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The magnetized water and fertilizer liquid can produce biological effect of magnetic field

on crops, but its residual magnetic field strength is difficult to be expressed quantitatively

in real time, and accurate prediction of it is helpful to define the scope of action of liquid

magnetization. In this paper, a prediction model for liquid magnetization series data is

presented. It consists of conditional generative adversarial network (CGAN) and projected

gradient descent (PGD) algorithm. First, the real training dataset is used as the input of

PGD attack algorithm to generate antagonistic samples. These samples are added to the

training of CGAN as true samples for data enhancement. Second, the training dataset

is used as both the generator and discriminator input of CGAN to constrain the model,

capture distribution of the real data. Third, a network model with three layers of CNN is

built and trained inside CGAN. The input model is constructed by using the structure of

two-dimensional convolution model to predict data. Lastly, the performance of the model

is evaluated by the error between the final generated predicted value and the real value,

and the model is compared with other prediction models. The experimental results show

that, with limited data samples, by combining PGD attack with CGAN, the distribution of

the real data can be more accurately captured and the data can be generated to meet

the actual needs.

Keywords: series data, liquid magnetization, data enhancement, prediction, biological effect of magnetic field

INTRODUCTION

In recent years, with the emergence of large-scale time-series data and the improvement of
computing power, time-series data prediction has become increasingly important in many fields,
such as weather (Hewage et al., 2020; Karevan and Suykens, 2020), energy consumption (Divina
et al., 2019), financial indicators (Zhang et al., 2019), retail (Beheshti-Kashi et al., 2015), medical
monitoring (Xia et al., 2022), anomaly detection (Munir et al., 2018), and traffic prediction (Li
et al., 2015). The deep neural network shows great potential in mapping complex non-linear feature
interaction. When processing time-series data, it can automatically learn the time correlation of
time series and directly adapt to the data without any prior assumptions. It has been proved that it
can successfully solve the problem of time-series data prediction (Sen et al., 2019; Wan et al., 2019).
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Time-series data are a series of data indexed by time
dimension. This kind of data describes the measured value of
a measured subject at each time point in a time range, that
is, a one-dimensional corresponding relationship is constructed
between the data and time nodes. If the range of time-series
data is extended, the data collected on different time nodes
will be extended to the data collected on different detection
nodes. This detection node is a one-dimensional physical variable
that plays a core role in the detection data, that is, a series of
physical quantities with the same rhythm as the time node, such
as magnetic field strength, voltage, and current. These physical
quantities can reflect the change trend of detection data in
dimension. In this way, many machine learning models applied
to time-series data prediction will be able to predict a wider range
of series data, such as prediction and deployment of physical
and chemical parameters (Nie et al., 2021a; Wang et al., 2022).
This will help to improve the ability of data mining based on the
series data.

The biological effect of magnetic field refers to the dominant
or recessive effect on the growth and metabolism of organisms
under the action of magnetic field environment (Nyakane et al.,
2019; Radhakrishnan, 2019). In the process of agricultural
production, the integrated management and distribution of crop
water and fertilizer supply can be realized by using the integrated
irrigation equipment of water and fertilizer. The steady-state
controllable magnetic field can be generated by energizing, and
the mixed liquid of water and fertilizer with different residual
magnetic field strength can be induced by changing the magnetic
field parameters. The influence of magnetic field is applied to
crops through drip irrigation equipment, and then, a series of
magnetic field biological effects are produced to improve the yield
and quality of crops (Nie et al., 2021b). The residual magnetic
field strength of water fertilizer mixed liquid magnetized by
magnetic field is the fundamental factor affecting the biological
effect of crop magnetic field. Therefore, this paper hopes to
predict themagnetization series data of water and fertilizer mixed
liquid, so as to lay a foundation for further clarifying the degree
of biological effects of magnetic field on crops.

The residual magnetic field strength of liquid magnetization
is affected by the magnetic field strength of magnetization
space, magnetization time, the change of permeability caused by
different water, fertilizer ratio, and other factors. The ratio of
water and fertilizer required by crops in different growth periods
is determined. When the water and fertilizer liquid with a certain
flow rate passes through the magnetized space, the magnetization
time is the same. Therefore, the influence of the magnetic field
strength of magnetization space on the residual magnetic field
strength of the liquid magnetization is the core factor. The liquid
magnetization series data have the same characteristics as other
time-series data. The mapping relationship is as follows: The
residual magnetic field strength data map the change data we
are concerned about, such as weather temperature, retail sales,
and energy consumption, and themagnetization spatial magnetic
field strength maps the time series. All series data are faced with
such a problem, that is, limited by the equipment and conditions,
the data samples obtained are limited. How to carry out in-depth
data mining on this basis is a problem worthy of exploration.

