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A wide range of South American
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Inselbergs are azonal formations found scattered in different biomes globally.

The first floristic list focusing on an inselberg in the Brazilian Amazon is

presented here. We aimed to investigate floristic and phylogenetic

connections among Neotropical inselbergs and analyze whether

environmental variables act as a filter of plant lineages. We used a database

compiled from 50 sites spanning three main Neotropical biomes (Amazon, 11

sites, Atlantic Forest, 14 sites, and Caatinga, 25 sites) comprising 2270

Angiosperm species. Our data highlight the vastly different inselberg flora

found in each biome. The inselberg floras of the Atlantic Forest and Caatinga

show closer phylogenetic ties than those seen in the other biome pairs. The

phylogenetic lineages found in all three biomes are also strongly divergent,

even within plant families. The dissimilarity between biomes suggests that

distinct biogeographical histories might have unfolded even under comparable

environmental filtering. Our data suggest that the inselberg flora is more related

to the biome where it is located than to other factors, even when the

microclimatic conditions in the outcrops differ strongly from those of the

surrounding matrix. Relative to the other biomes, the flora of the Caatinga

inselbergs has the highest level of species turnover. There is a possibility that

plants colonized these rather distant inselbergs even when they were found

under very different climatic conditions than those in the Amazonian and

Atlantic Forest biomes. It is worth noting that none of the studied inselbergs

found in the Caatinga biome is protected. In view of the uniqueness and

drought-resilient lineages present in each group of inselbergs, along with their

vulnerability to destruction or disturbance and their strong connection with

water availability, we stress the need to protect this ecosystem not only to
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conserve plants potentially useful for ecological restoration but also to

preserve the balance of this ecosystem and its connections.
KEYWORDS

Amazon, Atlantic forest, Caatinga, floristics, granitic outcrops, neotropical flora,
phylogenetic comparisons, similarity analyses
Introduction

Inselbergs are isolated havens for dryland flora scattered

over different biomes and ecoregions globally (Barthlott et al.,

1996). Geomorphologically, these outcrops consist of extremely

hard gneiss and/or granite rocks that survive the process of

erosion around them, forming rock surfaces with low water

holding capacity and, because of their dark color, often

overheating under the inclement tropical sun (Kluge and

Büdel, 1996). Inselbergs can be considered azonal, as outcrops

are located within perhumid tropical American regions, such as

Amazonia and the Atlantic Forest in South America, being home

to typically xeric vegetation. In such outcrops plants establish on

very shallow soil, under wide daily temperature fluctuations and

with limited water availability (Ibisch et al., 1995; Prance, 1996;

Sarthou and Villiers, 1998; de Paula et al., 2015; de Paula et al.,

2020). Species thriving in microhabitats with shallow soil are

usually stress-tolerant, therefore concentrating around the S

strategy of the Grime triangle (de Paula et al., 2015). Stress-

tolerant adaptations displayed by tropical American inselberg

flora include plant mat formation, desiccation tolerance,

deciduous leaves, photosynthetic stems, water reserves in

succulent organs, bromeliad tanks, orchid pseudobulbs, and

the presence of spines or thorns (Barthlott and Porembski,

1996; Gröger, 2000; de Paula et al., 2020). Plants growing on

these outcrops have been used as models for gene-flow studies,

and the populations have presented strong geographical

structure and long-term persistence in the sites (Barbará et al.,

2009; Millar et al., 2013; Tapper et al., 2014; Hmeljevski et al.,

2017; Mota et al., 2020). Until now, there has been no

angiosperm survey for inselbergs in the Brazilian Amazon,

even though there are published lists for neighboring countries

(Raghoenandan, 2000; Sarthou et al., 2003; Gutiérrez et al.,

2007). Inselbergs in Venezuela occupy the edge of the

Guayana Shield and are located on the border between

different phytogeographical regions (Gröger, 2000). Likewise,

in Brazil, these formations are found on the Guayana Shield and

the eroded edges of the Central Brazilian Shield. However, they

are scattered within and at the borders of different biomes, with

the Atlantic Forest being home to the iconic Sugarloaf

Mountains (de Paula et al., 2020).
02
Despite the recent progress in listing all plant species from

the Amazonian lowland rainforest (Cardoso et al., 2017), other

vegetation types within the region have not yet been examined in

detail, and the beta diversity of the region is still poorly

understood (Milliken et al., 2010; Zappi et al., 2011; Costa et

al., 2020). Since Amazonia fulfills an important role in (1)

maintaining the rain regime, (2) lowering the temperature

throughout the continent (Lovejoy and Nobre, 2019) and (3)

indirectly preserves public health (Ellwanger et al., 2020), it is

paramount to understand and preserve all species that maintain

the complex web of interactions found within all its ecosystems.

Moreover, it is important to be aware of which species inhabit

drier areas within Amazonia and other forest biomes, as they

may be key to future restoration projects in light of climate

change (Miranda et al., 2021). On the other hand, it is possible

that some of these species behave as edaphic specialists (Corlett

and Tomlinson, 2020) that may be pushed past their tolerance

threshold as temperatures on Earth increase, being vulnerable to

climate change.

