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Weed control has received great attention due to its significant influence on crop yield 
and food production. Accurate mapping of crop and weed is a prerequisite for the 
development of an automatic weed management system. In this paper, we propose a 
weed and crop segmentation method, SemiWeedNet, to accurately identify the weed 
with varying size in complex environment, where semi-supervised learning is employed 
to reduce the requirement of a large amount of labelled data. SemiWeedNet takes the 
labelled and unlabelled images into account when generating a unified semi-supervised 
architecture based on semantic segmentation model. A multiscale enhancement module 
is created by integrating the encoded feature with the selective kernel attention, to highlight 
the significant features of the weed and crop while alleviating the influence of complex 
background. To address the problem caused by the similarity and overlapping between 
crop and weed, an online hard example mining (OHEM) is introduced to refine the labelled 
data training. This forces the model to focus more on pixels that are not easily distinguished, 
and thus effectively improve the image segmentation. To further exploit the meaningful 
information of unlabelled data, consistency regularisation is introduced by maintaining the 
context consistency during training, making the representations robust to the varying 
environment. Comparative experiments are conducted on a publicly available dataset. 
The results show the SemiWeedNet outperforms the state-of-the-art methods, and its 
components have promising potential in improving segmentation.

Keywords: weed mapping, semantic segmentation, semi-supervised learning, precision agriculture, crop 
recognition

INTRODUCTION

Weeds are unwanted wild plants that grow naturally and spread rapidly, and tend to compete 
with crops for water, sunlight, fertiliser, soil nutrition, etc. (Hasan et  al., 2021). In recent years, 
weeds are regarded to pose the most threat to crop growth and could have a serious negative 
impact on crop yield and food production (Harker and O’Donovan, 2013). Therefore, it is 
essential to deploy resources to monitor the growth of weeds and reduce weeds for healthy crop 
cultivation. There are two traditional strategies that are used to reduce the influence of weeds: 
mechanical weed control (e.g., mowing, mulching and tilling) and chemical weed control (i.e., 
using herbicides; Rakhmatulin et  al., 2021). Both strategies have drawbacks. Mechanical weed 
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control might lead to erosion, and the mechanical arm can 
easily damage the crop and harm beneficial organisms, e.g., 
earthworm and spiders, in the soil. Current chemical weed 
control relies on the traditional full-drench spraying without 
distinguishing between crops and weeds, where most herbicides 
hit the ground but some of them may drift away (Kudsk and 
Streibig, 2003). This could result in wastage of large volume of 
pesticides, high costs and pollution of soil and water.

Due to the increased cost of labour, more attention has 
been given to health and environmental issues, and the 
automation of weed control has become an effective solution. 
Such automation enables weeding with reduced labour costs, 
where selective spraying techniques are capable of significantly 
reducing the use of herbicides. The prerequisite of an automatic 
weed management system is to detect weeds accurately (Liu 
and Bruch, 2020). Machine vision using field or airborne 
cameras is an efficient means to accomplish this task. Abouzahir 
et  al. (2021) employed classical hand-drafted descriptor, i.e., 
HOG to construct visual words, and used a neural network 
for weed and plant classification. Che’Ya et  al. (2021) designed 
a classification model based on hyperspectral reflectance for 
recognising three types of weeds. Islam et  al. (2021) used 
different machine learning (ML) methods, i.e., random forest, 
k-nearest neighbours, and support vector machine, to detect 
weeds in arial images, and shows the use of random forest 
achieves the best performance. The above-mentioned methods 
only focus on image-level classification of weeds.

To better implement the subsequent control of weeds, weed 
detection needs to locate the position and identify the boundary 
between crop and weed precisely, i.e., to generate a weed map. 
To this end, semantic segmentation can be  applied to 
automatically segment the weeds and crop. With the rapid 
advance of ML and deep learning (DL), semantic segmentation 
based on ML and DL (Long et  al., 2015; Ronneberger et  al., 
2015; Chen et  al., 2017; Zhao et  al., 2017) has become more 
widely used for mapping weeds. Lottes et  al. (2017) proposed 
mapping weeds by including vegetation detection, plant-specific 
feature extraction and classification using RGB images acquired 
from a low-cost unmanned aerial vehicle (UAV). Castro et  al. 
(2018) attempted to segment weeds using UAV imagery during 
the early growth stage of the crops. Alexandridis et  al. (2017) 
designed four detection classifiers to distinguish Silybum 
marianum from other vegetation, where different types of 
features, i.e., three spectral bands and texture are extracted 
for the classifiers. However, traditional machine learning methods 
only capture low-level hand-crafted features, i.e., shape, texture, 
colour, etc., which tend to be not robust and lack generalization.