The application of machine learning in data mining of series
data needs to solve the problem of few data samples, while the
few-shot learning method does not rely on large-scale samples
training data and can be quickly generalized to the new task
containing only a small number of supervised information
samples, avoiding the high cost of collecting data (Li and Chao,
2020; Wang et al., 2020; Li and Yang, 2021; Yang et al., 2022).
Few-shot learning has many excellent algorithmmodels in image
classification (Liu et al., 2018; Li et al., 2020) and text classification
tasks (Yan et al., 2018). In addition, using few-shot learning for
tasks such as oral comprehension (Kumar and Baghel, 2021),
image extraction (Li et al., 2021), and disease diagnosis (Zhong
et al., 2020; Li and Chao, 2021a) also has good generalization
ability. The idea of learning with a small amount of data to get
a good effect model can greatly improve the ability of in-depth
learning in the field of agricultural production and has achieved
good results in some applications where data samples are not
easy to obtain or sample size is small, such as pest control (Li
and Yang, 2020), crop counts, and positioning (Karami et al.,
2020). At the same time, how to balance between sample quantity
and sample quality has also attracted the attention of researchers.
Li et al. proposed an effective indicator of distance entropy to
distinguish the quality of sample data from the perspective of
information and through an embedding range judgment (ERJ)
method in the feature space (Li and Chao, 2021b,c; Li et al., 2022).
It is confirmed that good data with a small number of choices can
achieve the same performance as all training data.

How to optimize the prediction model with reasonable data
expansion methods when the sample data are limited is a
problem that needs to be solved. Few-shot learning based on
data enhancement improves the diversity of samples. In the
case of less series data, generating effective samples according
to the existing few-shot data and data enhancement of target
domain samples has become a new solution direction. Generative
adversarial network (GAN) is one of the most promising data
enhancement driven algorithms for unsupervised learning in
complex distribution in recent years. Through the mutual game
learning of generative model and discriminant model, it can
produce quite good output, which shows the great potential
of inferring physical phenomena. Although GAN has achieved
some success in generating data, it still has defects such as mode
collapse and unstable training. In order to solve these problems,
scholars put forward an improved method of adding antagonistic
attack to GAN. Liu and Hsieh proved that the integration of
GAN and antagonistic attack can enhance each other (Liu and
Hsieh, 2019). By adding antagonistic attack to GAN, such as
projection gradient descent (PGD) attack, it can not only improve
the defense success rate of discriminator against samples, but
also accelerate the network convergence speed and guide the
training of better generators. Because the data generationmethod
of the original GAN is too free, it cannot fully capture the
distribution of real data and cannot produce data that fully meets
the needs. Therefore, conditional generative adversarial network
(CGAN) is formed after adding conditional constraints on the
basis of the original GAN. CGAN can be seen as an improvement
of turning unsupervised GAN into a supervised model. Under
the guidance of conditional constraints, it can improve the
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quality of generated data, so as to better meet the needs
of researchers.

In this paper, aiming at the prediction of residual magnetic
field strength of water and fertilizer liquid, when the series data
samples are limited, PGD antagonistic samples are added to the
training of CGAN as true samples for data enhancement, and a
prediction modeling method based on CGAN data enhancement
is proposed. First, the real training dataset is used as the input
of PGD attack algorithm to generate antagonistic samples, and
these samples are added to the training of CGAN as true
samples for data enhancement. Then, the training dataset is
used as the condition input of generator and discriminator of
CGAN at the same time to constrain the model, capture the
real detection data distribution, and improve the discriminator’s
ability by antagonistic samples, so as to improve the generator’s
ability to generate real data. Finally, the network model of
three-layer convolutional neural network (CNN) inside CGAN
is established and trained. The structure of two-dimensional
convolutionmodel is used to construct the inputmodel to predict
data. The performance of the model is evaluated by the error
between the final generated predicted value and the real value,
and the model is compared with other prediction models. This
study can provide some implications for prediction of series data
in future with limited samples.

MATERIALS AND METHODS

Dataset
The training and test datasets used in this study are based on
the data of residual magnetic field strength after magnetization of
water and fertilizer liquids with different flow rates collected on
the liquid magnetization test platform. It consists of a magnetizer
and a liquid magnetization space pipeline. The structure of
liquid magnetizer consists of iron core, excitation coil, and air
gap magnetization space as shown in Figure 1A. The iron core
structure is annular, the material is cold-rolled non-oriented
silicon steel B50A470, the excitation coil uses circular copper-
coated wire, the insulation grade is F, the nominal diameter
is 1.50mm, the reserved air gap magnetization space size is
100∗40∗200mm, and the excitation mode is DC adjustable
excitation. To fully magnetize the liquid as it passes through the
air gap magnetized space, the liquid flow through the magnetized
space pipeline is designed as a closed S-shaped composite pipe
structure, which is placed in the air gap magnetized space as
shown in Figure 1B. When the liquid is magnetized, it flows
in from the upper tube opening and out from the lower
tube opening.