Floristic inventories are an important source of biodiversity

data, both at the local and regional levels. Such lists represent

fundamental contributions toward large databases and provide

baseline information to improve our knowledge regarding

biodiversity in tropical America (Queiroz et al., 2006;

Mendonça et al., 2008; Forzza et al., 2010; Cardoso et al.,

2017; Funk, 2018; Mendieta-Leiva et al., 2020), having practical

use for habitat restoration and climatic change predictions

(Roloff et al., 2009; Zappi et al., 2022). Complete floristic

datasets that include all life forms also allow us to perform a

wide array of analyses that may shed light on the different

elements of the landscape that are responsible for high beta

diversity (Zappi et al., 2017; Andrino et al., 2020; Devecchi

et al., 2020). Here, we present the first complete angiosperm list

focusing on an inselberg flora in Brazilian Amazonia. To

perform floristic comparisons, we compiled the majority of

the floristic lists of inselbergs available for South America

where all life forms were considered, preparing the most

complete tropical American inselberg species list. We

investigated whether the floristic relationships between

inselbergs have greater affinity across or within the tropical

American biomes recognized by Antonelli et al. (2018). We
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analysed whether the inselberg environment filters (1) similar

lineages and (2) specific environmental aspects related to

species turnover in these habitats. Thus, we aimed to test

whether biomes represent boundaries for floristic transitions

within this specific habitat and whether they impose different

adaptive challenges to the different floristic lineages.
Methods

New floristic list for the amazon

The Pedra da Harpia (PHR) is an inselberg located in the

Brazilian state of Pará in eastern Amazonia, located within two

protected areas, the Carajás National Forest and the Campos

Ferruginosos National Park, in the municipality of Canaã dos

Carajás. Immersed in a matrix of open ombrophilous and

semideciduous forest, the PHR granitic outcrop reaches an

altitude of 590 m a.s.l. (-6.284003, -50.336854), forming a 60-

meter flat-topped wall descending to a 45-degree slope.

Botanical specimens from the PHR housed in the Herbarium

of the Museu Paraense Emı ́lio Goeldi (MG) and in the

Herbarium of the Federal University of Minas Gerais (BHCB)

(Thiers, 2021) collected prior to 2017 were compiled into a

database. In addition, nine expeditions were carried out between

2017 and 2020 (February 2017, May 2017, June 2017, December

2018, May 2019, July 2019, October 2019, November 2019,

February 2020 and April 2022), aiming to collect fertile

material of vascular species throughout the seasons. The

collection method followed Filgueiras et al. (1994), with

random walks covering the accessible parts of the inselberg.

Voucher specimens were deposited at MG. One voucher per

taxon is presented in the floristic list provided (S2). Species

names were assigned according with the Flora do Brasil online

resource (Flora do Brasil, 2020), family delimitation followed the

Angiosperm Phylogeny Group IV (APG IV) system (The

Angiosperm Phylogeny Group, 2016) and author abbreviations

followed the International Plant Names Index (IPNI)

(IPNI, 2022).
Inselberg dataset

Fourty nine floristic lists of South American granitic

inselbergs were compiled from 33 published papers

(Supplementary Tables S1, 2) along with the new checklist for

the Amazonian inselberg PHR (Supplementary Table S3). The

abbreviations corresponding to each area, are specified in

Supplementary Table S1. Our analysis took into consideration

sites with more than 25 species found below 1000 m a.s.l.,

preventing the inclusion of the Atlantic Campos de Altitude

vegetation (de Paula et al., 2016). For the analysis, we focused

only on Angiosperms. We are aware that the sampling
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performed to compile the lists may have included species from

the surrounding forest matrix as well as the outcrop species

(especially in a few Atlantic Forest sites). As these lists mostly did

not include microhabitat data, we did not attempt to separate the

vegetation types in our analyses.

The lists were transcribed according to the original

manuscripts, and the names were checked against data from

the Flora do Brasil and The Plant List using the ‘Flora’

package in R (Carvalho, 2022). All synonyms were updated,

and when possible, we examined voucher specimens when

identities appeared as incompletely named, invalid or as not

occurring in Brazil. In several instances, specimens were

reidentified, and the name record was updated. Specimens

named to only the generic level (Supplementary Table S4)

were excluded, as well as morphospecies included in some

checklists and exotic invasive species. Specimens identified

with cf. were grouped together with the species with which it

was compared, while specimens annotated with aff. were

considered different from the species name (possible new

species or records).
Biogeographic patterns of neotropical
inselbergs

Inselbergs were grouped according to their occurrence in

tropical American biomes following Antonelli et al. (2018). We

explored the floristic similarity patterns between inselbergs by

performing nonmetric multidimensional scaling (NMDS) and

unweighted pair group method with arithmetic mean (UPGMA)

using a presence-absence matrix with the ‘Vegan’ package

(Oksanen et al., 2010) and the ‘ggplot2’ package (Wickham,

2009) in R software.