For DL based weed mapping, Sa et  al. (2018) collected 
multispectral and RGB imagery covering 16,550  m2 sugar beet 
fields using a five-band RedEdge-M and a four-band Sequoia 
camera. Their method utilises a semantic segmentation model 
to distinguish the vegetarian from soil and improves its effectiveness 
via varying channels or their combinations. Compared to only 
using RGB channel, the model uses nine multispectral channels 
to achieve the best performance with AUC [i.e., area under the 
ROC (i.e., Receiver Operating Characteristic) curve of 0.839,  
0.863, and 0.782 for background, crop, and weed, respectively]. 

Huang et  al. (2018) applied full convolutional network (FCN) 
to generate weed distribution maps, where a fully connected 
conditional random field (CRF) is employed to enhance the spatial 
details. Experimental results show the method outperforms pixel-
based support vector machine (SVM) and the traditional FCN-8 s 
in terms of mean Intersection-over-Union (IoU) and accuracy. 
Ramirez et  al. (2020) proposed a weed segmentation framework 
based on DeepLabv3 architecture using an aerial image. They 
demonstrated that increasing the balance of data and enhancing 
the spatial information resulted in better performance in terms 
of AUC and F1-score. Ma et  al. (2019) constructed a semantic 
segmentation method based on FCN to distinguish weed from 
rice seedlings with promising accuracy in segmenting weed, rice 
seedlings, and soil background. You et  al. (2020) proposed a 
weed/crop segmentation model based on deep neural network 
(DNN), which integrates four additional modules, i.e., hybrid 
dilated convolution and dropblock, universal function approximation 
block, attention block, and spatial pyramid refined block. The 
performance of the model on two publicly available datasets is 
better than the state-of-art segmentation methods. However, all 
of the above-mentioned methods adopt fully supervised semantic 
segmentation networks, which require large amount of pixel-wise 
annotated data and are thus labour intensive. Although data 
augmentation techniques (i.e., image rotation, cropping, flipping, 
etc.) are used to alleviate the problem of insufficient training 
data, the methods still need hundreds of pixel-wise annotated 
images for training an optimal model. In addition, due to the 
severe overlapping of weeds and crop in the field, it is not trivial 
to annotate the weed and crop pixel by pixel.

Compared with collecting annotated data that is time-
consuming and labour-intensive, unannotated data are much 
easier to acquire. In addition, semi-supervised learning can make 
full use of the rich information in unannotated data, which 
significantly alleviates the workload of annotating images while 
retaining accuracy. Therefore, such an approach offers effective 
solution for mapping crop and weeds. To the best of our 
knowledge, there are few studies working on semi-supervised 
weed and crop mapping or classification. Pérez-Ortiz et al. (2015) 
proposed a weed mapping system using multispectral images 
acquired from UAV, which involves computing different vegetation 
indices, and row detection via Hough transform. They used 
different machine learning paradigms to achieve the best 
performance. However, their system is not end-to-end, and is 
not suitable for generalization due to the manually adjusted 
parameters used. Lottes and Stachniss (2017) proposed an online 
crop/weed mapping method by integrating vision-based 
classification and geometry-based classification, achieving a 
classification performance with an accuracy of greater than 95% 
in two sugar beet fields. However, these two methods are based 
on traditional machine learning, which is not end-to-end, and 
heavily rely on feature extraction and classifier design. This is 
prone to error and could lead to the poor generalization. Jiang 
et  al. (2020) proposed a model based on graph convolutional 
network to classify multi-species crops and weeds, by exploiting 
both labelled and unlabelled image features. Khan et  al. (2021) 
used generative adversarial network to augment the training 
samples, enhancing the capability in distinguishing crop from 
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weeds in UAV imagery. Nevertheless, both methods only focus 
on exploiting semi-supervised learning for image-level classification 
of crop and weeds, not tackling the pixel-wise mapping problem.

