a modified QuEChERS
sample preparation by ultra-high performance liquid chromatography tandem mass
spectrometry. Foods 10 (1), 189. doi: 10.3390/foods10010189

Dai, D., Shen, Y., Shen, Y., Wu, J., Liu, Y., Zhang, C., et al. (2019). Research
progress on chemical control for main disease and insect pests of characteristic
Chinese herbal medicines in zhejiang province. Chinese J Pestic Sci. 21, 5-6, 759–
771. doi: 10.16801/j.issn.1008-7303.2019.0097

Gong, Z., Li, Y., Liu, Y., et al. (2016). Study on influence of irradiation angle on
detection of sugar content of apple by near infrared spectroscopy. Laser Optoelect.
Prog. 53 (2), 241–246. doi: 10.3788/LOP53.023004

Gui, J., Gu, M., Wu, Z., and Bao, X. (2018). Detection of multiple pesticide
residues on the surface of broccoli based on hyperspectral imaging. J. Zhejiang
Univ. 44 (5), 643–648. doi: 10.3785/j.issn.1008-9209.2017.04.122

Guo, L., Yin, H., and Tian, J. (2017). Design of a rapid detection system for
fluorescent substances based on LED excitation light source. Sens. Microsyst. 36 (5),
106–108. doi: 10.13873/J.1000-9787(2017)05-0106-03

He, W., He, H., Wang, F., et al. (2021). Non-destructive multi-dimensional
convolutional neural network (CNN) with visualization method for detection of
aphis gossypii glover infection in cotton leaves using hyperspectral imaging. Front.
Plant Sci. 12. doi: 10.3389/fpls.2021.604510

Lin, G., Ji, R., Yao, H., Chen, R., Yu, Y., Wang, X., et al. (2020). Fluorescence
detection of multiple kinds of pesticides with multi hidden layers neural network
algorithm. Optik 211, 164–170. doi: 10.1016/j.ijleo.2020.164632

Li, Z., and Peleato, N. (2021). Comparison of dimensionality reduction
techniques for cross-source transfer of fluorescence contaminant detection
models. Chemosphere 276. doi: 10.1016/j.chemosphere.2021.130064

Li, S., Yu, P., Zhou, C., Tong, L., Li, D., Yu, Z., et al. (2020). Analysis of pesticide
residues in commercially available chenpi using a modified QuEChERS method and
GC-MS/MS determination. J. Pharm. Anal. 10 (1), 60–69. doi: 10.1016/
j.jpha.2019.01.005

Lu, Y., Li, X., Li, W., et al. (2021). Detection of chlorpyrifos and carbendazim residues
in the cabbage using visible/near-infrared spectroscopy combined with chemometrics.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 257. doi: 10.1016/j.saa.2021.119759

Meng, X., Xie, D., Wang, Y., et al. (2014). Study on multi-angular polarized
spectrum characteristics of leaf based on some indoor experimental data. Spectrosc.
Spectral Anal. 34 (3), 619–624. doi: 10.3964/j.issn.1000-0593(2014)03-0619-06

Nazarloo, A. S., Sharabiani, V. R., Gilandeh, Y., Taghinezhad, E., and Szymanek,
M. (2021). Feasibility of using VIS/NIR spectroscopy and multivariate analysis for
pesticide residue detection in tomatoes. Process 9 (2). doi: 10.3390/pr9020196

Nie, P., Qu, F., Lin, L., et al. (2021). Trace identification and visualization of multiple
benzimidazole pesticide residues on toona sinensis leaves using terahertz imaging
combined with deep learing. Int. J. Mol. Sci. 22 (7), 3425. doi: 10.3390/ijms22073425
Frontiers in Plant Science 13
Nzarloo, A. S., Sharabiani, V. R., Gilandeh, Y. A., et al. (2021). Evaluation of
different for non-destructive detection of tomato pesticide residues based on near-
infrared spectroscopy. Sensors 21 (9), 196. doi: 10.3390/s21093032

Pandiselvam, R., Kaavya, R., Khanashyam, A. C., Divya, V., Abdulah, A. K.,
Aurum, F. S., et al. (2022). Research trends and emerging physical processing
technologies in mitigation of pesticide residues on various food products. Environ.
Sci. pollut. Res 97, 38–54. doi: 10.1007/s11356-022-20338-3

Pandiselvam, R., Kaavya, R., Yasendra, J., Veenuttranon, K., Lueprasitsakul, P.,
Divya, V., et al. (2020). Ozone as a novel emerging technology for the dissipation of
pesticide residues in foods–a review. Trends Food Sci. Technol. 97, 38–54.
doi: 10.1016/j.tifs.2019.12.017

State Bureau of Technical Supervision (2021). GB2763-2021, national food safety
standard—Residue limits for pesticides in food (Beijing, China: China Agricultural
Press).