There are many input variables that affect the magnetization
effect of liquids. Ignoring the influence of secondary variables,
the magnetic field strength in the air gap magnetization space
and liquid velocity are selected as the main variables that affect
the magnetization effect of liquids, and the residual magnetic
field strength of the liquid magnetization is selected as the index
to measure the magnetization effect. When collecting test data,
adjust the current of excitation coil by adjustable DC regulator
power supply, change the intensity of magnetic field in the air
gap magnetization space, measure the magnetic field strength

at the center point of the air gap magnetization space by Tesla
meter, measure the flow rate by placing a velocity meter at
the water inlet of the liquid magnetization space pipeline, set a
sampling hole at the fixed interval of the water outlet, collect
the magnetized liquid, and measure the residual magnetic field
strength by Tesla meter.

In order to improve the generalization of the model and avoid
modeling within local data intervals, data are collected within
the magnetization working interval of the liquid magnetizer by
uniform sampling. By adjusting the excitation current of the
magnetizer, the residual magnetic field strength series data at
the same distance can be obtained for liquids with different flow
rates, assuming that there are n liquids with different flow rates
passing through the liquid magnetized space pipeline. For the
flow rate of vi liquid after magnetization by a magnetizer, under
the action of j different air gap magnetization space magnetic
field strength, there is n set of detection data, which is recorded
as Di =

{

xi,j
}n

i=1
.

Methods
CGAN
GAN is a data modeling algorithm that generates a set of samples
from the data probability distribution pdata, providing a way
to learn deep representation without a lot of training data.
This method, proposed by Goodfellow et al. (2015), has rapidly
become a research hotspot in recent years. It is also one of
the most interesting ideas in the field of machine learning in
recent years. The most successful applications of GAN are image
processing and computer vision, such as image super-resolution
(Bulat et al., 2018), image synthesis and manipulation (Dong
et al., 2018; Wang et al., 2018), and video processing (Liao et al.,
2019). GAN processes series data by learning the probability
distribution of a given dataset and generating synthetic data that
conforms to the same distribution. Therefore, it can synthesize
seemingly real artificial data. The application of GAN to series
data mainly focuses on discrete issues, such as text generation
tasks (Xu et al., 2018), and in a continuous state, GAN is used to
generate auditory data (Liu et al., 2021). In addition to these data
types, there are also some attempts to apply GAN, such asmedical
time-series data generation (Kiyasseh et al., 2020), wind speed
probability prediction (Cheng et al., 2018), and composite time
series in smart grid (Zhang et al., 2018). However, there are few
studies on the application of GAN to the probability prediction
of sensor detection data. In fact, the detected data have the same
mapping relationship as the time-series data. Based on the limited
data of residual magnetic field strength of water and fertilizer
liquids, this paper uses GAN method to predict its change trend.

GAN is an unsupervised learning method that improves
the quality of generated data by learning through a game
between generator and discriminator. This competitive approach
no longer requires a hypothetical data distribution, but uses a
distribution to sample directly, thus truly approaching the real
data in theory, which is the greatest advantage of GAN. However,
this way of entering a random vector and getting a resulting
object is too free for us to control what kind of object is produced.
Therefore, CGAN is formed when conditional constraints are
added to the original GAN. CGAN is an extension of GAN,
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FIGURE 1 | (A) Liquid magnetizer structure. (B) Liquid magnetized space pipeline.

which allows us to put models on some extra information y.
This information can be any type of ancillary information, such
as category labels or data from other modes. CGAN achieves
conditional constraints on the generated object by conveying

additional information y to the discriminant model and the
generated model as part of the input layer.

CGAN contains two “confrontation” models: Generation
Model to capture data distribution and Discrimination Model
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to estimate the probability that a sample will come from real
data instead of synthetic samples. Generator inputs two objects
at the same time, a sample z sampled from a prior distribution
and a conditional y, which outputs the resulting data x̃ =
G(z

∣

∣y) . To learn how to generate distribution x on real dataset
pdata(x), noise vector z is sampled from known prior distribution
pnoise(z) (usually Gaussian or uniform), the generator takes z
as input, and it also needs to sample from conditional y to
generate sampled data whose distribution follows pdata(x). A
mapping function G(z

∣

∣y ) is constructed from pnoise(z) and y
to data space. In the generation model, a priori input noise
pnoise(z) and conditional information y form a joint hidden layer
representation. Discriminator also has two inputs, conditional
y and generator generating data x̃, and outputs a scalar that
represents a score D :D(x̃

∣

∣y ) → (0, 1). This score evaluates
two things: whether x̃ is real or not, and whether x̃ and
y match. Models G and D are trained simultaneously: fixed
discriminant model D, adjusted G parameters to minimize
log(1 − D(G(z

∣

∣y ))) expectations; fixed the generation model G
and adjusted the parameters of D tomaximize the expectations of
logD(x̃

∣

∣y )+ log(1−D(G(z
∣

∣y ))). This optimization process can
be boiled down to a “minimax two-player game” problem with
the objective function as shown in Equation (1):

min
G

max
D

V(D,G) = Ex∼pdata (x)[logD(x
∣

∣y )]

