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The oxygen-evolving center (OEC) in photosystem II (PSII) of oxygenic photosynthetic 
organisms is a unique heterometallic-oxide Mn4CaO5-cluster that catalyzes water splitting 
into electrons, protons, and molecular oxygen through a five-state cycle (Sn, n = 0 ~ 4). It 
serves as the blueprint for the developing of the man-made water-splitting catalysts to 
generate solar fuel in artificial photosynthesis. Understanding the structure–function 
relationship of this natural catalyst is a great challenge and a long-standing issue, which 
is severely restricted by the lack of a precise chemical model for this heterometallic-oxide 
cluster. However, it is a great challenge for chemists to precisely mimic the OEC in a 
laboratory. Recently, significant advances have been achieved and a series of artificial 
Mn4XO4-clusters (X = Ca/Y/Gd) have been reported, which closely mimic both the geometric 
structure and the electronic structure, as well as the redox property of the OEC. These 
new advances provide a structurally well-defined molecular platform to study the structure–
function relationship of the OEC and shed new light on the design of efficient catalysts 
for the water-splitting reaction in artificial photosynthesis.

Keywords: photosystem II, oxygen-evolving center, Mn4CaO4-cluster, artificial photosynthesis, water-splitting 
reaction

INTRODUCTION

Photosynthetic oxygen evolution is a unique function of oxygenic photosynthetic organisms, 
which takes place in photosystem II (PSII) of cyanobacteria, algae, and plants (Barber, 2009; 
Dau and Zaharieva, 2009; Cardona et  al., 2012; Vinyard et  al., 2013; Shen, 2015; Govindjee 
et  al., 2017; Junge, 2019; Lubitz et  al., 2019; Shevela et  al., 2019; Blankenship, 2021). PSII is a 
multi-subunit membrane protein complex containing more than 20 subunits and hundreds of 
cofactors. The reaction center of PSII is shown in Figure  1A. Upon photo excitation, the 
primary electron donor (P680) donates one electron to the primary electron acceptor (Pheo) in 
a few picoseconds, producing the P680

+• and Pheo-• at the donor side and acceptor side, respectively 
(Renger and Holzwarth, 2005; Rappaport and Diner, 2008; Cardona et  al., 2012; Shevela et  al., 
2021). Pheo-• then delivers the electron to the primary plastoquinone (QA) and the secondary 
plastoquinone (QB) in sequence via the non-heme iron at the acceptor side (Petrouleas and 
Crofts, 2005; Cardona et  al., 2012), where one bicarbonate anion coordinated on the non-heme 
iron is highly required for the efficient electron transfer between QA and QB (Shevela et  al., 
2012). P680

+• with high redox potential (~1.25 V) abstracts one electron from the secondary 
electron donor (TyrZ), forming a neutral radical (TyrZ

•) (Diner and Britt, 2005; Styring et al., 2012).  
The latter then drives the water-splitting reaction at the oxygen-evolving center (OEC) in 
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milliseconds at the donor side (Tommos and Babcock, 1998; 
Zhang, 2007; Styring et  al., 2012). The catalytic turnover of 
the OEC (Figure  1B) involves five different redox states (Sn, 
n = 0 ~ 4) (Kok et al., 1970; Dau and Haumann, 2007; Cox et al., 
2014a; Yano and Yachandra, 2014), in which the S0 state is the 
initial and most reduced state, the S1 state is the dark-stable 
state, the S2 and S3 states are metastable and decay eventually 
to the dark stable S1 state, whereas the S4 state is a transient 
state that releases molecular oxygen and regenerates the S0 state. 
This catalytic water-splitting reaction provides electrons and 
protons to, ultimately, produce the biomass or biofuel, and 
molecular oxygen to maintain the oxygenic atmosphere of our 
planet (Blankenship et  al., 2011; Barber, 2020), which serves 
as the blueprint to develop efficient man-made catalysts for 
the water-splitting reaction in artificial photosynthesis.

Due to broad interests in fundamental research and potential 
applications in artificial photosynthesis (Herrero et al., 2008; Gust 
et  al., 2010; Andreiadis et  al., 2011; Concepcion et  al., 2012; 
Faunce et  al., 2013; Kärkäs et  al., 2014; Hunter et  al., 2016; 
Najafpour et  al., 2016; El-Khouly et  al., 2017; Nocera, 2017; Ye 
et  al., 2019; Zhang and Sun, 2019b; Zhang and Reisner, 2020; 
Kondo et  al., 2021), the structure and catalytic mechanism of 
the OEC have attracted extensive attention during the last century 
(Junge, 2019; Cox et  al., 2020). However, revealing the principle 
of the OEC has been one of the great and persistent challenges 
and a long-standing issue in the research field of photosynthesis.