Floristic links among biomes and between sites within each

biome were investigated and computed in chord diagrams with

the ‘Circlize’ package in R software (Gu et al., 2014). Species

richness and the number of shared species among biomes were

estimated with incidence data using Chao2 with the ‘SpadeR’

package in R software (Chao et al., 2016).

For each inselberg, we also calculated the proportion of

exclusive species and the proportion of species shared with other

areas, creating an asymmetric matrix. These proportions were

computed graphically and combined with the UPGMA results in

a heatmap with the ‘ComplexHeatmap’ package in R software

(Gu et al., 2016). The phylogenetic structure of the inselberg

plant communities, including our species list, was constructed

with the phylomatic tool (Webb and Donoghue, 2005) in

Phylocom version 4.1. (Webb et al., 2008) using megatree

R20160415.new (Gastauer and Meira-Neto, 2016). The

estimated ages for each node followed (Bell et al., 2010).

Subsequently, iTOL (Letunic and Bork, 2016) was used to

visualize the inselberg megatree, highlight selected plant

families and show species occurrences within the three
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Neotropical biomes (Amazon, Atlantic Forest, and Caatinga). In

the megatree, the estimated age of each lineage is proportionally

represented by the branch length.
Influence of large-scale environmental
variables

Included areas were georeferenced by checking the GPS

location provided in the study sites and comparing the

coordinates with high-quality maps. Generalized dissimilarity

modeling (GDM) was used to investigate the role of climatic

factors and geographical distance on species composition across

the different inselbergs (Ferrier et al., 2007). GDM uses

maximum likelihood and I-splines to analyse and predict

species turnover as a function of environmental conditions

and geographic distance (Ferrier et al., 2007). Environmental

predictors were obtained from WorldClim (Fick and Hijmans,

2017) as raster files and their medians were compiled in QGIS

software (version 3.6.2). Predictors with greater explanatory

power were selected through backward elimination and ranked

according to significance in a preliminary model. Since GDM

combines elements of generalized linear modeling and matrix

regression, the resultant model could be sensitive to correlated

explanatory variables (Leathwick et al., 2006). Therefore,

predictors with a Pearson correlation coefficient of 0.7 or

higher were removed, and selection between correlated

variables prioritized predictors with the highest relevance in

the model, maintaining variables with greater explanatory

power. This procedure led to the exclusion of 10 predictors:

precipitation of the wettest month, precipitation of the driest

month, precipitation of the wettest quarter, precipitation of the

driest quarter and precipitation of the coldest quarter due to high

correlation with annual precipitation; and annual mean

temperature, isothermality, maximum temperature of the

warmest month, mean temperature of the driest quarter and

mean temperature of the coldest quarter due to correlation with

minimum temperature of the coldest month. A new model was

fitted after removing the correlated predictors, and since the

explanatory power of the model was not affected, the reduced

model was kept. The statistical significance of the selected model

and included climatic predictors were tested with 999

permutations (a=0.05). Statistical analyses and graphing were

performed with the ‘gdm’ package in R software. It is important

to mention that microclimate data for the studied inselbergs are

unavailable as yet, and would be paramount to refine

the comparisons.

Statistical analyses and graphing were performed with the

‘gdm’ package in R software (Fitzpatrick et al., 2021). All scripts

are supplied in Supplementary information (S5).To map the

sampled inselbergs relative to protected areas, we used from the

World Database on Protected Areas (2016).
Frontiers in Plant Science 04
Results

The new Amazonian floristic list of the PHR contributed 125

species, with Fabaceae (or Leguminosae) (13 spp.) being the

richest family in this inselberg, followed by Euphorbiaceae (8

spp.) and Malvaceae (7 spp.). Seventy-two species (60.5%) on

this new list do not occur on any of the other inselbergs included

in this study, including the recently described Alophia

graniticola A. Gil, an endemic species exclusive to the PHR

(Gil et al., 2021). For a detailed list of species, see the electronic

Supplementary information (S3).

This new list (PHR) was merged with 49 already published

floristic lists, comprising 50 neotropical inselbergs (S1, S2).

Our analyses yielded 2193 angiosperm species distributed in

140 families and 806 genera (Table S4), totaling 4397

occurrences spanning over three biomes: Amazonia, Caatinga

and Atlantic Forest (Figure 1). The 11 Amazon inselbergs

sampled yielded 540 species (out of 776 records); 1121

species (out of 1782 collections) were recorded for the 14

inselbergs sampled in the Atlantic Forest, and 785 species

(1837 collections) were recorded for the 25 inselbergs

sampled in the Caatinga. The phylogenetic tree (Figure 2)

shows very little correspondence between the lineages found

in each biome, with a strong association of certain exclusive

clades in the Caatinga inselbergs and many other clades

associated with the Atlantic Forest. Proportionally fewer

clades can be observed in Amazonian inselbergs.
Biogeographic patterns of Neotropical
inselbergs