Unlike image-level classification, pixel-wise crop/weed 
segmentation is much more challenging due to two essential 
characterises exclusively existing in crop and weed field. First, 
weeds tend to grow disorderly and might spread amongst crop 
plants, which may lead to overlapping and occlusions. Second, 
there exists the ambiguity in weed/crop mapping, where it could 
be difficult to distinguish the crop from the background as they 
share the similarity in colour and texture. Furthermore, UAV 
is a popular means for monitoring farmland and mapping the 
crop and weeds, as they are flexible, cost-saving, easily manipulated 
and do not affect the fields through soil compaction as ground 
vehicles do. Therefore, we  focus on the weed and crop mapping 
using UAV imagery, which brings an additional challenge, namely 
the size of crop and weed is smaller in these images.

In this paper, we  aim at exploring the problem of crop 
and weed mapping using UAV imagery and propose a semi-
supervised segmentation framework for segmenting weeds and 
crop in order to significantly reduce the requirement of manually 
annotated data. To address the challenges in crop/weed 
segmentation using semi-supervised learning, the proposed 
method uses an attention strategy by integrating it to encoded 
feature from the encoder of the segmentation model to generate 
the attention enhanced feature. The enhanced feature provides 
useful information of the targets, i.e., crop and weeds, and 
highlight the target feature while mitigating the impact of 
background. To avoid the ambiguity caused by the similarity 
between crop and weeds, we  employ online hard example 
mining (OHEM) to separate the regions that are easily confused 
by refining the positive samples with low confidence. In summary, 
the proposed method automatically segments the weeds, crop 
and soil (background) accurately, where semi-supervised learning 
greatly reduces the cost of labour and the training time.

The main contributions of our work are:

 1. An efficient semi-supervised semantic segmentation model, 
specifically for crop and weed mapping using UAV optical 
imagery. To the best of our knowledge, we  are the first to 
address the challenges exclusively existing in crop/weed 
mapping based on semi-supervised learning.

 2. A multiscale enhanced feature by integrating the selective 
kernel attention with the encoded features, highlighting the 
significant features of the target crop and weeds, and further 
increasing the ability to identify the weed/crop in varying 
scales in UAV images.

 3. OHEM for focusing more on those pixels that not easily 
distinguishable, effectively reducing inaccurate segmentation 
caused by the similarity and overlapping between crop 
and weeds.

The remainder of the paper is structured as follows: The 
proposed method and dataset are presented in detail in section 
Proposed Method and Data. Section Results and Discussion 
discusses the implementation setting, experimental results, and 
comparative analysis. The conclusions drawn are presented in 
section Conclusion and Future Work.

PROPOSED METHOD AND DATA

This section provides the details of the proposed method 
including the encoder, attention module, and the joint loss 
for supervised and unsupervised learning. The overall framework 
of the proposed method, SemiWeedNet, is shown in Figure  1. 
The section also presents the data used in our experiments 
to evaluate the performance of the proposed method.

Semi-supervised Method for Crop/Weed 
Segmentation
DeeplabV3+ Architecture
The DeepLab series network was originally proposed by Chen 
et al. (2014), which addresses the poor localization characteristic 
of deep network by integrating feature from the final network 
layer with a fully connected CRF. The DeepLabV3 network 
(Chen et  al., 2017) incorporates atrous convolution modules 
and an augmented atrous spatial pyramid pooling (ASPP), 
discarding the CRF, to enhance the capability of extracting 
multi-scale information and encoding the global structure 
information. To locate sharper object boundary, DeepLabv3+ 
(Chen et  al., 2018) as shown in Figure  2 extends DeepLabV3 
by integrating an effective decoder to refine the results.

In addition, Xception model are employed in DeepLabv3+, 
where depth-wise separable convolution is applied to replace 
the convolutional layers in ASPP and decoder. In this paper, 
we employ DeepLabV3+ as our basic encode-decode framework 
due to its two competitive advantages: (1) Enabling to depict 
the multiscale feature that is widely existing in crop/weed maps; 
and (2) Significantly reducing the computational complexity, 
which is appropriate for field monitoring.

DeepLabV3+ comprises an encoder and a decoder. The 
input image for the encoder is extracted by the depth-separable 
convolutional layers of the different channels in the backbone 
model. The extracted feature maps are then processed by the 
ASPP module and the channel attention (CA) module. This 
is followed by 1 × 1 convolution, where the atrous convolution 
with an atrous stride of 6, 12, and 18 and the global average 
pooling are used for stitching. The CA module is then used 
to fuse the feature maps obtained from the ASPP module, 
where the 1 × 1 depth separable convolution is used in the 
CA module to reduce the dimensionality. The final features 
containing 256 channels, extract rich contextual information 
and effectively capture high-level semantics.