+Ez∼Pnoise(z)[log(1− D(G(z
∣

∣y )))] (1)

where E represents mathematical expectation, x represents the
sample of sampling distribution pdata(x) in real data, which
corresponds to the collected training set data in this study, z
represents the noise sampled in a priori distribution pnoise(z),
D(x

∣

∣y ) represents the probability that the discriminant model
judges that the real data are true data under the constraint
of condition y, and D(G(z

∣

∣y )) represents the probability that
the discriminant model judges that the data generated by
random noise pnoise(z) and condition y is true data, and V(D,G)
represents the value function of the discriminationmodel and the
generation model. In an ideal state, it is expected that the value
function of the discrimination model will obtain the maximum
value and the value function of the generation model will obtain
the minimum value.

The network architecture of CGAN is shown in Figure 2.
The generator takes the sample z and condition y sampled from
the a priori distribution as the input to generate data x̃. The
discriminator inputs both condition y and generated data x̃ into
a network to get a score to measure whether the object x̃ is true
and whether it matches the constraint y.

Project Gradient Descent Attack
The concept of confrontation attack comes from the input
samples formed by adding subtle disturbances to the samples,
which makes the network output wrong prediction. The basic
idea of counter training is as follows:

min
θ

E(x)∼D

[

max L(θ , x+ radv)
radv∈S

]

(2)

The inner meaning in Equation (2) to find a group of antagonistic
samples in sample space D that maximizes the loss function L
and the countermeasure sample x is obtained by the combination
of the original sample and the disturbance term radv obtained
by some means, and the disturbance term radv is in disturbance
space S. Outer meaning: facing the countermeasure sample set
composed of such a group of samples, the expected loss of the
model on the countermeasure sample set should be minimized
by updating the model parameter θ .

Confrontation learning has achieved good results in the image
field (Chen et al., 2019), and this way of confrontation attack
training can be transferred to series data. How to add disturbance
to the confrontation attack is a thorny problem in the prediction
of series data. PGD attack algorithm is improved on the basis
of fast gradient method (FGM) algorithm. Its essence is to find
the optimal disturbance through multiple iterations. Therefore,
it is very suitable for discrete non-linear series data model.
In this study, the antagonistic samples are generated through
the algorithm. On the basis of real data, the disturbance in
confrontation radv is optimized and calculated through multiple
iterations of PGD attack algorithm. The calculation process is
shown in Equation (3).

radv : = argmax
radv∈S

L(f(θ; x+ radv)) (3)

where f represents the network parameterized by weight θ , and L
represents the loss function. The purpose Equation (3) is to find
disturbance radv to maximize the loss value of a point xadv : =
x+radv, so that this point is most likely to become the antagonistic
sample. Specifically, it is to carry out forward and backward
propagation again and again, calculate loss in forward, calculate
parameter grad in back, calculate disturbance radv according to
gradient again and again, and add new disturbance radv to the
gradient of embedding layer again and again. If it exceeds a range,
it will be mapped back to the given range. Finally, the gradient
calculated in the last step is accumulated on the original gradient,
that is, the original gradient is updated by accumulating the
gradient corresponding to the disturbance in step t. The multiple
iterative process against disturbance radv is shown in Equations
(4) and (5).

radv/t+1 =
∏

‖radv‖2≤ε(radv/t+αg(radv/t)/
∥

∥g(radv/t)
∥

∥

2
(4)

g(radv/t) = ∇radvL(f (θ , x + radv/t)) (5)

where ‖radv‖2 ≤ ε is the constraint space of the disturbance, α
is the small step size, and

∏

means to perform projection on
ε − ball. If the disturbance amplitude is too large, pull the origin
part back to the boundary of ball to ensure that the disturbance is
superimposed in ball for many times after multiple operations.

In this study, the antagonistic samples generated by PGD
attack algorithm are used as the expansion of the original dataset
and added to the model training together, which is equivalent
to a way of data expansion. The purpose of confrontation
attack training is no longer to defend against gradient based
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FIGURE 2 | Network architecture of CGAN.

malicious attacks, but more as a kind of regulation to improve
the generalization ability of the model.

CGAN Data Enhancement Model
Framework
Overall Framework
In this paper, PGD attack algorithm is combined with CGAN.
Aiming at the magnetization series data of irrigation water
and fertilizer mixture, under the condition of limited data
samples, a prediction model using CGAN to enhance the
data based on the original data is constructed. The original
sample data are attacked by PGD attack algorithm to generate
antagonistic sample data. The PGD antagonistic sample is added
to the training as a true sample to enhance the data, improve
the defense success rate of antagonistic samples, and enable
CGAN to generate series data closer to the distribution of
real samples.