The biogeographical analyses revealed little similarity among

the sampled inselbergs, organizing them according to the

Neotropical biomes where they occur, namely, Atlantic Forest,

Caatinga and Amazonia. The distribution of inselbergs in

ordination space yielded by NMDS (stress = 0.2331; Figure 3)

revealed three clear, cohesive biome groups corresponding to the

Atlantic Forest, Caatinga and Amazonian inselbergs (ANOSIM

R = 0.8421; p = 0.001), with the Amazonian inselbergs separated

by a diagonal line from the Atlantic Forest and Caatinga

inselbergs. Of these three groups, the Amazonian sites appear

more scattered, indicating a higher beta diversity, while the

Atlantic Forest and Caatinga sites appear more condensed,

suggesting that they are more similar in species composition

and have lower beta diversity than the Amazonian sites

(Figure 1E). The Amazonian inselbergs shared fewer species

(19.5%) with the other biomes, while areas in the Caatinga and

Atlantic Forest biomes were more similar in terms of shared

species. The UPGMA showed that proportionally, the inselbergs

in the Caatinga biome shared more species with the other two

biomes (25.5%), while the inselbergs in the Atlantic Forest biome
frontiersin.org

https://doi.org/10.3389/fpls.2022.928577
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Barbosa-Silva et al. 10.3389/fpls.2022.928577
shared fewer species with the Amazonian and Caatinga biomes

(16%) (Figure 4; Additional chord diagrams can be found under

Supplementary information (S6)).

Estimated richness of inselbergs within studied biomes

predicted a higher diversity of inselbergs within the Atlantic

Forest (2,496 spp.), followed by Amazonia (1,350 spp.) and

Caatinga (1,189 spp.), indicating a more profound subsample in

the Amazon – where only 40% of estimated inselberg species

were observed. The estimated number of shared species among

inselbergs in distinct biomes predicted a higher amount of
Frontiers in Plant Science 05
shared spp. but yielded similar patterns regarding floristic

links among biomes: 179 spp. shared between the Amazon

and Atlantic Forest (with 49 spp. observed); 234 spp. shared

between Amazon and Caatinga (with 80 spp. observed); and 330

spp. shared among Atlantic Forest and Caatinga (with 149 spp.

observed) (see chord diagrams under Supplementary

information S6).

In terms of plant families, Bromeliaceae, Orchidaceae,

Euphorbiaceae and Fabaceae (Leguminosae) are the most

commonly represented families in the inselbergs for all three
FIGURE 1

Inselbergs located in the three Neotropical biomes analysed: Amazonian (A) Serra Grande, Cantá municipality; Caatinga (B) Itatim municipality;
and Atlantic Forest (C) Pedra do Caladão, Carlos Chagas municipality, Minas Gerais state. (D) Distribution map of the 50 inselbergs in South
American sites used in the analyses with their classification by Neotropical biome. The green markers indicate the inselbergs located in the
Amazonian biome, orange markers indicate those located in the Caatinga biome, and mauve markers indicate those in the Atlantic Forest
biome. (E) Overlap in species composition between inselbergs in the Amazonian, Caatinga and Atlantic Forest biomes. Photos a-b RGBS; c LA.
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ecoregions. The Orchidaceae are the most species-rich family

among the Atlantic Forest inselbergs, while Fabaceae

(Leguminosae) and Poaceae are the richest families in the

Caatinga and Amazonian biomes, respectively. Asteraceae is

among the 10 richest families shared between the Atlantic

Forest and the Caatinga biomes, while Poaceae, Cyperaceae,

and Malvaceae are the richest families shared between the

Amazonian and Caatinga biomes. Only one family,
Frontiers in Plant Science 06
Bromeliaceae, is among the richest families shared between the

Amazonian and Atlantic Forest biomes, although it is not one of

the richest families in the Caatinga biome. Convolvulaceae is

among the richest families only for the Caatinga inselbergs,

while Melastomataceae is among the richest families only in the

Amazonian inselbergs. Likewise, Cactaceae, Myrtaceae, and

Solanaceae are among the richest families only in the Atlantic

Forest inselbergs.
FIGURE 3

Ordination of 50 inselbergs in South America inferred from nonmetric multidimensional scaling of their species composition. Colors indicate the
a priori classification into the main Neotropical biomes. Orange = Caatinga; Mauve = Atlantic Forest; Green = Amazon.
FIGURE 2

The inselberg megatree indicates the different biomes of 2193 species: the outer ring (orange) represents the Caatinga inselbergs, the middle
ring (mauve), the Atlantic Forest inselbergs, and the inner ring (green) the Amazonian inselbergs. The plant groups mentioned in the results and
discussion are highlighted.
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The megatree showed that eighteen families were recorded

exclusively in the Atlantic Forest biome, namely, Achariaceae,

Aquifoliaceae, Araliaceae, Asparagaceae, Balanophoraceae,

Calophyllaceae, Campanulaceae, Cannaceae, Dilleniaceae,

Elaeocarpaceae, Erythroxylaceae, Monimiaceae, Oleaceae,

Peraceae, Picramniaceae, Simaroubaceae, Tropaeolaceae and

Ulmaceae. The eight families exclusive to the Caatinga biome

were Alismataceae, Connaraceae, Hypoxidaceae, Pontederiaceae,

Ranunculaceae, Vochysiaceae, Zingiberaceae and Zygophyllaceae.

