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MGA-YOLO: A lightweight
one-stage network for apple
leaf disease detection

Yiwen Wang, Yaojun Wang* and Jingbo Zhao*

College of Information and Electrical Engineering, China Agricultural University, Beijing, China

Apple leaf diseases seriously damage the yield and quality of apples. Current

apple leaf disease diagnosismethods primarily rely on human visual inspection,

which often results in low e�ciency and insu�cient accuracy. Many computer

vision algorithms have been proposed to diagnose apple leaf diseases, but

most of them are designed to run on high-performance GPUs. This potentially

limits their application in the field, in which mobile devices are expected to be

used to perform computer vision-based disease diagnosis on the spot. In this

paper, we propose a lightweight one-stage network, called the Mobile Ghost

Attention YOLO network (MGA-YOLO), which enables real-time diagnosis of

apple leaf diseases on mobile devices. We also built a dataset, called the Apple

Leaf Disease Object Detection dataset (ALDOD), that contains 8,838 images

of healthy and infected apple leaves with complex backgrounds, collected

from existing public datasets. In our proposedmodel, we replaced the ordinary

convolution with the Ghost module to significantly reduce the number of

parameters and floating point operations (FLOPs) due to cheap operations

of the Ghost module. We then constructed the Mobile Inverted Residual

Bottleneck Convolution and integrated the Convolutional Block Attention

Module (CBAM) into the YOLO network to improve its performance on feature

extraction. Finally, an extra prediction head was added to detect extra large

objects. We tested our method on the ALDOD testing set. Results showed that

our method outperformed other state-of-the-art methods with the highest

mAP of 89.3%, the smallest model size of only 10.34 MB and the highest

frames per second (FPS) of 84.1 on the GPU server. The proposed model

was also tested on a mobile phone, which achieved 12.5 FPS. In addition, by

applying image augmentation techniques on the dataset, mAP of our method

was further improved to 94.0%. These results suggest that our model can

accurately and e�ciently detect apple leaf diseases and can be used for

real-time detection of apple leaf diseases on mobile devices.

KEYWORDS

apple leaf disease, object detection, MGA-YOLO, attention mechanism, CBAM,

lightweight CNN

1. Introduction

Apple is one of the most important economic fruits in the world. However, various

apple leaf diseases pose great threats to the productivity and the quality of apples,

causing significant economic losses. Given available methods for diagnosis, apple leaf

disease management still faces great challenges. At present, apple leaf disease diagnosis
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primarily relies on visual inspection by trained experts (Liu et al.,

2017). As the method is subjective, it often leads to misdiagnosis,

resulting in low efficiency and insufficient accuracy.

The development of computer hardware and software

technology has enabled agriculture and computer engineering

technology to be more closely linked. With the help of

innovative tools, such as computer vision, machine learning,

and deep learning algorithms, smart agriculture applications

are flourishing. Such applications typically include precision

agriculture, disease diagnosis, and crop phenotyping (Pathan

et al., 2020). As frontiers of artificial intelligence, machine

learning algorithms are being progressively used in crop

leaf disease diagnosis. However, classical machine learning

algorithmsmostly rely on hand-crafted low-level vision features,

which are designed based on engineering experience. This often

results in unsatisfactory performance when the captured scene is

comparatively complex.

Recently, deep learning models, such as convolutional

neural networks (CNNs), have made great progress compared

with classical machine learning methods. CNN-based models

provide end-to-end pipelines to automatically learn low-level

discriminative features and model parameters, making it easier

for non-experts to tackle computer vision-based tasks of crop

disease diagnosis (Liu et al., 2017; Sun et al., 2021). However, due

to abundant parameters and the high computational overhead

of CNNs, most CNN models for apple leaf disease diagnosis

are implemented on high-performance servers with GPU

acceleration. This limits their application in the field (Agarwal

et al., 2020). To make CNN models more practical and suited

for deployment on mobile devices for real-time detection, many

lightweight CNNs have been proposed. Lightweight models

reduce the number of parameters, but leads to a slight decline

in accuracy. To compensate for the accuracy loss of lightweight

models, attentionmechanisms can be used to distribute different

weights to each part of the input feature layers, extract essential

features, and improve classification performance. In addition,

attention mechanisms have little impact on efficiency and do not

require large storage space for the model (Wang et al., 2021).

Image classification using CNNmodels has been widely used

in apple leaf disease classification. However, image classification

is insufficient for practical application scenarios as detailed

information in an image needs to be obtained, including the

number and regions of infected leaves. In this case, Object

detection is more useful for disease diagnosis. Current object

detection methods based on deep learning algorithms include

one-stage object detection algorithms and two-stage object

detection algorithms. Representatives of one-stage algorithms

are SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017), YOLOv4

(Bochkovskiy et al., 2020), YOLOv5 (Jocher et al., 2021), DETR

(Carion et al., 2020), FCOS (Tian et al., 2019), YOLOX (Ge et al.,

2021). Two-stage algorithms include Faster-RCNN (Ren et al.,

2016), Cascade-RCNN (Cai and Vasconcelos, 2018), etc. One-

stage algorithms are more suited than two-stage algorithms for

practical application scenarios as the speed of one-stage object

detection algorithms is usually faster than two-stage object

detection algorithms.

This paper proposes a novel CNN model for apple leaf

disease recognition, tested on a new dataset built by us. Themain

contributions are two-fold:

(1) We propose a lightweight one-stage CNN model, called

the Mobile Ghost with Attention YOLO network (MGA-

YOLO), based on YOLOv5 for real-time apple leaf disease

recognition. The Ghost module and the depthwise separable

convolution are exploited to significantly reduce the

number of parameters and FLOPs. The Mobile Inverted

Residual Bottleneck Convolution that integrates CBAM is

constructed to improve feature extraction capability. We

also add a prediction head to detect extra large objects. The

GELU non-linearity is utilized for optimal fine-tuning.