CGAN data enhancement model is mainly composed of
generator, discriminator, attack algorithm fPGD, and conditional
dataset y. Its overall framework is shown in Figure 3. The fPGD

algorithm is responsible for generating antagonistic samples. Its
training dataset is completely the sampled real sample data. The
generated antagonistic samples are used as the extended training
dataset of discriminator. The work of generator is to convert
random noise into realistic data with semantic information, and
the work of discriminator is to distinguish whether the input data
are true as much as possible.

The overall objectives of the model are as follows: The

random noise vector z is given in the generator, and the training
dataset containing real sample data is used as the input of

conditional dataset y to generate conditional constraints and the

generator generates synthetic sample x̃. The training sample, that
is, the real sample

(

x1, x2, . . . , xj−1, xj
)

, is used as the input of
the PGD attack algorithm to generate the antagonistic sample
x′. The discriminator receives the synthetic sample x̃ and the
antagonistic sample x′ at the same time and takes the condition
y as the judgment basis to judge whether x̃ and x′ are true
and match the condition y. The generator and discriminator
are trained alternately under the guidance of discrimination loss
to gradually enhance the ability of discrimination antagonistic
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FIGURE 3 | Overall framework of CGAN data enhancement model.

samples, so as tomake the sample data generated by the generator
more real.

Generator and Discriminator Network Framework
In this paper, convolutional neural network (CNN) is
introduced to construct the internal structure of generator
and discriminator. CNN has the powerful ability of multi-hidden
layer feature extraction. The introduction of CNN can improve
the stability, convergence speed, and data quality of CGAN,
because the samples of one-dimensional convolution model are
easy to over fit during training, and the anti-noise performance
of one-dimensional convolution model is not as good as that
of two-dimensional convolution model. In order to enhance
the generalization ability and robustness of the whole model,
the structure of two-dimensional convolution model is used to
construct the input model. Therefore, it is necessary to transform
the one-dimensional series data into two-dimensional equivalent
information degree and arrange it into two-dimensional form
of n × n for convolution, which is more conducive to model
feature extraction. In order to ensure the integrity of sliding
sampling of two-dimensional convolution kernel, the input
data and output data form an n × n matrix. The random noise
and conditional data are spliced into an n × n matrix and
input into CNN. In order to enable the network to learn more
suitable spatial sampling methods independently, the spatial
pooling in CNN is not used, and the step convolutions are used

to enable the network to sample in the autonomous learning
space. Batch normalization is used between levels to accelerate
convergence and slow down over fitting, so as to make the
gradient propagation deeper. In the output layer, tanh activation
function is used, and the other layers are activated by ReLU.
Finally, the network generates prediction data.

The generator is composed of three layers of CNN, and
its structure is shown in Figure 4. The random noise and
conditional data are spliced into a matrix and then input. The
convolution layer C1 is obtained by convolution of 32 6 ×
6 convolution cores, the convolution layer C2 is obtained by
convolution of 64 6 × 6 convolution cores, and the convolution
layer C3 is obtained by convolution of 1 6 × 6 convolution core
to obtain the prediction data and output. The sliding step size is
set to 2.

Discriminator splices conditional data, generated samples,
and antagonistic samples into a matrix as the input of
convolution layer. The discrimination model is composed of
three layers of CNN, and the hidden layer of the discrimination
model uses Leaky ReLU function as the activation function.
Finally, the full link and sigmoid activation function are used to
judge the true and false, so that the result is mapped between (0,
1). In the discrimination model, convolution layer C1 is obtained
by convolution of 32 6 × 6 convolution cores, convolution layer
C2 is obtained by convolution of 64 6 × 6 convolution cores,
convolution layer C3 is obtained by convolution of 128 6 × 6
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FIGURE 4 | Network structure of generator.

convolution cores, and the sliding step size is set to 2. Finally,
the full link outputs the discrimination result, and its structure is
shown in Figure 5.

When training CGAN, the generation model and
discrimination model are trained alternately. In the process
of training the generation model, the weight value of the
generation model is set according to the deviation between
the prediction data generated by the generation model and
the real data, the condition deviation, and the discrimination
result of the discrimination model. In the process of training the
discrimination model, the conditional data, the data generated
by the generation model and the antagonistic samples, need to be
input into the discrimination model. The discrimination model
needs to judge whether the input data are the probability of the
real detection data conforming to the conditional distribution
and update its own parameters according to the discrimination
deviation. In the training process, the random gradient descent
algorithm is used to update the discriminant model once and
then update the generated model.

Algorithm
First, initialize parameter θd of discriminator and parameter θg
of generator, fix generator, and make discriminator learn. Several
vectors are randomly sampled from a Gaussian distribution
or uniform distribution. At the same time, m samples are
randomly selected from the conditional dataset y and input
into the generator to obtain the corresponding generated data
and input into the discriminator. At the same time, the
training samples, that is, the real samples, are generated by
the fPGD attack algorithm and sent to the discriminator to
improve the generalization ability of the model. Discriminator
also randomly selects m samples from the conditional dataset
y to learn how to identify the real data and the generated
data, give high scores to the real data and low scores

to the generated data as much as possible, and update
the parameters of discriminator by regression task in the
training process. The algorithm of learning discriminator is
shown in Table 1.