The ten families exclusive to the Amazonian rainforest were

Haemodoraceae, Strelitziaceae, Cyclanthaceae, Pentaphylacaceae,

Caricaceae, Caryophyllaceae, Dichapetalaceae, Opiliaceae,

Linderniaceae and Siparunaceae.
Influence of large-scale environmental
variables

The GDM explained 76% of the variance found within the

dataset, with 27.58% attributed solely to geographical distance

and 48.42% explained by a combination of eight climatic

predictors (Table 1). Three environmental variables associated

with precipitation accounted for 44.81% of the explained

variance and were the only climatic predictors with statistical
Frontiers in Plant Science 07
significance: annual precipitation (31.85%), precipitation of

warmest quarter (7.85%) and precipitation seasonality (5.10%).

Climatic predictors associated with temperature were selected by

the model but explained only c. 3.5% of the total variation:

minimum temperature of coldest month (0.96%), mean

temperature of wettest quarter (0.94%), mean diurnal range

(0.81%), temperature seasonality (0.53%) and temperature

annual range (0.36%). The mean temperature of the warmest

quarter and elevation were not relevant for species turnover and,

although included in the analysis, were dropped by backward

elimination. Plots of observed dissimilarity in species

composition against predicted ecological distance and

predicted compositional dissimilarity are presented in

Figure 5, and the fitted I-splines to each of the relevant

predictors are presented in Figure 6.
Mapping Neotropical inselbergs onto
protected areas

Only sixteen out of the 50 inselbergs (32%) included in the

analysis are protected, of which nine are found in Amazonia,

each one in a different protected area. Seven are in the Atlantic

Forest, corresponding to only six protected areas. None of the
FIGURE 4

Heatmap of similarity between the inselberg floristics datasets. Dendrograms were plotted using the unweighted-pair-group method with
arithmetic mean (UPGMA). The colors indicate the proportion of shared species, ranging from yellow (low values, less similarity) to red (high
values, higher similarity).
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studied inselbergs in the Caatinga are found within protected

areas. Further details about the locations of the sampled

inselbergs in protected areas can be found in Supplementary

information S6.
Discussion

Neotropical inselbergs have formed cohesive groups

coinciding with the three biomes involved (Amazonia,

Caatinga and Atlantic Forest), while little similarity was found

between inselbergs across biomes at the species level. There is a

high level of biotic interchange between the inselbergs found in

the Caatinga, as opposed to the Amazon, which has the highest

proportion of exclusive species. Our inselberg megatree also

revealed little correspondence between lineages for the three

groups. The GDM corroborated that the matrix, in which

inselbergs are located, is potentially relevant to species
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turnover while the significant precipitation differences among

the biomes is highlighted.
Contrasting floras in each biome

Among the ten richest families in the Amazonian lowland

forest (Cardoso et al., 2017), six are also the richest in the

Amazonian inselbergs. For the Atlantic Forest, seven of the ten

richest inselberg families coincide with those in the Atlantic Forest

matrix as a whole (BFG, 2015). In the case of the Caatinga biome,

this number is even higher, with nine out of the ten richest inselberg

families also being the richest in the biome (BFG, 2015). This

pattern was not observed for other Amazon rupicolous ecosystems

on different rock substrates (non-granitic), such as Pantepui in the

Guayana Shield (Berry and Riina, 2005) or the canga of Carajás in

the eastern Amazon (Mota et al., 2018), where family richness was

found to contrast that in the surrounding biome.
A B

FIGURE 5

Diagnostic plots from generalized dissimilarity modeling (GDM) of observed compositional dissimilarity against predicted ecological distance (A)
and predicted compositional dissimilarity (B).
TABLE 1 Predictors included in the generalized dissimilarity models, their proportional relevance for species turnover and statistical significance.

Environmental predictor Relevance (%) Significance (p)

Annual precipitation 31.85% 0.00

Geographic distance 27.58% 0.00

Precipitation of warmest quarter 7.85% 0.00

Precipitation seasonality 5.10% 0.00

Minimum temperature of coldest month 0.96% 0.19

Mean temperature of wettest quarter 0.94% 0.16

Mean diurnal range 0.81% 0.24

Temperature seasonality 0.53% 0.24

Temperature annual range 0.36% 0.38

Not explained 24.00%
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The strong floristic clustering of the inselbergs in each

biome, associated with the scant network of shared species

between the Amazonian, Caatinga, and Atlantic Forest biomes,

suggests that the vegetation matrix plays an important role in the

biota of these outcrops (de Queiroz et al., 2017). To better

understand this role, it is paramount to compare the inselberg

plant community with its surrounding matrix. As seen in French

Guiana, inselberg forests have a significantly similar plant

species composition in relation to their matrix (Sarthou et al.,

2003), but this similarity may be compromised if considering

only rupicolous plants (Esgario et al., 2009). Additionally, to

further refine our understanding, it is fundamental that floristic

lists specify the microhabitat in which the species were recorded.