STRUCTURE OF THE OEC

Extensive biochemistry and biophysics studies have been performed 
to reveal the properties of the OEC in different S-states during 

the last several decades (Yano and Yachandra, 2014; Junge, 2019). 
It has been well demonstrated that OEC is composed of four 
Mn ions and one calcium ion, in which the calcium can be replaced 
by strontium (Debus, 1992; Yocum, 2008). Based on spectroscopic 
studies of the X-ray absorption spectroscopy (XAS) (Yano and 
Yachandra, 2014) and electron paramagnetic resonance (EPR) 
(Peloquin and Britt, 2001; Krewald et  al., 2015) measurements 
of different S-states OEC, the oxidation states of the four Mn 
ions were generally suggested to be  S0 (III, III, III, IV), S1 (III, 
III, IV, IV), S2 (III, IV, IV, IV), and S3 (IV, IV, IV, IV), respectively. 
However, some groups (Zheng and Dismukes, 1996; Gatt et  al., 
2012; Pace et  al., 2012; Petrie et  al., 2020) suggested that the 
oxidation states of the four Mn ions could be  S0 (II, III, III, III), 
S1 (III, III, III, III), S2 (III, III, III, IV), and S3 (III, III, IV, IV), 
respectively. These two different assignments of the four Mn ions 
are labeled as the “high-oxidation paradigm” and the “low oxidation 
paradigm,” respectively (Krewald et al., 2015; Pantazis, 2018). The 
former has generally been used by most researchers, yet the 
unambiguous chemical evidence for the assignment of the oxidation 
states of the four Mn ions remains elusive.

The crystal structure information of the OEC has emerged 
since the beginning of this century (Zouni et  al., 2001; Kamiya 
and Shen, 2003; Ferreira et  al., 2004; Loll et  al., 2005; Guskov 
et  al., 2009; Tanaka et  al., 2017; Graça et  al., 2021; Kato et  al., 
2021). In 2001, Zouni et  al. reported a crystal structure of PSII 
from a cyanobacterium at a resolution of 3.8 Å (Zouni et  al., 
2001). In 2004, Ferreira et al. (Ferreira et  al., 2004) reported a 
resolution of 3.5 Å structure data of PSII and proposed that the 
OEC was a Mn3CaO4 cubane attached by a “dangler” Mn ion 
via one μ4-oxide bridge, forming a Mn4CaO4-cluster (Ferreira 
et  al., 2004). In 2011, Umena et al. (Umena et  al., 2011) reported 
the crystal structure of PSII at a resolution of 1.9 Å, which revealed 

A B

FIGURE 1 | Structure of the reaction center and main cofactors involved in electron transfer in PSII (Umena et al., 2011) (A) and catalytic cycle of the OEC (Cox 
et al., 2020) (B). The oxidation states of four Mn ions in each S-state are shown within square boxes.
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the detailed structure of the OEC, as shown in Figure  2A. Here, 
the coordination ligands of the OEC are provided by six carboxylate 
groups from the amino acid residues of D1-Asp170, D1-Glu189, D1-
Glu333, D1-Asp342, D1-Ala344, CP43-Glu354, one imidazole group from 
D1-His332, and four water molecules (two on calcium and two 
on dangler Mn, respectively). Further, an additional μ2-oxide bridge 
(O4) between Mn4 and Mn3 was observed (Umena et  al., 2011), 
which is consistent with the proposal by Dau et  al. (2008). The 
structure of the OEC, shown in Figure  2A, has been further 
confirmed by the X-ray free-electron laser (XFEL) data (Kupitz 
et  al., 2014; Suga et  al., 2015, 2017, 2019; Young et  al., 2016; 
Kern et  al., 2018; Ibrahim et  al., 2020; Hussein et  al., 2021) and 
the single-particle cryo-electron microscopy (Cryo-EM) (Wei et al., 
2016; Kato et  al., 2021; Xiao et  al., 2021; Gisriel et  al., 2022). 
The entire structure of the OEC is an asymmetric Mn4CaO5-
cluster. In this cluster, calcium, a key component of the OEC, is 
located in the middle and connected to the four Mn ions through 
three oxide bridges and two carboxylate groups; this structural 
feature (see Figure  2B) is consistent with the proposal by Zhang 
et al. in 1999 (Zhang et  al., 1999).

Notably, most crystallographic studies, in the past, were 
performed on the dark stable PSII sample, in which the OEC 
was generally in the S1 state. Recently, the structures of the 
OEC in other S-states have been reported (Suga et  al., 2017, 
2019; Kern et  al., 2018; Ibrahim et  al., 2020; Hussein et  al., 
2021; Li et  al., 2021). Remarkably, one new oxygen atom (O6) 
coordinated to the Mn1 was observed in the S3 state. This 
new oxygen atom was suggested to serve as one of the substrates 
to form the O=O bond (Suga et  al., 2017, 2019; Kern et  al., 
2018; Ibrahim et  al., 2020). However, the existence of the 
new oxygen (O6) in the S3 state is still under debate. It was 
argued that both O6 and O5 in the reported S3 state OEC 
may belong to the same oxygen atom but in two possible 
positions (Petrie et  al., 2020; Wang et  al., 2021). Furthermore, 
there are some structural uncertainties due to the incoherent 

transition of the S-state of PSII samples (Askerka et  al., 2015; 
Tanaka et  al., 2017).