(2) We built a new dataset, called the Apple Leaf Disease Object

Detection dataset (ALDOD), using images collected from

two public datasets: Plant Pathology 2021-FGVC8 and Plant

Pathology 2020-FGVC7 on Kaggle. These two datasets only

contain labels for each image. Our contribution here is that

we manually annotated each leaf in every image with a

bounding box and a class label, which belongs to one of

the four categories: healthy, rust, scab and black rot. This

dataset will be made publicly available, which will further

related research in apple leaf disease recognition.

2. Related work

2.1. Traditional machine learning
methods

Traditional machine learning methods for apple leaf disease

recognition usually consist of three steps: image pre-processing,

feature extraction, and disease recognition. Firstly, images are

pre-processed by converting them from the RGB color space

to another color space, e.g., YUV and HSV. Contrast stretching

and other methods are also often used to improve the quality of

images. Backgrounds are removed in the pre-processing process.

Then, texture and shape features are extracted by statistical

methods, such as GLCM (Fulari et al., 2020; Jan and Ahmad,

2020) and KPCA. Finally, machine learning-based models, such

as the Support Vector Machine (SVM), random forests, and

decision trees (Zhang et al., 2020), are used as classifiers to

identify crop leaf diseases. However, such methods are time-

consuming and are unable to cope with complex image features,

which result in unsatisfactory efficiency and accuracy.

2.2. Deep learning methods

Due to efficient structures of end-to-end pipelines and

high classification accuracy, deep learning models have been

progressively used in agriculture. Researchers have conducted
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many studies on apple leaf disease recognition using deep

convolutional networks. Li and Rai (2020) compared the

performance of the SVM, VGG, and ResNet, concluding

that ResNet-18 achieved better recognition results. Jwo and

Chiu (2022) proposed a model based on CNNs with 19

convolutional layers for effective and accurate classification

of Marsonina Coronaria and Apple Scab diseases from apple

leaves. Rehman et al. (2021) proposed a parallel framework for

apple leaf disease recognition. The Mask RCNN was configured

to detect the infected regions. Meanwhile, the augmented

images were used to train a pre-trained CNN model based on

ResNet50 to extract features of images for classification. CNN-

based models achieved better performance of recognition for

apple leaf diseases than traditional machine learning models

(Li and Rai, 2020).

2.3. Lightweight CNNs

In practical application scenarios, mobile devices often do

not have sufficient storage space to store considerable numbers

of parameters in deep convolutional networks. Under this

circumstance, researchers have proposed feasible methods. Sun

et al. (2021) proposed a lightweight CNN model, called the

MEAN-SSD, that can be deployed on mobile devices to detect

apple leaf diseases in real-time. A basic module called theMobile

End AppleNet block was proposed to increase the detection

speed and reduce the model’s size by reconstructing the typical

3 × 3 convolution. Bi et al. (2022) proposed a stable, low-cost

and high-precision apple leaf diseases recognition method by

employing the MobileNet model to save detection time and

improve efficiency. The DCNN model proposed by Chao et al.

(2020) for apple leaf disease recognition combined the DenseNet

and the Xception, using global average pooling instead of fully

connected layers. These studies showed that lightweight CNN

models have better performance in terms of detection speed and

accuracy in mobile devices.

2.4. The attention mechanism

Attention is a cognitive process that acts selectively on

relevant information while ignoring others in deep neural

networks. Originated from Natural Language Processing (NLP),

it has been widely used in computer vision techniques to

extract essential features of the input data and ignore redundant

information. Hu et al. (2018) proposed the Squeeze-and-

Excitation (SE) block and won the best image classification

champion of ImageNet 2017. Woo et al. (2018) proposed

the Convolutional Block Attention Module (CBAM), which

combined channel attention and spatial attention. Compared

with the SEmodule, CBAM added a spatial attentionmechanism

to concentrate on the region of interest and can be integrated

into any CNN architecture. In addition, their experiments

showed significant improvements in classification and detection

performance owing to the application of the CBAM. To alleviate

the loss of location information caused by the 2D global pooling

of the previous attention module, Hou et al. (2021) proposed

the Coordinate Attention (CA) that decomposed the channel

attention into two parallel 1-D feature encoding processes

and effectively integrated the spatial coordinate information

into the generated attention map. Existing research shows that

the attention mechanism has a strong potential for apple leaf

disease recognition. Yu and Son (2020) proposed a leaf spot

attention network that had two sub-networks. The first was for

feature segmentation to provide more discriminative features

while the other was a spot-aware classification sub-network

to identify apple leaf diseases. The architecture outperformed

conventional state-of-the-art deep learning models. Wang et al.

(2021) introduced a deep learning model with an attention

mechanism, called the Coordination Attention EfficientNet, to

identify different apple leaf diseases. The coordinate attention

block was embedded into the novel deep convolutional neural

network and extracted important channel features and spatial

location information. The results of these experiments showed

that attention mechanisms effectively improved the accuracy of

apple leaf disease recognition.

3. Methods

In this section, we introduce MGA-YOLO in detail. MGA-

YOLO is based on the YOLOv5 network. We used the Ghost

module and constructed the Ghost bottleneck. The attention

mechanism was introduced through the CBAM module. With

CBAM embedded, the Mobile Inverted Residual Bottleneck

Convolution was established. Improvements have also been

made to the detection head and the non-linear activation

functions in the whole network. We next explain each module

of the network in detail.