This would allow the investigation of inselberg insularity and the

permeability of their matrix. Due to the region´s high

biodiversity and lack of adequate sampling, we do not yet
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know which species are endemic to inselberg ecosystems in

the Neotropics and therefore are unable to determine whether

the outcrops function as islands for at least some plant groups

and whether the surrounding biome functions (or functions) as a

“mainland”, isolating the outcrop´s biota (Itescu, 2019).

Herein, we report a high level of species turnover among all

the inselbergs found in the Caatinga biome (Figure 4), probably

related to the xeric nature of this biome (precipitation between

300 and 800 mm/year), a condition also found on the inselbergs.

The permeability of an arid matrix is higher than that of a humid

one (McGann, 2002), justifying a greater species turnover

between Caatinga inselbergs. Within South America and

considering the three sampled biomes, the inselbergs with the

highest sharing of angiosperm species are located in the Caatinga

biome, encompassing 25% of the species found in the other

biomes. These results show the complexity of the xeric
FIGURE 6

Fitted I splines from the generalized dissimilarity models for the nine environmental predictors associated with species turnover in inselbergs.
The horizontal axes correspond to the variation in a given predictor, and vertical axes represent the species turnover suggested by dissimilarity
patterns.
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rupicolous vegetation of the inselbergs. Two inselbergs from

northeastern Brazil (PE-LU and PE-PTR) are found in the

inland Atlantic Forest biome (precipitation between 750 and

1200 mm/year), near the border of the Caatinga, and were

grouped with the latter biome, evidencing the strong species

links found between the xeric conditions of the inselbergs and

this biome in particular. The 787 species in the Caatinga

inselbergs, considering the much smaller size of this biome’s

flora when compared with those of the Atlantic Forest and

Amazonian biomes (Flora do Brasil, 2020), highlights a

considerable number of plants that are highly adapted to dry

and extreme conditions.

Even considering the relatively small geographic distance

between the Atlantic Forest inselbergs studied, the total species

number (1123) and uniqueness of each inselberg are quite

remarkable, evidencing the biome as a recognized global

hotspot (Myers et al., 2000). The set of different plant

families that appeared exclusively in the Atlantic Forest

inselbergs also reflects this diversity. In terms of species

count, the Atlantic Forest biome outperformed the

Amazonian biome, where only 540 species were found.

However, in terms of their species composition, the

inselbergs of both the equatorial humid Amazonian and the

tropical humid Atlantic Forest biomes differ from those of the

Caatinga biome in having a higher number of exclusive species

(singletons) per inselberg. It has been suggested that many of

the lithophytes in granite outcrops in Venezuela belong to

families that contribute highly to the epiphytic Neotropical

flora (e.g., Orchidaceae, Bromeliaceae, Piperaceae) (Gröger,

2000). This appears to also be true in the Atlantic Forest

biome, especially when taking into account the high diversity

of epiphyte-bearing groups such as Cactaceae, Bromeliaceae

and Orchidaceae in the region (Menini Neto et al., 2016).

Unlike the dry vegetation matrix of the Caatinga biome, where

epiphytes are scarce, the Atlantic and Amazonian forests may

owe part of their diversity to the exchange of epiphytic/

rupicolous lineages of these plant groups.

Similar to what was found in the patchy, more seasonal

Amazonian savannas (Devecchi et al., 2020), the Amazonian

inselbergs also have low similarity when compared to each other,

forming a less cohesive group. This may be due partly to the

small size of our sample when considering the sheer size of the

biome. The relatively close relationship between the two

Brazilian Amazon inselbergs (PA-PHR and MT-PC) may be

explained by their location at the edge of the central plateau of

Brazil, while all the other Amazonian groups are located at the

limit of the Guayana Shield (SUR-SIP, SUR-SR, and SUR-VOL

and GF-FG, GF-MCH, GF-NOU, and GF-TRI). It is important

to note that these two groups are separated by the Amazon basin

lowland. It is still uncertain whether Amazonian rivers influence

the flora of their inselbergs, given that Amazonian rivers have
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been suggested as the main drivers of current biogeographic

patterns in the Amazonian biome (Patton et al., 1994; Hall and

Harvey, 2002; Nazareno et al., 2017). We know that rivers do not

usually serve much as barriers to inselbergs, at least for

Bromeliaceae in the Caatinga and Atlantic Forest biomes

(Gonçalves-Oliveira et al., 2017; Hmeljevski et al., 2017, 1).

A similar pattern of biome identity was revealed by our

megatree, where little overlap between lineages and clades was

found for inselbergs in different biomes. Some plant families

merit further discussion. Bromeliaceae, Orchidaceae, Cactaceae

and Piperaceae have rather poor representation in terms of

lineages in the Amazonian inselbergs and in the Caatinga sites

(except Cactaceae), suggesting that there may be a transition

between the high species richness of epiphytes of the Atlantic

Forest biome (Menini Neto et al., 2016) and the nearby harsh

inselberg surfaces, but this pattern is not repeated in the other

two biomes for the same families. The saxicolous Bromeliaceae

seem to play a more relevant role in Atlantic Forest communities

(de Paula et al., 2021). Myrtaceae and Solanaceae are better

represented in the Atlantic Forest, with Myrtaceae following the

trend revealed by recent taxonomic research (Lucas and

Bünger, 2015).