Compared with the structure revealed by the X-ray diffraction 
(XRD) (Ferreira et  al., 2004; Loll et  al., 2005; Umena et  al., 
2011; Tanaka et  al., 2017), the structure of the OEC revealed 
by the XFEL (Kupitz et  al., 2014; Suga et  al., 2015, 2017, 
2019; Young et  al., 2016; Kern et  al., 2018; Ibrahim et  al., 
2020; Hussein et  al., 2021) has been considered to be  more 
reliable due to the lack of significant radiation damage induced 
by the X-ray beam (Yano et  al., 2005; Grabolle et  al., 2006). 
However, as yet, there is consensus for the atomic positions 
of the S1 state OEC, as revealed by XFEL, certainly not for 
all structures with the results from EXAFS spectroscopy studies 
on the active sample used (Davis and Pushkar, 2015; Askerka 
et  al., 2017). To check if those reported structure data were 
directly correlated with the native structures of the OEC in 
different S-states, we have carried out bond valence sum (BVS) 
calculations on these XFEL’s structures reported recently (Chen 
et  al., 2019; Li et  al., 2020b). We  note that BVS calculation 
has been widely used to evaluate the oxidation valences of 
atoms in coordination complexes and in metalloenzymes (Brown, 
2009). Table  1 lists the results of the BVS calculation on the 
XFEL’s structures of different S-states of the OEC reported 
recently. Surprisingly, we  see that the oxidation states of the 
four Mn ions revealed by BVS calculations are significantly 
lower than that suggested by the spectroscopic studies (Peloquin 
and Britt, 2001; Dau and Haumann, 2007; Yano and Yachandra, 
2014; Krewald et  al., 2015) (Figure  1B), indicating that the 
reduction of the Mn ions with high valences would take place 
during the structural determination by XFEL (Yano et al., 2005; 
Grabolle et  al., 2006; Amin et  al., 2016). If so, one would 
expect that those reported structure data of the OEC would 
be different from the native structure. This opinion is consistent 
with the suggestion that structural modifications of the OEC 
induced by XFEL may take place and the position of the 

A B

FIGURE 2 | Scheme for the structure of the OEC (Umena et al., 2011) (A) and the theoretical model (Zhang et al. 1999) (B).
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oxide bridge (eg., O5) could be significantly disturbed by XFEL 
(Amin et  al., 2016). Therefore, the precise structure of the 
OEC in different S-states remains elusive.

CATALYTIC MECHANISM OF THE OEC

Based on biochemical, biophysical, and theoretical investigations, 
various hypotheses for the catalytic mechanisms of the O=O 
bond formation have been suggested by many researchers 
(Siegbahn, 2013; Askerka et al., 2017; Barber, 2017; Wang et al., 
2017; Corry and O’Malley, 2018; Kawashima et  al., 2018; Kern 
et  al., 2018; Pushkar et  al., 2018; Yamaguchi et  al., 2018; Britt 
and Marchiori, 2019; Suga et  al., 2019; Zhang and Sun, 2019a; 
Marchiori et  al., 2020; Capone et  al., 2021). Figure  3 shows 
four typical proposals.

Figure 3A shows a possible mechanism proposed by Barber 
(Barber, 2017), in which two water molecules (W2 and W3) 
serve as substrates to form the O=O bond. The key feature 
of this mechanism is that the O=O bond is formed by a 
nucleophilic attack of a calcium ligated hydroxyl group onto 
an electrophilic oxo group of MnV ≡ O or MnIV-O• derived 
from the deprotonation of the second substrate water molecule. 
Similar proposals had also been suggested by others (Pecoraro 
et  al., 1998; Vrettos et  al., 2001; Chen et  al., 2015; Vinyard 
et  al., 2015). However, these proposals were not supported by 
recent theoretical calculations reported by Siegbahn group 
(Siegbahn, 2017). The second model (Figure 3B) was suggested 
by Ishikita group (Kawashima et  al., 2018), in which the μ2-
oxide bridge (O4) and one water molecule (W1) serve as two 
oxygen sources to form the O=O bond. The key feature of 
this proposal is that the O=O bond is formed through the 
coupling of the O4 oxide bridge and a MnIV-O• oxyl radical. 
However, the oxidation states of (III, IV, IV, IV) for the four 
Mn ions in the S3 state were not consistent with the widely 
accepted oxidation states of (IV, IV, IV, IV) (Peloquin and 
Britt, 2001; Dau and Haumann, 2008; Yano and Yachandra, 
2014; Krewald et  al., 2015). The third model (Figure  3C) was 
proposed by Sun group (Zhang and Sun, 2019a), in which 
one MnVII ion was suggested to be  involved in the S4 state. 
This mechanism has been recently evaluated by a computational 
study that shows that the formation of the MnVII requires a 
much higher barrier for forming O2 than the earlier proposals 
with four MnIV atoms (Li et  al., 2020a). The fourth model, 
originally proposed by Siegbahn (Siegbahn, 2013), and then 