3.1. Overview of the YOLOv5 network

YOLO, which stands for “You Only Look Once,” is an

object detection algorithm with excellent accuracy and detection

speed. YOLOv5 utilizes depth and width multiples to scale the

depth of the network and the number of convolution kernel

channels in each layer. YOLOv5 has four versions, including

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, whose depth

and width increase in series. YOLOv5s is the simplest version

with the smallest number of network parameters and the fastest

inference speed.

In general, the YOLOv5 network is divided into three

components: the backbone network, the neck network, and the

head. The architecture of the backbone network is CSPDarknet
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FIGURE 1

Comparison between BottleneckCSP_X and C3_X modules. (A) BottleneckCSP_X. (B) C3_X. The dotted rectangle indicates the di�erence

between them. SiLU replaces leaky ReLU. C3_X removes Conv after Bottleneck and replaces Conv in another path with Conv. Additionally, it

abandons BN and Leaky ReLU after concatenating the output data from two paths.

with Focus, Conv-BN-LeakyReLU (CBL), BottleneckCSP_X,

and the Spatial Pyramid Pooling (SPP) layer. The backbone

network extracts image features and then the feature maps are

transferred to the neck network for feature enhancement. The

neck network aggregates low-level spatial features and high-

level semantic features through the Path Aggregation Network

(PANet). It significantly improves the accuracy to identify

objects of different scales. Finally, the head generates object

bounding boxes with coordinates, categories, and confidence.

Compared with YOLOv5 version 3.0, the structure of the

CSP module is modified and the LeakyReLU activation function

is replaced with the SiLU (Swish-1) activation function in

YOLOv5 version 5.0. The modified BottleneckCSP is called

C3_X. The convolution module and the CSP module changes

are shown in Figure 1.

The YOLOv5 model is divided into YOLOv5-P5 and

YOLOv5-P6 families. Each family includes models of different

sizes. The size of the image input into the YOLOv5-P5 model

is 640 × 640 pixels. YOLOv5-P5 models have three detection

layers P3, P4, and P5 at strides of 8, 16, and 32, which are used

to detect small, medium, and large objects. YOLOv5-P6 adds the

P6 output layer at a stride of 64 intended for extra large objects.

Correspondingly, the backbone is extended to P6, and the PANet

neck goes down to P3 and back up to P6 instead of stopping

at P5. P6 models increase performance on COCO especially on

the higher resolution images, e.g., images with width and height

of both 1,280 pixels. The added P6 prediction head improves

mAP while correspondingly brings inference speed loss and

more parameters.

3.2. The ghost module

To enable real-time apple leaf disease detection on

embedded devices, we reduced model parameters and FLOPs by

replacing convolutions with the Ghost module in the backbone
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FIGURE 2

Three parts of Ghost module operation. (A) A convolutional operation generates intrinsic feature maps of m channels from the input maps of n

channels. (B) The cheap operation generates the ghost feature maps of s− 1 channels. (C) Concatenate Y ′ and Yghost, and n (n = m · s) output
feature maps can be obtained.

network. As discussed by Han et al. (2020), the Ghost module

generates more feature maps through cheap operations. The

forward propagation process of the Ghostmodule can be divided

into three parts. In the first part, it produces a handful of intrinsic

feature maps by ordinary convolution filters. Then, ghost feature

maps are generated by a series of cheap operations on each

intrinsic feature. Lastly, the intrinsic feature maps obtained in

the first part and the ghost feature maps in the second part are

concatenated as the output.

The operation of an ordinary convolutional layer can be

formulated as:

Y = X ∗ f + b (1)

where ∗ is the convolution operation, b is a bias term, X ∈
R
c×h×w are the input feature maps (c denotes the number of

input channels, and h and w denote the height and width of

the input maps, respectively), Y ∈ R
h′×w′×n are the output

feature maps with n channels, and f ∈ R
c×k×k×n are the

convolution filter in convolutional layers. In addition, h′ and w′

are the height and the width of the output feature maps, and

k × k is the kernel size of convolution filters f . The number of

FLOPs can be computed as h′ · w′ · k · k · c · n when the output

feature maps are all generated by convolutional operations. If

the channel number c and the number of filters n are both large,

considerable numbers of FLOPs will deplete thememory and the

computational resources of mobile devices.

The computational process of the ghost module can be

expressed as:

Y ′ = X ∗ f ′ (2)

Yghost = φj(Yi
′), j ∈ [1, s− 1] (3)

where Y ′ ∈ R
h′×w′×m denote the output feature maps obtained

by convolutional operations using filters f ′ ∈ R
c×k×k×m on

the input feature layer X ∈ R
c×h×w, m ≤ n. The bias term

is omitted for simplicity. The number of FLOPs calculated by

Equation (2) is h′ · w′ · k · k · c · m. In addition, Yi
′ is the i-th

feature map, and φj is the j-th linear operation to generate the

j-th ghost feature map, which means Yi
′ generates s − 1 ghost

feature maps. Therefore, by Equation (3), we can obtain Yghost ∈

R
h′×w′×[m·(s−1)]. Finally, we obtain n (n = m·(s−1)+m = m·s)

output feature maps Y by the concatenation operation:

Y = Yghost + Y ′ (4)

where + is the concatenation operation for Yghost and Y ′. The

three parts of Ghost module operation is shown in Figure 2.

The theoretical speed-up ratio of replacing ordinary

convolutions with the Ghost module is approximately s (Han

et al., 2020). Notably, the Ghost module has fewer computational

parameters and FLOPs than the ordinary convolution layer.