While Poaceae and Cyperaceae were among the richest

famil ies in the Amazonian inselbergs , the l ineage

representation shows that certain clades of Poaceae (tribe

Paniceae) were more common in the Amazonian biome, while

others were more common in the Caatinga biome (subfamily

Chloridoideae). For Cyperaceae, on the other hand, there was a

predominance of the tribe Cyperae in the Caatinga, while

Schoeneae (represented by Rhynchospora) was better

represented in the Amazonian inselbergs. Some monocot

families, such as Eriocaulaceae and Xyridaceae, which are very

diverse in Eastern Brazil campo rupestre quartzitic and

ferruginous outcrops (Zappi et al., 2017; Andrino et al., 2021),

are surprisingly absent from Atlantic Forest inselbergs. This may

be additional evidence of the importance of the biome in which

an inselberg is located for the occurrence of certain lineages, or

perhaps their relative absence is connected with their inability to

establish and thrive in granitic substrates.

Noticeably less represented in the Amazon than in the other

Neotropical biomes, the pattern shown by the Asteraceae in the

inselbergs coincides with the general pattern observed for the

biome, where only a few genera are of any notice, such as

Ichthyothere and Riencourtia. However, while Asteraceae was

reasonably well represented in the Caatinga inselbergs, primarily

by Vernonieae and Heliantheae, it was almost absent in the

Atlantic Forest inselbergs, with the clades corresponding to

Mikania (Astereae) and Baccharis (Eupatorieae) being

represented instead.

Euphorbiaceae, Fabaceae (Leguminosae) and Malvaceae

were the most commonly represented families in the
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inselbergs in all three biomes. However, the lineages represented

have hardly any commonality, and Fabaceae particularly had

important clades (Ingeae and Dalbergieae) present in only the

Atlantic Forest biome, while other taxa (the genus Mimosa and

tribe Cassieae) were probably specialized for the drier conditions

of the Caatinga inselbergs. Melastomataceae has a more even

spread of lineages in the Amazonian inselbergs, while in the

Caatinga inselbergs, their representation is limited, with several

clades missing the Miconieae tribe and Marcetia alliance

(Michelangeli et al., 2013). Among the richest families from

only the Caatinga inselbergs, Convolvulaceae contributes to the

diversity through specific lineages and clades (Merremieae and

Ipomoeeae). Lamiaceae was also more common in the Caatinga

inselbergs than in the other biomes.
Precipitation as a driver of compositional
turnover

Species turnover was mostly explained by predictors related

to precipitation (44.81%). Precipitation patterns are known to

affect vital physiological processes in flowering plants, such as

germination, seedling establishment and growth, photosynthesis

and biomass accumulation, potentially imposing selection on

species traits and composition (Fay and Schultz, 2009; Yu et al.,

2015; Martins et al., 2019). Climatic variables such as

precipitation also explained much about diversity in the

inselberg communities in the Atlantic Forest and in the

Southwest Australia Floristic Region (Yates et al., 2019; de

Paula et al., 2021). Patterns of annual rainfall are also

markedly different in distinct biomes (Alvares et al., 2013),

potentially reinforcing that matrix permeability is linked to

variations in rainfall. Geographic distance, usually related to

dispersal limitations, also explained a large proportion of species

turnover (27.58%). This could signify that the lower similarity

found among the Amazonian inselbergs is due to their

geographical isolation when compared to sampled inselbergs

within the Caatinga or Atlantic Forest biomes. Therefore, future

studies assessing more inselbergs within Amazonia are needed to

clarify similarity patterns and matrix permeability in this biome.

Other investigations of beta diversity patterns in arid habitats

within South America have highlighted water availability as one

of the most relevant environmental drivers of species turnover

(Neves et al., 2015; Bueno et al., 2018; Silva and Souza, 2018).

Nevertheless, these investigations attributed less relevance to

precipitation, and none found water availability to be the only

relevant climatic predictor shaping species distribution,

potentially indicating that precipitation patterns pose a greater

challenge for plant establishment in inselbergs than in other arid

environments, which could lead to the high permeability of

arid lowlands.
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Environmental filtering across
three biomes

Research developed in French Guiana inselbergs (Henneron

et al., 2019) compared the influence of inselberg size, isolation,

environmental (altitude, rainfall) and dispersal filtering on

inselberg diversity, concluded that this was strongly influenced

by inselberg size and environmental factors. Unfortunately we

could not retrieve inselberg size for the present work as we used

literature sources and such measurements were either not

available or not comparable. Henneron et al. (2019) focused

on Amazonian inselbergs and did not involve different biomes,

however both studies coincide in pointing at rainfall as a

diversity driver. Despite the fact that geographic distance

played an important role in our work, Henneron et al. (2019)

did not single out this variable as important for determining the

diversity found in the inselbergs they studied. In our case, it is

possible that the geographic distance is a proxy for the biomes,

which we found influence the flora found in each group

of inselbergs.