other groups (Pecoraro et  al., 1998; Cox et  al., 2020), is where 
the μ4-oxide bridge (O5) and the newly inserted water (O6) 
are considered to serve as the oxygen source for the O=O 
bond (Figure  3D). This proposal has been widely used to 
explain the observation of the crystallographic data and a large 
number of spectroscopic observations (Cox et al., 2014b, 2020; 
Kern et  al., 2018; Britt and Marchiori, 2019; Suga et  al., 2019). 
According to this mechanism, the release of O2 from the S4 
state would result in the formation of four unsaturated metal 
ions, namely three 5-coordinated manganese (i.e., Mn1, Mn3, 
and Mn4) and one 6-coordinated calcium, which would certainly 
require a much higher activation energy (Zhang and Kuang, 
2018). Thus, one would expect that the molecular oxygen 
release could be the rate-limiting step during the catalytic cycle; 
however, this is inconsistent with the fast O2 release observed 
in PSII (Haumann et  al., 2005; Davis et  al., 2018).

As mentioned above, although various hypotheses for the 
mechanism of the water-splitting reaction of the OEC have 
been proposed (Siegbahn, 2013; Askerka et  al., 2017; Barber, 
2017; Wang et al., 2017; Corry and O’Malley, 2018; Kawashima 
et  al., 2018; Kern et  al., 2018; Pushkar et  al., 2018; Yamaguchi 
et al., 2018; Britt and Marchiori, 2019; Suga et al., 2019; Zhang 
and Sun, 2019a; Marchiori et  al., 2020; Capone et  al., 2021), 
the detailed mechanism remains an open question mainly due 
to the lack of the unambiguous experimental evidence for the 
O=O bond formation and the precise geometric structure and 
electronic structure of the OEC in different S-states (Chen 
and Zhang, 2021).

MIMICKING THE OEC

To facilitate the understanding of the structure and properties 
of the OEC, as well as for developing efficient water-splitting 
catalysts, many research groups, during the last three decades, 
have attempted to synthesize the OEC (Wieghardt, 1989; 
Limburg et  al., 1999; Mukhopadhyay et  al., 2004; Mullins and 
Pecoraro, 2008; Dismukes et  al., 2009; Gerey et  al., 2016; 
Zhang and Sun, 2019b; Li et  al., 2020b; Chen et  al., 2021; 
Ezhov et  al., 2021). It is a great challenge and a long-standing 
issue for chemists to synthesize the OEC in the laboratory 
(Zhang, 2015; Li et  al., 2020b). During the last two decades, 
numerous multi-manganese complexes have been synthesized 
(Wieghardt, 1989; Limburg et  al., 1999; Mukhopadhyay et  al., 
2004; Mullins and Pecoraro, 2008; Dismukes et al., 2009; Gerey 

TABLE 1 | Bond valence sum (BVS) calculations on the structure of the OEC revealed by X-ray free-electron laser (XFEL) method at different resolutions in different 
S-states.

S1 (1.95 Å) 4UB6 S1 (2.05 Å) 6DHE S2 (2.15 Å) 6JLK S2 (2.08 Å) 6DHF S3 (2.07 Å) 6DHO S3 (2.15 Å) 6JLL

Mn1 3.075 (III) 3.101(III) 3.000(III) 3.232(III) 3.901(IV) 4.203(IV)
Mn2 3.237 (III) 4.277(IV) 3.735(IV) 4.316(IV) 4.193(IV) 3.792(IV)
Mn3 2.980 (III) 3.670(IV) 2.946(III) 3.784(IV) 3.232(III) 3.181(III)
Mn4 2.318 (II) 2.870(III) 2.623(III) 3.139(III) 2.932(III) 2.551(II)

Roman numerals in parentheses indicate the assignment of the oxidation state of Mn ion based on BVS calculation. All atomic coordinates used for BVS calculation were taken from 
the first monomer of PS II in the crystal structure data with PDB-IDs: 4UB6 (Suga et al., 2015), 6DHE (Kern et al., 2018), 6DHF (Kern et al., 2018), 6DHO (Kern et al., 2018), 6JLK 
(Suga et al., 2019), and 6JLL (Suga et al., 2019), respectively.
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et  al., 2016; Chang et  al., 2017). Significant advances for the 
mimicking of the OEC have emerged since 2011 (Tsui et  al., 
2013a; Chen et  al., 2017; Paul et  al., 2017). Further, Agapie 
group (Kanady et  al., 2011) reported an artificial MnIV

3CaO4-
complex (1) using a multi-pyridylalkoxide ligand 
(Figures  4A,B). In addition, a series of analogs or derivatives 
of the cluster have been reported, by using a similar ligand 
(Tsui and Agapie, 2013; Kanady et  al., 2014; Lin et  al., 2015; 
Lionetti et  al., 2019). In 2012, Christou group reported a 
MnIV

3Ca2O4-complex (2) with one Ca2+ attached to the Mn3CaO4 
cubane (Mukherjee et  al., 2012) (Figures  4C,D). A similar 
Mn3Ca2O4-complex was also isolated as a by-product during 
the synthesis of Mn4CaO4-cluster (Chen et  al., 2022). Here, 
the peripheral ligands of the Mn3Ca2O4-cluster are provided 
by pivalic anions or neutral pivalic acid, which resembles to 
that of the OEC in PSII (Umena et  al., 2011). In 2014, Zhang 
group (Chen et al., 2014) reported an artificial (MnIV

3SrO4)2O-
complex (3) that contains both the heterometallic-oxide Mn3SrO4 

cubane and all three types of oxide bridges (μ2-oxide, μ3-oxide, 
and μ4-oxide), as seen in the Sr2+-containing OEC (Koua et al., 
2013) (Figures  4E,F).