The Ghost Bottleneck module and the C3Ghost_X module

are built based on the Ghost module. The Ghost Bottleneck

mainly consists of two stacks of the Ghost modules. Structures

of the Ghost module, the Ghost Bottleneck module and the

C3Ghost_X module are shown in Figure 3. In the backbone

network, we used the Ghost module with a stride of 2 for
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FIGURE 3

Structures of the Ghost module, the Ghost Bottleneck module, and the C3Ghost_X module. (A) GhostConv represents the Ghost module. The

h×w × c1 data are first given to the 1× 1× c2/2 Conv module as an input to generate h×w×c2
2

feature maps, and then sent to 5× 5× c2/2

DWConv module to obtain h×w×c2
2

feature maps. Finally, the output feature maps from Conv and DWConv are concatenated to obtain

h×w × c2 outputs. “True” indicates activation function is enabled. (B) GhostBottleneck is a residual block with two stacks of GhostConv and an

identity shortcut from input. The output features are sum of the data from two paths above. (C) C3Ghost_X is the counterpart of C3_X module.

Except that GhostBottleneck replaces Bottleneck, other parts are the same as C3_X.

downsampling and used the C3Ghost_X module to extract

image features instead of the ordinary convolution and the

C3_X module. On the ALDOD training set, the Ghost modules

increase convergence speed of training and the detection speed

with almost no loss of the detection accuracy.

3.3. The convolutional block attention
module (CBAM)

CBAM (Woo et al., 2018) is a simple but effective attention

module for feed-forward CNNs. CBAM contains two sequential

sub-modules, called the Channel Attention Module and the

Spatial Attention Module, which are applied in a particular

order. When the feature maps are given as inputs, the module

sequentially generates attention maps along channel and spatial

dimensions, then the input feature maps are multiplied by

the attention maps to get subsequent refined feature maps.

Most importantly, CBAM is a lightweight module that can be

trained end-to-end and can be smoothly embedded into any

convolutional neural network. The structure of CBAM is shown

in Figure 4.

Unlike the images with plain backgrounds, the images

on ALDOD are mixed with complex background noise that

interferes with feature extraction. Therefore, we integrated

CBAM into our mobile-end network to concentrate on learning

leaf spots features with little overhead.

3.4. Mobile inverted residual bottleneck
convolution with attention mechanisms

Another important design in our network is the inverted

residual linear bottleneck. MobileNetV2 (Sandler et al., 2018)

demonstrated the superiority of Inverted Residuals and Linear

Bottlenecks. In contrast with classical residuals, the inverted

residuals in MobileNetV2 utilize 1 × 1 convolutional layers

to expand channels of input features with an expansion

ratio of 6, then the intermediate expansion layers use

3 × 3 depthwise convolutions to acquire non-linearities,
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FIGURE 4

The structure of the Convolutional block attention module. Channel Attention Module and Spatial Attention Module sequentially refine feature

maps.
⊗

denotes the multiplication of the input feature maps by the corresponding attention module.

FIGURE 5

Comparison of di�erent inverted bottleneck blocks. (A) MobileNetV2 block. (B) MobileNetV3 block. RE/HS denotes ReLU or h-swish.

MobileNetV3 uses di�erent activation function at di�erent depths of the network. (C) MBConvA block. RE/HS with GELU is replaced in the first

Conv and RE/HS is removed in Dwise. Linear indicates that there is no activation function.

finally 1 × 1 linear convolutional layers are used to reduce

dimensions. Additionally, it uses shortcuts directly between the

bottlenecks. It is shown that the inverted residual structure

can compress the model parameters as much as possible

with a small reduction in accuracy and the linear layers

are capable of preventing excessive information loss when

high-dimensional information is projected to low-dimensional

information. MobileNetV3 (Howard et al., 2019) attaches

the Squeeze-and-Excitation (SE) (Hu et al., 2018) module

after the expansion layers for channel attention extraction.

Inspired by MobileNetV2 and MobileNetV3, we maintained

the general structure of the inverted residual linear bottleneck

and integrate CBAM into it as a replacement for SE, adding

the capability to extract spatial information. In addition,

the ReLU or the h-swish (Howard et al., 2019) activation

function in the first 1 × 1 convolution, which is used in

MobileNet, is substituted by GELU non-linearity (introduced in

Section 3.5).

Furthermore, we removed the activation function after

DWconv, which improved mAP by 0.5%. The inverted

bottleneck module applied to our mobile-end network was

the Mobile Inverted Residual Bottleneck Convolution with

Attention (MBConvA). The difference between the MobileNet

block and our block is shown in Figure 5.
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FIGURE 6

The architecture of the MGA-YOLO network. Backbone: CSPDarknet with Focus, GhostConv (the Ghost module), C3Ghost_X, and SPP. Neck:

PANet with C3MB. Head: four prediction heads P3, P4, P5, P6 detect small, medium, large, and extra large objects, respectively. Firstly, 640× 640

RGB images are given as the input, then the image features are extracted and fused through Backbone and Neck. Finally, four prediction heads

with four di�erent sizes and 27 channels are the output. Each prediction head corresponds to three anchor boxes and each anchor box predicts

the probability of four categories, four attributes of the predicted bounding box (x, y,w,h) and the confidence of the predicted result. Therefore,

the number of prediction head channels is 3× (4+ 4+ 1) = 27.

We replaced the Bottleneck module with the MBConvA

module in the C3_X module. In YOLOv5s architecture, X

is approximately equivalent to 1, so each C3_1 contains one

MBConvA module. We name the new block C3MB, which is

shown in Figure 6.