In terms of South American processes and patterns of

diversification, the theories and hypotheses presented by Rull

and Vegas-Vilarrúbia (2020) for the Pantepuis fit better with

other campos rupestres from ancient Eastern Brazilian highlands

and, to a lesser extent, the campos de altitude. The inselbergs

studied here fall between sea level and 600 m a.s.l., and it is

possible that past fluctuations in drought/drier conditions have

played a role, but it is very unlikely that these underwent freezing

temperatures caused total extinction of the local flora. Such

fluctuations might also have created space for the colonization

and recolonization of the exposed rocks, with species

recruitment from nearby areas of drier forest (hence the biome

identity we found here). The Distance dispersal theory (DDT)

and the Specialized habitat theory (SHT) seem plausible for

these lowland inselbergs (Mayr and Phelps, 1967). The

Continuum multifactor hypothesis (CMH, Rull, 2011) also

may explain the complex processes leading to the selection of

the different floras of the inselbergs according to the biomes

where they are included.
Mostly unprotected habitats harboring
potentially important drought-resistant
plant species

The representation of the studied inselbergs within protected

areas is uneven and raises conservation concerns. Of all 50

inselbergs included in this analysis, slightly more than 30% are

found in protected areas, with a larger proportion in Amazonia,

less than half in the Atlantic Forest and none in the studied sites

in the Caatinga. Since there is uniqueness in each inselberg and

different lineages of drought-resistant plants are found in each
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group of inselbergs, there is a critical need to preserve these

environments to maintain the balance of this ecosystem and its

surroundings. Inselbergs are often seen as commercial sources of

exploitable rock and transformed into quarries (Figure 7) or

become degraded through the destruction of the surrounding

vegetation matrix due to the arrival of invasive plants

(Porembski et al., 2016). In the Amazonian biome, the

exploitable inselbergs are similar to those already reported for

the Atlantic Rainforest (de Paula et al., 2020). Granite mines also

exist near the PHR in the Carajás National Forest (ICMBio,

2016). Aditionally, the municipality of Parauapebas has plans to

boost toursim in the PHR inselberg, with a private concession of

the area for developments which may threaten its restricted

flora. Such type of private concession has been shown to cause

environmental impacts in other areas (Gomes et al., 2022) and

may now pose a threat to this area.

Due to the distinct floristic and phylogenetic structure of

inselbergs in different biomes, there is a very strong need to

include these formations in protected areas and, in fact, create

protected Caatinga inselbergs, as they are underrepresented.

Historically, the Caatinga biome has been perceived as less

biodiverse and less valuable than the surrounding biomes and

has received less protection, having a much smaller proportion

of its territory protected (Teixeira et al., 2021) when considering

all the Brazilian territory. This situation is reflected by the
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alarming realization that none of the studied Caatinga

outcrops is legally protected.
Conclusion

This is the most comprehensive comparative study of South

American inselbergs to date, and the large dataset compiled for this

study reveals that, despite being similar at a first glance, the flora of

these landscapes is rather distinctive in termsoffloristic composition.

The dissimilarity between biomes suggests the inselbergs have a

different biogeographical histories unfolded even under comparable

environmental filtering. The floras of the inselbergs present a

congruent pattern with the biome where they are located, with low

species sharing between inselbergs of different biomes. This pattern

occurs even when the outcrops microclimatic conditions differ

strongly from those of the surrounding matrix. The flora of the

Caatinga inselbergs appears to have played an important role in

linking the other biomes. It is possible that plants were able to

colonize rather distant inselbergs even when these are found under

verydifferent climatic conditions, asobserved for theAmazonianand

Atlantic Forest biomes.

Future pathways highlighted by this study are the need to

gather data and evaluate the influence of microclimatic

conditions and geomorphology on the inselberg plant

community structure using data loggers and unoccupied aerial

vehicles (UAVs or drones). Additionally, the divergence of

phylogenetic lineages found on the inselbergs in each biome

stimulates future studies regarding evolutionary history and

biogeography of rupicolous flora and on its functional traits

through niche conservatism. As next steps, we will investigate

the strong dissimilarity between inselberg flora across the three

biomes by looking at species dispersal mechanisms and gene

flow of plant populations. Studies of indicator and edaphic

endemic species are also under way. It is paramount to

investigate to what extent inselbergs can be considered islands,

especially through the role of the vegetation matrix in their plant

community. Futhermore, there is an urgent need to undertand

the effects of global climate change on the inselberg flora, as

these ecosystems may be close to the heat and drought limit due

to their shallow soils and exposure to the elements. Regarding

inselberg conservation, we need to take steps to set the Caatinga

as a priority, as none of the inselbergs evaluated in this study falls

within protected areas.
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FIGURE 7

Intense threats to South America's inselbergs. (A) Aerial view of
mining in Mucajaı́ municipality, Roraima state (Amazonian
biome). (B) Mining practices threatening inselbergs on the road
to Águia Branca municipality, Espıŕito Santo state (Atlantic Forest
biome). Photos: Rafael Grisostenes (A); Luísa Azevedo (B).
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