In 2015, Zhang group reported an artificial Mn4CaO4-
complex (4; Figures  5C,D) that was prepared through a 
two-step procedure (Zhang et  al., 2015). The first step was 
to synthesize a precursor through a reaction of 
Ca(CH3CO2)2•H2O, Mn(CH3CO2)2•(H2O)4, nBu4NMnO4 
(nBu = n-butyl), and tBuCO2H (tBu = tert-butyl; molar ratio 
of 1: 1: 4: 40) in boiling acetonitrile. The second step was 
to treat the precursor with 2% pyridine in ethyl acetate, 
leading to the formation of the final product, [Mn4CaO4 
(tBuCO2)8(tBuCO2H)2(C5H5N)] (4). This Mn4CaO4-complex 
contains a Mn3CaO4 cubane attached by a dangler Mn ion 
via one μ4-oxide bridge, forming an asymmetric Mn4CaO4-
cluster. Its peripheral environment is provided by eight 
tBuCO2

− anions and three neutral ligands on Ca and Mn4 
(two pivalic acid molecules and one pyridine, respectively), 

A B

C D

FIGURE 3 | Four typical mechanism models suggested in literatures. Components of the OEC involved in O=O bond formation are marked by red color. Roman 
numbers indicate the oxidation state of the Mn ion.
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which is remarkably similar to that in the OEC. BVS calculation 
confirms that the oxidation states of the four Mn ions are 
in (III, III, IV, IV).

The artificial Mn4CaO4-cluster (4) has a [MnIII
2MnIV

2]/
[MnIIIMnIV

3] redox couple of ~0.8 V (vs. normal hydrogen 
electrode, NHE), as shown in the cyclic voltammogram (CV) 
(Figure  6A), which is essentially the same as the estimated 
value (~ 0.8 V) for the S1 → S2 transition of the OEC (Vass 
and Styring, 1991; Dau and Zaharieva, 2009; Mandal et  al., 
2020). The oxidized Mn4CaO4-cluster displays two distinct 
electron paramagnetic resonance (EPR) signals (g = 4.9 and 
g = 2.0) (Figure  6B), which are similar to the g ≈ 4 and g = 2.0 
EPR signals observed in the S2 state OEC (Peloquin and Britt, 
2001; Pantazis et al., 2012). Furthermore, the artificial Mn4CaO4-
cluster can catalyze the water-splitting reaction on the electron 
surface in the presence of a small amount of water in acetonitrile 
(Figure  6C).

The artificial Mn4CaO4-cluster (4) is the closest mimic of 
the OEC up to now, which resembles not only in the structure 
of the metal-oxide core and the peripheral ligands, but also 
in the redox potential and the catalytic function of the 
OEC. Considering the high similarity between the artificial 
Mn4CaO4-cluster and the OEC, we  speculate that oxidation 
states (III, III, IV, IV) of the four Mn ions in this artificial 
cluster provide unambiguous chemical evidence to support the 
assignment of oxidation states of (III, III, IV, IV) for the four 
Mn ions in the S1 state OEC in PSII.

SYNTHESIZING MECHANISM OF THE 
MN4CAO4-CLUSTER

The mechanism of the synthesis of the artificial Mn4CaO4-cluster 
has been recently studied by characterizing the intermediate species 
during the synthesis of the Mn4CaO4-complex (4) (Chen et al., 2022). 
By using the high-resolution electrospray ionization (HR-ESI) mass 
spectroscopy, we  have characterized the precursor of the Mn4CaO4-
cluster and observed five key fragments with m/z− values at 1233. 
235, 1218.259, 875.118, 358.120, and 343.143 assigned to the  
[Mn4CaO4(tBuCO2)9]−, [Mn3Ca2O4(tBuCO2)9]−, [Mn3CaO4(tBuCO2)6]−, 
[Mn(tBuCO2)3]−, and [Ca(tBuCO2)3]−, respectively (Chen et al., 2022). 
More importantly, after extensive experimentation, three key intermediates, 
[Mn3CaO4(tBuCO2)6(tBuCO2H)3] (5), [nBu4NMn(tBuCO2)4] (6), and 
[Mn4CaO4(tBuCO2)8(tBuCO2H)3] (7), were successfully crystallized. 
The structures of these intermediates (5–7) are shown in  
Figure  7.