3.5. The MGA-YOLO network

3.5.1. Adding a detection layer

In the backbone network, we used the C3Ghost module

to extract features. In the neck network, the C3MB module

was used to focus on interesting objects and extract useful

semantic information. Downsampling was done using the Ghost

module with a stride of 2, along with the whole network. In

addition, we examined the ALDOD dataset and found that

most images contained extra large leaf targets, so we added one

more prediction head to detect extra large objects. Compared

with YOLOv5s-P6 models, we simplified the process of adding

the detection layer. Based on the YOLOv5-P5 neck network,

we directly added a 1 × 1 Ghost module with a stride of 2

after the P5 head, as the P6 prediction head. This method

can effectively improve the detection capability of extra large

targets without changing the depth of PANet, thus significantly

reducing the number of model parameters and FLOPs compared

with YOLOv5s-P6.
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FIGURE 7

Comparison of GELU and Swish-1 curves. Both are

non-monotonic functions and have similar shapes. When the

input values are around zero, most outputs from GELU are

greater than Swish-1 which makes the non-monotonic bump of

Swish-1 wider than the other.

3.5.2. Replacing ReLU with GELU

In YOLOv5 v5.0, the non-linearity Swish (Ramachandran

et al., 2017) substitutes for the ReLU activation function. What

distinguishes the two non-linearities is the continuous non-

monotonic bump of Swish. Although ReLU and Swish are very

similar in shapes, the Swish curve is smooth when the domain of

definition is around zero. It does not abruptly change direction

as ReLU does near x = 0. Instead, it smoothly bends from

zero toward values < 0 and then goes upwards. Due to its non-

monotonic bump, those negative values that could be relevant

for capturing patterns underlying the data are retained, which

significantly improves the accuracy of neural networks. The

Swish non-linearity is defined as:

Swish(x) = x · sigmoid(βx) =
x

1+ e−βx
(5)

YOLOv5 v5.0 uses Swish with a fixed β = 1, which is called

Swish-1 (also known as SiLU), as the activation function.

The Gaussian Error Linear Unit, or GELU (Hendrycks and

Gimpel, 2020), which can be regarded as a smooth counterpart

of ReLU, also has the non-monotonic bump similar to Swish-1.

The GELU non-linearity is defined as:

GELU(x) = x · φ(x) = x ·
1

2

[

1+ erf

(

x
√
2

)]

(6)

where φ(x) is the standard Gaussian cumulative distribution

function. GELU can approximate x · sigmoid(1.702x) so the

difference between GELU and Swish-1 lies in the different value

of β . The curve of Swish-1 and GELU are shown in Figure 7.

Currently, mainstream Transformers, including Google’s

BERT (Devlin et al., 2019), OpenAI’s GPT-2 (Radford et al.,

TABLE 1 Details of the experimental setup.

Item Specification

Central processing unit Intel Xeon Gold 5218R CPU @ 2.10 GHz

Graphics processing unit Nvidia RTX A4000 16 GB× 2

Memory 126 GB

Hard disk drive storage

space

51 GB

Operating system Ubuntu 21.04 (64-bit)

Programming environment Python 3.8.8, Cuda 10.1, torch 1.7.1, torchvision

0.8.2, torchaudio 0.7.2

2019), and ViTs (Kim et al., 2021), utilize the GELU activation

function as the non-linearity function. Our experiments found

that GELU achieved a promising increase on mAP while the

FLOPs remained unchanged. Thus, we substituted GELU for

Swish-1 in our network.

Generally, we updated the original YOLOv5s-P5 to MGA-

YOLO to improve leaf detection performance on ALDOD. The

structure of MGA-YOLO is shown in Figure 6.

4. Experiments

This section describes the experimental setup and the dataset

ALDOD in detail. We compared the performance of MGA-

YOLO and other state-of-the-art object detection methods.

In addition, an experiment was conducted to investigate

appropriate image augmentation methods. We also conducted

an ablation experiment to explore the effect of each proposed

technique and analyze the results.

4.1. Experimental setup

Experiments were conducted on a high-performance

deep learning server, which was equipped with two Nvidia

RTX A4000 graphics cards with 16 GB graphics memory

each. The operating system was Ubuntu 21.04 (64-bit). The

implementation of the proposed method was based on Pytorch

1.7.1. The details of the experimental setup are given in Table 1.

We also deployed our model on a HUAWEI Mate 40 Pro (4

G) mobile phone, with the HiSilicon Kirin 9000 CPU and the

Harmony OS 2.0.0 operating system, to test the performance of

our model.

To optimize network parameters, MGA-YOLO utilized

stochastic gradient descent (SGD) for training. We set the

dynamic learning rate to accelerate the model convergence and

maintain training stability. The initial learning rate (lr0) was set

to 0.01, and the final OneCycleLR learning rate (lrf ) was set to

0.2 to update the learning rate of each epoch. Given the current
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FIGURE 8

Representative images of healthy, rust, scab, and black rot apple leaves. (A) Healthy. (B) Rust. On leaves, cedar-apple rust first appears as small,

pale yellow spots on the upper surfaces. The spots enlarge and eventually tiny black fruiting bodies become visible. Often several orange-yellow

protuberances are produced in each spot on the underside of the leaf. (C) Scab. The scab leaf spots are round, olive-green, and up to 1/2-inch

across. Spots are velvet-like with fringed borders and often form along the leaf veins. As they age, leaf spots turn dark brown to black, grow

bigger, and join together. (D) Black rot. The fruit rot phase is called black rot (also called frog eye leaf spot) on leaves. At the beginning of frogeye

spot disease, tiny purple specks appear on infected leaves. Gradually, they grow larger into a round spot with a light brown-to-gray center

surrounded by one or more dark-brown concentric rings with a purple margin, giving it a “frog eye” appearance.

epoch x, we needed an intermediate variable lf as the multiplier

for the learning rate. The learning rate (lr) for each epoch was

updated as:

lf =
1− cos

(

x
epochs

· x
)

2
× (lrf − 1)+ 1 (7)

lr = lr × lf (8)

Consequently, the final learning rate was lr0× lrf .