Sun, J., Cong, S., Mao, H., Wu, X., and Yang, N. (2018). Quantitative detection of
mixed pesticide residue of lettuce leaves based on hyperspectral technique. J. Food
Proc. Eng. 41 (2). doi: 10.1111/jfpe.12654

Sun, J., Tang, B., Zhou, X., Yao, K., Hu, S., Zhang, L., et al. (2021). Design and
test of a portable detection instrument for pesticide residues on crop leaves. Trans.
Chin. Soc. Agric. Eng. 37 (7), 61–67. doi: 10.11975/j.issn.1002-6819.2021.07.008

Teixeira, C. A., and Poppi, R. J. (2020). Paper-based SERS substrate and one-
class classifier to monitor thiabendazole residual levels in extracts of mango peels.
Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 229. doi: 10.1016/
j.saa.2019.117913

Tsagkaris, A. S., Pulkrabova, J., and Hajslova, J. (2021). Optical screening
methods for pesticide detection residue detection in food matrices: advances and
emerging analytical trends. Foods 10 (1), 88. doi: 10.3390/foods10010088

Yan, T., Xu, W., Lin, J., Duan, L., Gao, P., Zhang, C., et al. (2021).
Combining Multi-Dimensional Convolutional Neural Network (CNN) With
Visualization Method for Detection of Aphis gossypii Glover Infection in
Cotton Leaves Using Hyperspectral Imaging. Front. Plant Sci. 2021, 12. doi.
10.3389/fpls.2021.604510

Yang, J., and Wu, F. (2009). Experimental study on the visible light scattering
characteristics of rough surfaces. China Test 35 (2), 125–128.

Zangina, U., Buyamin, S. A., Man, M. N., Abidin, M. S. Z., Mahmud, M. S. A.,
et al. (2021). Autonomous mobility of a fleet of vehicles for precision pesticide
application. Comput. Electron. Agric. 186. doi: 10.1016/j.conpag.2021.106217

Zheng, J., Wu, R., Xiong, J., et al. (2016). Nondestructive detection of pesticide
residues on fresh tea leave using fluoresce hyperspectral imaging combined with
spectral angle algori thm. Laser J . 37 (6) , 57–60. doi : 10.14016/
jcnki.jgzz.2016.06.057

Zheng, J., and Xu, Y. (2021). Development and prospect in environment-
friendly pesticide sprayers. Trans. Chin. Soc. Agric. Machinery 52 (3), 1–16.
doi: 10.6041/j.issn.1000-1298.2021.03.001

Zhou, Q., Wu, Y., Sun, Y., Sheng, X., Tong, Y., Guo, J., et al. (2021). Magnetic
polyamidoamine dendrimers for magnetic separation and sensitive determination
of organochlorine pesticides from water samples by high-performance liquid
chromatography. J. Environ. Sci. 102 (4), 64–73. doi: 10.1016/j.jes.2020.09.005

Zhu, J., Sharma, A. S., Xu, J., et al. (2020). Rapid on-site identification of
pesticide residues in tea by one-dimensional convolutional neural network coupled
with surface-enhanced raman scattering. Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 246. doi: 10.1016/j.saa.2020.118994
frontiersin.org

https://doi.org/10.1016/j.lwt.2022.113193
https://doi.org/10.1109/ACCESS.2021.3056082
https://doi.org/10.3390/foods10010189
https://doi.org/10.16801/j.issn.1008-7303.2019.0097
https://doi.org/10.3788/LOP53.023004
https://doi.org/10.3785/j.issn.1008-9209.2017.04.122
https://doi.org/10.13873/J.1000-9787(2017)05-0106-03
https://doi.org/10.3389/fpls.2021.604510
https://doi.org/10.1016/j.ijleo.2020.164632
https://doi.org/10.1016/j.chemosphere.2021.130064
https://doi.org/10.1016/j.jpha.2019.01.005
https://doi.org/10.1016/j.jpha.2019.01.005
https://doi.org/10.1016/j.saa.2021.119759
https://doi.org/10.3964/j.issn.1000-0593(2014)03-0619-06
https://doi.org/10.3390/pr9020196
https://doi.org/10.3390/ijms22073425
https://doi.org/10.3390/s21093032
https://doi.org/10.1007/s11356-022-20338-3
https://doi.org/10.1016/j.tifs.2019.12.017
https://doi.org/10.1111/jfpe.12654
https://doi.org/10.11975/j.issn.1002-6819.2021.07.008
https://doi.org/10.1016/j.saa.2019.117913
https://doi.org/10.1016/j.saa.2019.117913
https://doi.org/10.3390/foods10010088
https://doi.org/10.3389/fpls.2021.604510
https://doi.org/10.1016/j.conpag.2021.106217
https://doi.org/10.14016/jcnki.jgzz.2016.06.057
https://doi.org/10.14016/jcnki.jgzz.2016.06.057
https://doi.org/10.6041/j.issn.1000-1298.2021.03.001
https://doi.org/10.1016/j.jes.2020.09.005
https://doi.org/10.1016/j.saa.2020.118994
https://doi.org/10.3389/fpls.2022.929999
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Automatic detection of pesticide residues on the surface of lettuce leaves using images of feature wavelengths spectrum
	Introduction
	Experimental design
	Experimental materials
	Spectral information acquisition device

	Data acquisition and processing
	Spectral data processing

	Detection device and method
	Acquisition device
	Modeling and model training

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