Based on the isolation and characterization of these 
intermediates for the synthesis of the Mn4CaO4-cluster, 
we suggest that the Mn4CaO4-cluster could be formed through 
a reaction between a thermodynamically stable Mn3CaO4-
cluster and an unusual four-coordinated MnIII ion (Figure 8). 
The freshly formed Mn4CaO4-cluster (7) with carboxylate 
groups only is unstable, but it can be  significantly stabilized 
by binding an organic base (e.g., pyridine) on the “dangler” 
Mn ion. Furthermore, we  have found that the dangler Mn 
ion is flexible and can be  replaced by calcium under weak 

A C E

B D F

FIGURE 4 | Structures of three artificial complexes containing Mn3XO4 cubane (X = Ca/Sr). (A) Core of the Mn3CaO4-complex (1); (B) Structure of the Mn3CaO4-
complex (1) (Kanady et al., 2011); (C) Core structure of the Mn3Ca2O4-complex (2); (D) Structure of the Mn3Ca2O4-complex (2) (Mukherjee et al., 2012); (E) Core of 
the (Mn3SrO4)2O-complex (3); (F) Structure of the (Mn3SrO4)2O-complex (3) (Chen et al., 2014). Distances are given in Å units; Mn, Ca, Sr., O, N, and C are shown in 
purple, green, cyan, orange, blue, and yellow, respectively. For clarity, all hydrogen atoms are not shown.
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A C

B D

FIGURE 5 | Structural comparison of the OEC (Suga et al., 2015) and the artificial Mn4CaO4-complex (4) (Zhang et al., 2015). (A) Core of the OEC; (B) structure of 
the OEC; (C) core of 4; (D) structure of 4. The data for the OEC is taken from the first monomer in the crystal structure data of PSII with the Protein Data Bank code 
4UB6. For clarity, the methyl groups and the hydrogen atoms are not shown. All other illustrations are the same as those in Figure 4.

A B C

FIGURE 6 | Redox properties, EPR, and catalytic activity measurements of Mn4CaO4-complex (4) (Zhang et al., 2015). (A) Cyclic voltammogram (CV) measurement 
of 4 in dichloroethane; (B) EPR spectrum for the one-electron oxidized 4; (C) activity measurements of 4 in acetonitrile with different amounts of H2O. The inset in C 
shows the CV of 4 without H2O on a different scale.
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acid conditions, giving rise to the Mn3Ca2O4-cluster (2) as 
shown in Figures  4C,D.

Considering the high similarity between the artificial 
Mn4CaO4-cluster and the OEC (Figure  5), we  speculate that 
the synthesizing mechanism (Figure 8), described above, could 
provide chemical insights into the assembly of the OEC. In 
the biological system, both the assembly and the disassembly 
of the OEC frequently take place under physiological conditions. 
The disassembly of the OEC takes place after the photodamage 
and degradation of the D1 protein of PSII under high light 
flux. To achieve the water-splitting capability, the newly functional 
OEC must be  properly assembled after the repairing of the 
D1 protein of PSII (Barber and Andersson, 1992; Dasgupta 
et  al., 2008). In PSII, the early steps of the assembly of the 
OEC involving two Mn and one Ca ions have been studied 
for more than 50 years (Cheniae and Martin, 1971; Dasgupta 
et  al., 2008; Bao and Burnap, 2016; Murray et  al., 2020); on 
the other hand, the assembly of the third and the fourth Mn 
ions in OEC is fully unknown (Bao and Burnap, 2016; Avramov 
et al., 2020). Considering the observed thermodynamical stability 
of the fully carboxylic ligand coordinated Mn3CaO4-cluster (5) 
observed (Chen et al., 2022), we propose that a similar Mn3CaO4-
cluster could be  present during the synthesis of the OEC in 
PSII. If it was the case, a mono-nuclear Mn ion (similar to 
that in 6) would be  necessary to be  incorporated into the 

Mn3CaO4-cluster, followed by structural rearrangements to form 
the intact OEC, as has been suggested recently (Gisriel et  al., 
2020; Sato et  al., 2021).

LIGANDS SUBSTITUTED OEC’S MIMICS

In order to improve the stability of the artificial Mn4CaO4-
cluster, we  have optimized its peripheral environment by 
replacing the two pivalic acid molecules on the calcium with 
organic solvent molecules (Chen et  al., 2019). Structures of 
two new Mn4CaO4-complexes, [Mn4CaO4(tBuCO2)8(Py)
(tBuCO2H) (CH3CN)] (8) and [Mn4CaO4(tBuCO2)8(Py)(DMF)2] 
(9) are shown in Figure  9. Interestingly, we  have found that 
the change of these ligands on calcium does not affect neither 
the Mn4CaO4 core nor the oxidation states of the four Mn 
ions, as shown in Figure  9. This observation demonstrates 
that both the geometric structure and the electronic structure 
of the artificial Mn4CaO4-cluster are relatively stable, which 
provides chemical insights into the reason why the oxygenic 
photosynthetic organisms have selected the Mn4CaO4-cluster 
as the key structural unit to build the OEC in natural 
photosynthesis (Barber, 2020). Furthermore, the same oxidation 
states of the four Mn ions in 4, 7, 8, and 9 (Figures  5, 7, 
9) further confirm the assignment of the oxidation stats of 

A C E

B D F

FIGURE 7 | Structures of three intermediates for the synthesis of the artificial Mn4CaO4-cluster (Chen et al., 2022). (A) Core of [Mn3CaO4(tBuCO2)6(tBuCO2H)3] (5); 
(B) structure of 5; (C) Mn center in [nBu4NMn(tBuCO2)4] (6); (D) structure of the [Mn(tBuCO2)4]− anion in 6; (E) core structure of [Mn4CaO4(tBuCO2)8(tBuCO2H)3] (7); 
(F) structure of 7. All other illustrations are the same as those in Figure 5.
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(III, III, IV, IV) in the S1 state OEC in PSII (Krewald 
et  al., 2015).