4.2. The apple leaf disease object
detection dataset

Apple leaf disease images in our dataset were collected from

the public datasets Plant Pathology 2021-FGVC8 and Plant

Pathology 2020-FGVC7 on Kaggle. The apple leaf images were

divided into four categories, which included healthy leaves and

three types of common leaf diseases: rust, scab, and black rot.

Since the majority of the images has a resolution of 4, 000 ×
2, 672 pixels, the details of apple leaves are preserved while

backgrounds are influenced by shadows and occlusions with

complex lighting conditions. This imitates the real application

scenarios and potentially enhances the robustness of the trained

model. The characteristics of the three apple leaf diseases are

significantly different. Figure 8 shows the representative images

of the four categories.

Image annotation is crucial for building the dataset. The

original images from the two public datasets only had class labels

for each image, but our method aims to detect each leaf in every

image with a class label. Thus, we cannot directly use the original

image datasets for training, validation, and testing. We used the

annotation tool labeling based on Python to label each leaf in

every image with a bounding box and a class label. We annotated

entire leaves and drew the smallest circumscribed rectangle

of each focused and unobstructed leaf during our labeling

process. The number of images in each category is approximately

the same to balance the distribution of different labels. It

ensured balanced sample distribution and avoided over-fitting

caused by the skewness of a specific class. Figure 9 shows the

number of labels of four categories on the ALDOD training

and validation set. In addition to the data formats for training

they YOLO network, we also had annotations in PASCAL VOC

(Everingham et al., 2010) and MS COCO (Lin et al., 2014)

formats to facilitate the comparison with other state-of-the-art

Frontiers in Plant Science 10 frontiersin.org

https://doi.org/10.3389/fpls.2022.927424
https://www.kaggle.com/competitions/plant-pathology-2021-fgvc8
https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.927424

FIGURE 9

Quantity distribution of four labels of the training and validation

datasets. The numbers of healthy, rust, scab, and black rot labels

are 1,676, 1,781, 1,894, and 2,029, respectively. The total

number of images is 6,802 and the total number of labeled

leaves is 7,380, which means that there are 7,380 leaf objects for

training and validation.

(SOTA) object detection methods. ALDOD has 8,838 images.

The training dataset, validation dataset, and test dataset were

divided in a ratio of 0.54:0.23:0.23, which correspond to 4,766,

2,036, and 2,036 images in each set, respectively.

Note that each leaf in our dataset ALDOD was labeled

with a class of a specific disease. When multiple diseases

occur on the same leaf, our model selects the class with

the highest predicted probability as the prediction result. The

public dataset Plant Pathology 2021-FGVC8 also provides

images of multiple diseases on the same leaf. For future work,

we plan to incorporate these images into our dataset and

train a model that can recognize multiple diseases on the

same leaf.

4.3. Image augmentation

To adapt MGA-YOLO to different environmental

conditions and reduce the negative impact of photometric

distortion (Zhu et al., 2021), the dataset was first expanded

by random HSV adjustments, translations, shearing, rotating,

scaling, and horizontal flipping. In addition to traditional

data augmentation technologies, the Mosaic (Bochkovskiy

et al., 2020) method is widely used in one-stage detection

algorithms. Mosaic combines four training images to one

in specific ratios. This enriches the background information

of detected objects significantly. Based on previous image

augmentation techniques, we investigated the effects of

Mosaic. Based on the experimental results (see Section

4.6.6 for details), we used Mosaic and other techniques

mentioned above.

TABLE 2 The detection performance of each category.

Category Labels Precision Recall AP50 mAP

All 2,193 0.955 0.908 0.967 0.940

Healthy 508 0.907 0.856 0.943 0.919

Black rot 603 0.991 0.912 0.977 0.958

Scab 575 0.950 0.901 0.960 0.938

Rust 507 0.970 0.964 0.987 0.945

4.4. Evaluation metrics

We utilized the following criteria to evaluate the

performance of the model quantitatively.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Precision is a measure of result relevancy, while Recall

measures how many truly relevant results are returned. The

number of successfully recognized objects is represented by TP

(True Positive), the number of incorrectly detected objects is

represented by FP (False Positive), and the number of missed

objects is represented by FN (False Negative). Furthermore, our

model should be comprehensively evaluated in terms of detected

boundaries and classification performance. The most widely

used criterion is the Mean Average Precision, ormAP, employed

in the following tests. In addition, mAP needs to be evaluated

with a threshold IoU.

IoU(m, n) =
area(m ∩ n)

area(m ∪ n)
(11)

where m represents the ground-truth box and n represents the

bounding box. AP50 andmAP are applied to evaluate the overall

performance of detection. AP50 represents the average precision

value when the threshold is set to 0.5 while mAP refers to

the mean average precision values at different IoU thresholds

ranging from 0.5 to 0.95, with a stride of 0.05.

4.5. Performance of the MGA-YOLO
network

On the testing set with 2,036 images, the MGA-YOLO

network accurately identified three apple leaf diseases and

healthy leaves, with AP50 reaching 96.7% and mAP reaching

94.0%. The detection performance of each category is shown in

Table 2 and the confusion matrix of detection results is shown in

Figure 10. Figure 11 shows two examples of the detected apple

leaf diseases.

We comprehensively evaluated the accuracy, the detection

speed, and the weight of the model using metrics, including
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mAP, AP50, model size, and FPS. To demonstrate the superior

performance of our model architecture, we compared our

proposed MGA-YOLO method with several SOTA object

detection algorithms. Table 3 compared the performance of two

two-stage methods and six one-stage methods. Note that in

this part of the experiments, we did not use Mosaic image

augmentation on the training dataset to eliminate the influence

of other factors on accuracy.