Then, fix the discriminator and adjust the parameters of
the generator. The goal is to enable the data generated by the
generator to deceive the discriminator and get high scores as
much as possible. The algorithm of learning generator is shown
in Table 2.

RESULTS

Experimental Data Preparation
In this study, simulating the integrated management process
of cotton water and fertilizer, drip irrigation pipeline network
is laid out with one film, two tubes and four rows, and
main, branch and capillary network structure. The water and
fertilizer liquid magnetizer is placed at the head of the capillary
network. The capillary outer diameter is φ20mm, and the
capillary flow is 1.4L/h˜2.8L/h. There will be differences in
different growth stages of cotton, and the corresponding liquid
flow rate is 4.46m/s̃ 8.92m/s. In the process of data collection,
the flow rate of liquid was set as 4m/s̃ 9m/s, increasing by
1m/s. The data of residual magnetic field strength after water
and fertilizer liquid passing through the magnetized space
pipeline at different flow rates were collected in n = 6
groups. Each group of data was sampled from 100mT˜880mT
to 20mT with uniform increment of gap magnetized space
magnetic field strength. There were j = 40 data samples
in each flow rate group, and N = n × j = 240 series
data were obtained. The water–fertilizer fusion liquid ratio
is 1000kg water with urea (containing N46%)50kg, calcium
superphosphate (containing P2O564%)25kg, potassium sulfate
(containing K2O50%) 25kg added.
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FIGURE 5 | Network structure of discriminator.

TABLE 1 | Algorithm of learning discriminator.

Step 1. Learning discriminator

1. Input real sample training datasets
(

x1, x2, . . . , xj−1, xj
)

,x
′
← fPGD(x);

2. Sample m noise samples from a distribution, such as a Gaussian or uniform distribution,{z1, z2, · · ·, zm};

3. Random sampling of m samples from conditional dataset y,(x1, x2, . . . , xm−1, xm);

4. Get data
{

x̃1, x̃2, · · ·, x̃m
}

generated by G, where x̃ = G(zi
∣

∣y) ;

5. Randomly select m generated data
{

x̃1, x̃2, · · ·, x̃m
}

and m antagonistic samples
{

x
′

1, x
′

2, · · ·, x
′

m

}

;

6. Randomly select m conditional samples (x1, x2, . . . , xm−1, xm);

6. The objective function is recorded as V, and θd is updated by maximizing (gradient rise) V, that is, θd ← θd + η∇V (θd). The objective function V is as

follows: V = 1
m

m
∑

i=1

logD (yi , xi)+
1
m

m
∑

i=1

log
(

1− D
(

yi , x̃i
))

+ 1
m

m
∑

i=1

log
(

1− D
(

yi , x
′
i

))

TABLE 2 | Algorithm of learning generator.

Step 2. Learning generator

1. Sample m noise samples from a distribution (such as Gaussian distribution or uniform distribution),{z1, z2, · · ·, zm};

2. Random sampling of m samples from conditional dataset y,(x1, x2, . . . , xm−1, xm);

3. The objective function is recorded as V, and θg is updated by maximizing (gradient descent) V, that is, θg ← θg − η∇V
(

θg
)

. The objective function V is as

follows: V = 1
m

m
∑

i=1

log
(

1− D
(

G(yi , x̃i )
))

The dataset is divided into training set, test set, and query
set, and there is no intersection among these three parts. The
training set selects data for measuring residual magnetic field
strength of water and fertilizer liquids at a flow rate. The test set
selects another test data at a different flow rate. To fully compare
the performance of the prediction models and other models
proposed in this study, the query set will select the detection
data at different flow rates than the training set and the test
set. In order to verify the correctness and generalization of the
proposed model for predicting the magnetic field strength of
water and fertilizer liquids, training set, test set, and query set
are divided twice on the dataset, and the details are shown in
Table 3.

In two different segmented datasets, we use the training
dataset as the conditional dataset for the entire model. It consists
of 40 conditional data, all of which are true test series data,
which constrain the data generated by generator and serve as the
basis for discriminator to determine whether the input data are
true and the data distribution is reasonable. The training dataset
is also used as input to the fPGD attack algorithm to generate
antagonistic samples.

The input data to generation model are conditional data
and noise data, since conditional data are a segmented training
dataset, including 40 series data at a set of flow rates. The
generated model will generate 16 prediction data based on
the input conditional velocity data, which form the matrix of
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TABLE 3 | Partition of datasets.