CALCIUM SUBSTITUTED OEC’S MIMICS

The redox-inactive metal ion, Ca2+, is an indispensable component 
for the catalytic function of the OEC, and its depletion results 
in the complete loss of the water-splitting capability of PSII 
(Yocum, 2008). In the biological system, Ca2+ can only 
be  functionally replaced by Sr2+ (Boussac et  al., 2004; Yocum, 
2008). It has been argued that the Lewis acidity of the redox-
inactive metal ion could play a role in modulating the redox 
potentials of heterometallic-oxide clusters (Tsui et  al., 2013b; 
Tsui and Agapie, 2013; Krewald et  al., 2016; Saito et  al., 2021). 
However, the detailed functional role of the Ca2+ in the OEC 
remains largely unknown because direct investigation of the 
calcium is severely restricted by the lack of controlled 
modifications of this redox-inactive metal ion without changing 
the core structure and the local protein environment of the 
OEC in the biological system (Krewald et  al., 2016; Saito 
et  al., 2021).

To study the possible function of the calcium ion in OEC 
and to develop robust artificial catalysts for the water-splitting 
reaction, tremendous efforts have been devoted to preparing 

calcium substituted Mn4XO4-clusters in our laboratory. In 2021, 
we  successfully prepared the [Mn4YO4(tBuCO2)9(Napy)] 
(Napy = 1,8-naphthyridine) (10) and [Mn4GdO4(tBuCO2)9(Napy)] 
(11) (Yao et  al., 2021). Surprisingly, as shown in Figure  10, 
both the two rare-earth element-containing Mn4XO4-clusters 
(X = Y, Gd) have nearly the same core structure and peripheral 
carboxylic ligands, as well as the oxidation states of the four 
Mn ions as those in the Mn4CaO4-cluster (4) and in the S1 
state of the OEC (Umena et al., 2011). This observation clearly 
demonstrates that the substitution of the calcium by the rare-
earth element does not affect neither the geometric structure 
nor the electronic structure of the Mn4XO4-clusters.

CV measurements (Figure  11) show that both Mn4YO4-
cluster (10) and Mn4GdO4-cluster (11) have a redox potential 
of +0.79 V for the [MnIII

2MnIV
2]/[MnIIIMnIV

3] redox couple, 
which is nearly the same as that of the Mn4CaO4-cluster (4) 
(+0.8 V) (Zhang et  al., 2015) and the estimated value for the 
S1 → S2 transition (∼ + 0.8 V) of the OEC (Dau and Zaharieva, 
2009; Mandal et  al., 2020). Moreover, the redox potentials of 
−0.05 V and + 1.3 V for the [MnIII

3MnIV]/[MnIII
2MnIV

2] and 
[MnIIIMnIV

3]/[MnIV
4] irreversible redox couples can be estimated 

for both the Mn4YO4-cluster and the Mn4GdO4-cluster, 
respectively. These values are also close to that (−0.1 and + 1.25 V) 
observed in the Mn4CaO4-cluster (Zhang et  al., 2015) as well. 
These results clearly show that the replacement of the calcium 

FIGURE 8 | Possible synthesizing mechanism of the artificial Mn4CaO4-cluster (4) (Chen et al., 2022).
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by rare-earth element does not significantly affect redox potentials 
of the heterometallic-oxide Mn4XO4-cluster although the Lewis 
acidity of Y3+, Gd3+, and Ca2+ is significantly different. This 
observation challenges the earlier view that the redox-inactive 
metal ion would modulate the redox potentials of the 

heterometallic-oxide cluster (Tsui et  al., 2013b; Tsui and 
Agapie, 2013).

The above results suggest that rare-earth elements can 
structurally and energetically replace the calcium in artificial 
neutral Mn4XO4 clusters in a chemical system, which, indeed, 

A C E

B D F

FIGURE 9 | Structural comparison of three artificial Mn4CaO4-complexes (4, 8, 9) (Zhang et al., 2015; Chen et al., 2019). (A) Core of 4; (B) structure of 4; (C) core 
of 8; (D) structure of 8; (E) core of 9; (F) structure of 9. All illustrations are the same as those in Figure 5.

FIGURE 10 | Structural comparison of the OEC (Suga et al., 2015), Mn4CaO4-cluster (4) (Zhang et al., 2015), the Mn4YO4-cluster (10) and Mn4GdO4-cluster  
(11) (Yao et al., 2021). See Figure 5 for further information.
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sheds new light on the functional role of the calcium in 
the OEC and supports the idea that the redox-inactive metal 
ion could indeed play roles in maintaining the cluster’s 
integrity and stability instead of modulating the redox potential 
of the OEC. Obviously, these robust rare-earth element-
containing Mn4XO4-clusters provide a structurally well-defined 
molecular platform to investigate the structure–function 
relationship of its biological paradigm and shed new light 
on the design of efficient water-splitting catalysts in artificial  
photosynthesis.