We conclude that MGA-YOLO obtains the highest mAP of

89.3% on the ALDOD testing set, which is 1.3% higher than the

second-place YOLOX_L. AP50 is also the highest, on par with

FIGURE 10

The confusion matrix of identification results. The confusion

matrix was normalized over the true (columns) condition for our

proposed model. The horizontal axis represents the ground

truth classes and the vertical axis represents the predicted

classes. Each cell element represents the proportion of the

number of the predicted class to the total number of the true

class. The diagonal elements represent correctly classified

outcomes. All other o�-diagonal elements along a column are

wrong predictions.

Cascade-RCNN. Our model has the best recognition accuracy

and achieves the fastest inference speed and the smallest model

size compared to all the SOTA methods. The FPS of 84.1

on the GPU server and the model size of 10.34 MB meet

the requirements for real-time object detection on embedded

mobile devices.

Finally, we tested the performance of our MGA-YOLO

network on a HUAWEI Mate 40 Pro mobile phone. Based on

the Kirin 9000 CPU of this mobile phone, MGA-YOLO achieved

12.5 FPS for real-time detection, given images with a resolution

of 256× 256 as input, without Cuda GPU support.

4.6. Ablation experiments and analyses

An ablation experiment was conducted on the ALDOD

testing set to investigate the effects of the modules in MGA-

YOLO (see Table 4 for results). We took the YOLOv5s model as

TABLE 3 Comparison of SOTA models.

Backbone mAP(%) AP50(%) Weight(MB) FPS

Two-stage methods

Faster-RCNN ResNet50+FPN 87.4 94.4 322.69 8.19

Cascade-RCNN ResNet50+FPN 87.9 94.8 540.13 7.32

One-stage methods

SSD512 VGG16 84.4 93.6 194.04 15.12

RetinaNet ResNet50+FPN 86.3 94.1 251.73 22.36

FCOS ResNet50+FPN 84.7 91.5 250.26 8.29

YOLOv5X CSPDarknet 87.7 92.3 171.01 31.63

YOLOX-L CSPDarknet 88 94.7 635.82 15.05

MGA-YOLO CSPDarknet 89.3 94.8 10.34 84.13

Best values are in bold.

FIGURE 11

Examples of apple leaf disease detected by MGA-YOLO. (A) A leaf infected with rust is detected. (B) Three leaves infected with scab and a healthy

leaf are detected. Each predicted bounding box shows the predicted label of the detected leaf and the confidence of the predicted result.
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TABLE 4 Results of the ablation experiment on the ALDOD testing set.

Model mAP(%) AP50(%) Parameters GFLOPs Weight(MB)

YOLOv5s 90.3 95.6 7,071,633 16.4 14.064

YOLOv5s-ghost 91.1 95.2 3,703,993 8.2 7.598

YOLOv5s-ghost-C3MB 92.2 95.8 5,679,145 11.3 11.466

YOLOv5s-ghost-C3MB-SE 91.0 95.8 8,708,233 11.4 17.391

YOLOv5s-ghost-C3MB-CA 91.0 95.6 6,256,381 11.4 12.617

YOLOv5s-ghost-C3MB-CBAM 92.5 96.0 6,440,256 11.4 12.946

YOLOv5s-ghost-C3MB-CBAM-Prediction_Head 93.6 96.6 7,641,179 11.6 9.654

YOLOv5s-ghost-C3MB-CBAM-Prediction_Head-GELU 94.0 96.7 7,641,179 11.6 10.337

YOLOv5s-ghost-C3MB-CBAM-Prediction_Head-GELU denotes MGA-YOLO. Best values are in bold.

the baseline and tested with the Mosaic augmentation and other

traditional techniques in the ablation experiment.

4.6.1. The ghost module

Generally, the Ghost module plays a vital role in reducing

FLOPs and model size while maintaining accuracy. By replacing

ordinary convolution and the C3_X module with the Ghost

module and the C3Ghost_X module, respectively, in the

backbone network, the parameters GFLOPs and model size

had a sharp decline, which were almost halved. It can also be

observed that mAP rose while there was only a slight decrease

in AP50.

4.6.2. C3MB

C3MB used in the neck network changed the parameters

from 3.7 to 5.7 million, GFLOPs from 8.2 to 11.3, and model

weight from 7.60 to 11.47 MB, but it has made a significant

improvement on mAP. By applying the Ghost module and the

C3 MB module to the network, mAP and AP50 are higher than

the baseline, while the number of parameters, GFLOPs and

model size are less than that of the baseline.

4.6.3. CBAM

In this section, we compared three attention mechanisms

and studied their effects. SE took the lead in extracting

features in MobileNetV3. CBAM was integrated into YOLOv5

to increase drone detecting (Zhu et al., 2021). Recently,

Coordinate Attention was proposed and used for apple leaf

disease detection (Wang et al., 2021). The three attention

modules above can be easily embedded into CNNs. It turned

out that SE and CA cannot improve average precision

but CBAM effectively improved mAP by 0.3% and AP50

by 0.2%. Meanwhile, there is not much computational

overhead.

4.6.4. The added prediction head

Adding a prediction head for extra large objects greatly

contributed to the improvement of average precision. Although

it brought about an increase in FLOPs by 0.2 G, the model size

decreases from 12.9 to 9.7 MB. Experimental results showed that

the inference speed was still fast.