Split mode Training set Test set Query set

Liquid flow rate

(40 samples)

Liquid flow rate

(40samples)

Liquid flow rate

(40 samples)

Split-1 4m/s 5m/s 7m/s

Split-2 6m/s 8m/s 9m/s

4 × 4. To maintain the correspondence between the noise data
and the output data of the generated model, 16 random noise
data are generated by the function as input. The generated
model splices 16 input noise data and 40 conditional data,
expands the edge data, and fills in eight “0” at the end to
form 8 × 8 input matrix. To maintain the correspondence
with the data generated by the generation model, the fPGD
attack algorithm also generates 16 antagonistic samples on the
basis of each set of training data. The discrimination model
splices 16 antagonistic samples generated by the fPGD attack
algorithm, 16 predictive data generated by Generator, and 40
conditional data and fills in nine “0” at the end to form the
9 × 9 input matrix. The purpose of generator and discriminator
input data expansion is to fill in the required input matrix.
In this study, the input matrix is expanded with “0,” or with
the last data value or mean. Expansion of edge data has no
effect on the extraction of sample features. The prediction errors
and accuracy of the models with different filling modes are
compared in Table 4. Generator’s generated data, input data
arrangement, and discriminator’s input data arrangement are
shown in Figure 6.

Evaluation Index
To evaluate the prediction performance of the model, the
average absolute error yMAE, root mean square error yRMSE, and
prediction accuracy yFA are used as evaluation criteria, and the
formulas are defined as follows:

yMAE =
1

N

N
∑

j=1

∣

∣xreal(j)− xpred(j)
∣

∣ (6)

yRMSE =

√

√

√

√

√

N
∑

j=1

(

xreal(j)− xpred(j)
)2

N
(7)

yFA =
1

N

N
∑

j=1

(

1−

∣

∣xreal(j)− xpred(j)
∣

∣

xreal(j)

)

× 100% (8)

In the formula, xreal(j) is the jth true test data; xpred(j) is the jth
prediction data; and N is the number of predictions. When the
yMAE and yRMSE values are smaller and the yFA values are larger,
the residual magnetic field strength representing the predicted
water and fertilizer liquid is closer to the true measured value,
that is, the prediction accuracy is higher.

Experimental Results and Comparison
During model training, antagonistic samples are generated
by the fPGD attack algorithm, which improves the model’s

TABLE 4 | Comparison of prediction error and precision of models under different

filling methods.

Filling method ȳMAE/mT ȳRMSE/mT ȳFA/%

Filling of 0 0.380 0.388 99.01

Filling of last data 0.382 0.389 98.93

Filling of mean 0.381 0.389 98.95

defense success rate against antagonistic samples, enhances the
game antagonism between generator and the discriminator,
improves the generalization ability of the model, and
enables CGAN to generate series data closer to the true
sample distribution.

In this study, the dataset is divided twice differently (Table 3).
Residual magnetic field strength data of liquid passing through
magnetized space pipeline at speeds 4m/s and 6m/s are
selected for training dataset. Residual magnetic field strength
data at velocity 5m/s and 8m/s are used for testing dataset,
16 prediction data are generated, and real detection data
are compared for performance evaluation. The comparison
between predicted and real data for flow velocities 5m/s and
8m/s is shown in Figure 7. From the graph, the prediction
model can capture the distribution of real data and predict
it well.

Calculate the yMAE, yRMSE, and yFA values of the predicted data
of dynamic water and fertilizer liquid under the magnetization
condition of spatial magnetic field strength 880mT˜1180mT
(equal difference 20mT) at flow rates 5m/s and 8m/s,
respectively, as shown in Table 5. It can be seen from the table
that the model can accurately predict the residual magnetic field
strength of dynamic water and fertilizer liquid.

Residual magnetic field strength data from query datasets
7m/s and 9m/s are tested and compared with LSTM and SVR
models with optimized parameters. The parameters of the LSTM
model are set to a learning rate of 0.01, a number of iterations
of 1,000, 128 cells in the first hidden layer, and 64 cells in the
second hidden layer. The parameters of the SVR model are set
to radial basis function kernel, penalty factor C = 10, and
kernel parameter Y = 0.25. Figure 8 shows the predicted data
of residual magnetic field strength of water and fertilizer liquids
at 7m/sand 9m/s flow rates and the comparison of predicted
results of different prediction models. From the diagram, it
can be seen that all three models can make a good prediction
of the trend of residual magnetic field strength. The predicted
results of the models presented in this paper have the highest
coincidence with the actual measured data, and the results are
the best.

When the flow rate of water and fertilizer liquid is 7m/s, the
prediction errors and precision of several models are compared
under the influence of different spatial magnetic field strength
in air gap as shown in Table 6. It can be seen that the
average absolute error and root mean square error of the model
presented in this paper are the smallest and the prediction
precision is the highest compared with those of the other two
models for the strength of the gap spatial magnetic field in
different intervals.
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FIGURE 6 | Data arrangement of generator and discriminator.

FIGURE 7 | Comparison of predicted data with real detection data.

TABLE 5 | Error and precision comparison of predicted data.