CHALLENGE FOR FUTURE MIMICKING

Although these Mn4XO4-clusters (X = Ca/Y/Gd) closely mimic 
the OEC in many aspects and provide new insights into the 
structure–function relationship of the biological catalyst, it 
remains a great challenge to overcome in order to discover 
a precise mimic of the structure and function of the OEC 
in a laboratory. In the first place, the μ2-oxide bridge (O4) 
seen in the S1 state of the OEC is still missing in all the 
current known Mn4XO4-clusters. Incorporating this last “missing 
puzzle” into artificial Mn4XO4-cluster is a great challenge for 
synthetic chemistry, which is urgently needed for the 
understanding of the functional role of this oxide bridge and 
of the catalytic mechanism for the O=O bond formation in 
the OEC. Further, all synthetic Mn4XO4-clusters display very 
poor solubility in aqueous solution because of the hydrophobic 
peripheral environment mainly provided by the pivalate groups 
(i. e. tBuCO2); thus, it is difficult to carry out its catalytic 
performance in aqueous solution as is the case with many 
other artificial catalysts reported thus far (Zhang and Sun, 
2019b; Kondo et  al., 2021). In addition, it has been found 
that many Mn complexes are not stable in the aqueous solution 
during the catalytic reaction (Hocking et  al., 2011; Li et  al., 
2017); thus, it is crucial to develop a proper experimental 
condition for the catalytic performance of these OEC’s mimics. 

In the biological system, the Mn4CaO5-cluster is surrounded 
by non-aqueous protein environment with special channels 
for the delivery of protons, electrons, and the substrate (Shen, 
2015; Hussein et  al., 2021). Obviously, mimicking the first 
and the second coordination spheres of the OEC in PSII 
with functional channels is further required to achieve high 
reactivity in the future.

CONCLUDING REMARKS

In summary, the crystallographic studies of PSII have revealed 
that the OEC is composed of an asymmetric Mn4CaO5-cluster; 
however, the detailed catalytic mechanism for the water-
splitting reaction remains elusive due to the structural 
uncertainty of the different intermediate states of the OEC 
during its catalytic turnover. It is a great challenge to precisely 
mimic the OEC in the laboratory, yet a series of artificial 
Mn4XO4-clusters (X = Ca/Y/Gd) have been reported recently, 
which closely mimic both the geometric structure and the 
electronic structure, as well as the redox properties of the 
OEC in PSII. The investigation of these structurally well-
defined chemical models provides distinct chemical insights 
into the understanding of the structure–function relationship 
of the OEC as well as the catalytic mechanism of the water-
splitting reaction in natural photosynthesis. We  list below 
several major take-home messages.

The oxidation states of the four Mn ions in all these Mn4XO4-
clusters are (III, III, IV, IV), which provides the unambiguous 
chemical evidence for the “high-oxidation paradigm” assignment 
of the four Mn ions in the S1 state of the OEC (Krewald 
et  al., 2015).

The preparation and reactivity of artificial Mn4CaO4-clusters 
clearly demonstrate that this cluster is thermodynamically 
stable, which supports the proposal that the Mn4CaO4-cluster 
could be  an evolutionary origin of the natural OEC 
(Barber, 2016).

A B C

FIGURE 11 | Redox potentials of the Mn4YO4-cluster (10) and Mn4GdO4-cluster (11) (Yao et al., 2021). (A) CV of Mn4YO4-cluster. (B) CV of Mn4GdO4-cluster. The 
possible oxidation states of the four Mn ions are shown in blue. The scan direction is indicated by the arrow. (C) Dependence of E1/2 of three redox couples on pKa 
of the X(aqua)n+ ion (Perrin, 1982) of three Mn4XO4-clusters. All potentials were referenced to NHE.
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The finding that the rare-earth elements can structurally and 
energetically replace the calcium in the Mn4CaO4-cluster provides 
important chemical insight into the functional role of the calcium 
in the OEC. It indicates that the redox-inactive metal ion could 
play roles in maintaining the cluster’s integrity and stability instead 
of modulating the redox potential of the OEC.

Based on the characterization of artificial Mn4XO4-clusters, 
we  clearly see that all μ3- and μ4- oxide bridges are tightly 
bound to the cluster, supporting that they may play roles in 
maintaining the cluster’s stability and integrity rather than 
as reactive sites for the O=O bond formation. However, 
we  should point out that precise structural mimicking and 
functional mimicking are urgently required in the future to 
reveal the detailed catalytic mechanism and to achieve the 
high reactivity of water-splitting reaction in artificial 
photosynthesis. We  believe that the further investigation of 
these robust artificial Mn4XO4-clusters would help to develop 
efficient man-made catalysts for the water-splitting reaction 
in artificial photosynthesis.
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