4.6.5. The GELU non-linearity

We substituted the GELU non-linearity for all the activation

functions in the whole network. GELU did not change the

parameters and FLOPs of our network, but surprisingly, it

dramatically increased mAP by 0.6% resulting in 94%, showing

that GELU was a better activation function than SiLU. Thus, the

increase in the model size of 0.69 MB from 9.65 to 10.34 MB was

acceptable.

4.6.6. Mosaic image augmentation

With the traditional data augmentation technologies

applied, MGA-YOLO had mAP of 89.3% and AP50 of 94.8%.

Mosaic brought about a significant improvement to mAP

by 4.7% and AP50 by 2.0% resulting in 94.0% and 96.7%,

respectively, in the MGA-YOLO model. In addition, with

Mosaic and other traditional image enhancement techniques,

mAP of the baseline model reached 90.3% and AP50 reached

95.6%, both higher than MGA-YOLO without Mosaic.

Therefore, the augmentation effect of Mosaic is significant on

mAP and AP50.

4.6.7. Overall analysis

Compared with the baseline YOLOv5s, the improvements

described above for YOLOv5s brought about a significant

increase in mAP from 90.3 to 94.0% and AP50 from 95.6 to

96.7%. Furthermore, the inference speed of the model has also

been improved as FLOPs decreased from 16.4 to 11.6 G while

the model size decreased from 14.1 to 10.34 MB.
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Our Mobile Inverted Residual Bottleneck Convolution and

Convolutional Block Attention Module enabled the baseline

YOLOv5s model to have more vital feature learning capability.

The extra prediction head improved semantic feature extraction

capability in higher-level spatial dimensions. The Ghost module

significantly reduced the number of parameters and FLOPs due

to its effective cheap operation. GELU added better non-linearity

to YOLOv5s. In general, the results of our experiment showed

that the MGA-YOLO model outperformed the baseline.

In the ablation experiment, we used the Mosaic

augmentation (Bochkovskiy et al., 2020; Jocher et al., 2021)

method with other traditional augmentation techniques to

improve the average precision of object detection. The detection

results of MGA-YOLO in Tables 3, 4 shows that the image

augmentation methods significantly improved mAP from

89.3 to 94.0% and AP50 from 94.8 to 96.7%. Traditional

image augmentation techniques, including flipping, rotating,

and shearing etc., enabled the image dataset to have more

variants and avoid over-fitting. Moreover, the Mosaic image

augmentation integrated all the data of four images into one

image, which is equivalent to adding a series of objects with

different scales for model training. It greatly enhanced the

background information of the trained leaves. Due to these data

augmentation techniques, the performance of our model was

improved, as shown bymAP and AP50.

5. Discussion

Based on the architecture of YOLOv5, we introduced

several effective modules that updated the original YOLO v5

architecture, which enabled it to accurately and efficiently

identify healthy and infected leaves. However, questions that

remain unanswered include how to strike a balance between

accuracy and efficiency and how to choose the best model for a

specific application scenario. In the task of identifying diseases,

the priority is to extract fine-grained features and correctly

identify the types of diseases. In this case, higher accuracy is

needed and is more important than other factors. On the other

hand, assuming that the objects we intend to recognize have

highly recognizable features, and the task requires processing

video streams in high speed, achieving a higher detection speed

will be the top priority. In that case, we can sacrifice the feature

extraction capability of the model in exchange for detection

speed. As for the leaf disease detection task, in which accuracy

was the most important factor, the proposed MGA-YOLO is

more suited than other models.

In the present study, we tested the performance of the

model on a CPU-based mobile phone. However, in orchards,

environmental data are often collected through sensors,

prepared by edge-computing devices and transferred to cloud

servers for further data analyses. Obviously, a smartphone-based

application for leaf disease detection is not sufficient for 24-h

monitoring of orchards. Rapid development of AI and IoT

devices and infrastructure has merged these two transformative

technologies into Artificial Intelligence of Things (AIoT).

Chen et al. (2020) constructed an AIoT-based pest detection

smart agricultural system. Wireless transmission vision sensor

modules were evenly arranged on the hillside of an orchard

for continuous data collection, the Raspberry Pi was utilized to

aggregate and upload the collected data to the cloud database to

provide farmers with real-time observations of environmental

changes. Our proposed model can be integrated into a system

like this to enable continuous monitoring of apple leaves.

In addition to mobile phones, Raspberry Pi (Park et al.,

2017) is widely used in smart agriculture as an edge computing

module. Therefore, for future research, we intend to conduct

comparisons with other SOTA methods on the Raspberry Pi

platform to further evaluate the performance of the model.

Recently, some high-performance edge computing modules

or small AI supercomputers, such as Nvidia’s Jetson series, have

been introduced to agriculture engineering (Guillén et al., 2021).

These edge computing modules often support GPU acceleration

and are affordable. Based on such platforms, deep learning

networks can achieve better performance compared to CPU-

based mobile platforms. It can be expected that GPU-enabled

edge computing devices will be more widely used in agricultural

engineering in the near future.

6. Conclusion

In this paper, we proposed a lightweight one-stage

convolutional neural network, called MGA-YOLO, for real-

time apple leaf disease detection. To evaluate our proposed

method, we collected 8,838 apple leaf images of four categories

from public datasets to build the ALDOD dataset with manual

annotation. We used various image augmentation techniques

to augment the dataset for apple leaf disease detection. The

Ghost module, CBAM and other effective techniques enabled

MGA-YOLO to perform better than other SOTA methods on

the ALDOD testing set, with the highest average precision,

the fastest detection speed and the smallest model size. The

proposed model adopted many techniques to balance accuracy

and efficiency for the apple disease detection task. Since the

diagnosis methods of leaf diseases of different plants are similar,

ourmethod can also be applied to disease diagnosis of other crop

or fruit leaves, making it have a wider range of applications.
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