Velocity of the liquid ȳMAE/mT ȳRMSE/mT ȳFA/%

5m/s 0.380 0.388 99.01

8m/s 0.570 0.592 98.22

DISCUSSION

For current prediction algorithms, researchers pay more
attention to time-series data, while there are a large number
of series data with weak correlation with time in agricultural
production, such as soil humidity and salinity, PH value,
and surface tension of irrigation water. These series data are
often influenced by a variety of factors, but once the major

variables are identified, they change in the same rhythm as
time series. Therefore, it is a meaningful attempt to use the
machine learning model applied to time-series data prediction
to study other series data prediction. This will help to improve
the ability of data mining based on the limited detection
series data.

In order to fully verify the superiority of the proposed
model, we further compare the prediction errors and accuracy
of different prediction models for magnetized liquid series data.
Long short-term memory (LSTM) neural network is widely
used in time-series data prediction, such as weather forecast
(Karevan and Suykens, 2020), finance (Cao et al., 2019), and
oil production forecast (Song et al., 2020). The architecture of
LSTM makes it easy to capture patterns in series data. It has the
advantage of being able to learn and remember long sequences
and does not rely on pre-specified window observations as
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FIGURE 8 | Comparison of prediction results of different prediction models.

TABLE 6 | Comparison of prediction error and precision under different magnetization conditions (7m/s velocity).

Model 880mT˜980mT 1000mT˜1080mT 1100mT˜1180mT Mean

ȳMAE/mT ȳRMSE/mT ȳFA% ȳMAE/mT ȳRMSE/mT ȳFA/% ȳMAE/mT ȳRMSE/mT ȳFA/% ȳMAE/mT ȳRMSE/mT ȳFA/%

Enhance CGAN 0.40 0.42 98.8 0.34 0.37 99.0 0.26 0.28 99.3 0.33 0.36 99.0

LSTM 0.53 0.55 98.4 0.76 0.77 97.9 0.56 0.60 98.5 0.62 0.64 98.2

SVR 1.07 1.07 96.8 0.88 0.89 97.5 0.72 0.73 98.1 0.89 0.90 97.5

input. Therefore, LSTM tends to do a better job of predicting
unstable time series with more fixed components. In reference
(Maldonado et al., 2019), a power load forecasting method
based on Support Vector Regression (SVR) is introduced by
Maldonado et al. The method follows the backward variable
elimination process based on gradient descent optimization
and adjusts the width of the anisotropic Gaussian kernel
iteratively. In the model comparison of this paper, the model
structure of LSTM and SVR is used for reference to predict
the series data of magnetized liquid. The comparison results
show that the enhanced CGAN model proposed in this paper
has better performance in terms of data. On the one hand,
the addition of antagonistic samples in this model improves
the performance of discriminator and promotes the generator
to generate better data. On the other hand, the real training
data are taken as the conditional input of the model so that
the model can capture the real data distribution. However,
it is undeniable that, as a comparative model, this study did
not carry out detailed parameter optimization for LSTM and
SVR models, but simply set parameters. At the same time,
because LSTM combines long-term memory with short-term
memory, it selectively forgets some secondary information
and captures the main characteristics of data distribution,
so its performance in this experiment is better than that of
SVR model.

Because the proposed enhanced CGAN model can further
improve the prediction accuracy of liquid magnetization

series data, it can help agricultural production managers to
better adjust the spatial magnetic field strength during water
and fertilizer magnetization irrigation, so that the magnetic
biological effect produced by water and fertilizer liquid is
more conducive to crop growth and improve its yield and
quality. In this study, the technology of anti-attack defense
and CGAN generation of prediction data was introduced into
the field of liquid magnetization series data prediction, in
order to improve the precision of integrated management of
agricultural water and fertilizer. Agricultural producers will
benefit more if real-time data acquisition technology and
computing power of field hardware can be improved. However,
the internal network of CGAN in this study only adopts a
CNN sub-model. In the case of relatively dense series data, the
prediction accuracy is not improved much, and there are still
some limitations.

CONCLUSION

On the basis of a small amount of detection data, how to
make accurate data prediction and provide basis for future
decision-making is of great significance to producers and
researchers. we propose to combine PGD attack algorithm
with CGAN to predict the series data in order to obtain the
true data distribution as possible. On the one hand, the limited
series data are expanded, and on the other hand, the generated
antagonistic samples are used to improve the defense success
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rate of discriminator in CGAN, so as to guide generator to
generate more conditionally distributed data. Experiments
show that the proposed prediction model can accurately predict
the residual magnetic field strength of water and fertilizer
liquids. By comparing with other prediction models, it is also
proved that the model proposed in this paper has advantages in
prediction precision.

This paper evaluates model performance based on point-
by-point error, which is incomplete, because the point-by-
point error measurement does not fully reflect the distribution
similarity between the predicted data and the real data. At the
same time, the dataset used has a single trend. Subsequent
work will analyze the characteristics of the detected data under
complex changing trends, build comprehensive and accurate
evaluation index to reproduce the data distribution, and further
improve the prediction precision and universality of the model.
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