The feature maps extracted from the encoder are first bilinearly 
up-sampled by a factor of 4, and simultaneously concatenated 
with the corresponding low-level features from the backbone 
with the same spatial resolution. An additional 1 × 1 convolution 
is applied to the low-level features to decrease the dimensionality 
of the channel. A 3 × 3 convolution is applied to the features 
and followed by another simple bilinear up-sampling. The features 
are then gradually refined to recover spatial information and 
are used to generate the final segmentation results.

Multiscale Enhancement Module
Although the DeepLabv3+ model aggregates multiscale features, 
its convolution kernel size is fixed and thus is insufficient for 
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our scenarios due to the high variability of the targets (i.e., 
crop and weeds) and complex background. Based on our 
observation, the traditional DeepLabV3+ encoder–decoder 

module sometimes fails to identify the entire regions of weeds 
and crop, especially in some small size areas, leading to a 
highly incorrect segmentation. To solve the problem, we design 

FIGURE 1 | Overall framework of the proposed method, SemiWeedNet.

FIGURE 2 | The architecture of DeepLabV3+, where 1 × 1 Conv and 3 × 3 Conv denote the convolution with the kernel size of 1 × 1 and 3 × 3, respectively, 
Unsample denotes the bilinear upsampling operation, and Concat denotes the concatenation of feature.
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a multiscale feature enhancement module (MFEM) by integrating 
the effective attention mechanism to the encoded feature, where 
Selective Kernel Attention (SKA) is exploited due to its 
computational efficiency. SKA extracts the different size of the 
convolutional kernels by combining squeeze-excitation module 
with multi-scale information, where the features extracted using 
different kernel size are refined and thus achieve better 
representation. SKA consists of three parts: Split, Fuse, and 
Select as illustrated in Figure  3. The Split operator generates 
multiple paths with various kernel sizes based on different 
sized receptive fields of neurons. The Fuse part then combines 
the information of multiple paths to acquire a more 
comprehensive representation for selection weights. The Select 
part aggregates the feature maps of kernels with varying size 
based on the selection weights.

Specifically, given a feature map X∈ ′ ′ ′× ×H W C , we perform 
the mapping by applying two convolution operations with the 
kernel size of 3 and 5 as

 

1 1

2 2

:

:

× ×

× ×

→ ∈

→ ∈

H W C

H W C

F

F

R

R

X U

X U  
(1)

where H, W, and C, respectively, denote the height, width, 
and number of channels for feature maps. F1  and F2  comprise 
depthwise convolutions, Batch Normalisation (BN; Ioffe and 
Szegedy, 2015) and ReLU (Nair and Hinton, 2010) activation.

After the Split part, the Fuse part fuses the two mapped 
features via element-wise summation, which is capable of better 
enhancing the global structure information while retaining the 
local details in crop images. The module consists of four 
sub-modules: split, fuse, and scale, i.e.,

 U U U= +1 2  (2)

where the fused feature maps U  combine the feature information 
both from U1  and U2 . The feature maps are then embedded 
in channel-wise statistics S C∈  via global average pooling, 

where the c-th element of S  is computed by compressing 
the spatial information of U , i.e.,

 
S Uc c
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To promote the meaningful feature and suppress 
un-informative one, a simple fully connected (FC) layer is 
applied to reduce the dimensionality, followed by the BN and 
ReLU. The resultant feature descriptor is defined as

 z = ( ) = ( )( )F BFC S Sδ W  (4)

where   denotes the BN operation, δ  denotes the ReLU 
function, and W R∈ ×d C . We use a reduction ratio r to control 
the value of d, i.e.,

 
max ,  =   

Cd L
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(5)

where L  denotes the minimal value of d.
In the Select part, a soft attention across channels is exploited 

to adaptively select different spatial scales of information, which 
is supervised by the feature descriptor z. A softmax operator 
is applied on the channel-wise digits, i.e.,
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where A B R, ,∈ ×C d  and a and b, respectively, denote the soft 
attention vector for U1 and U2 . Here, A Rc

d∈ ×1  is the c-th 
row of A and ac  is the c-th elements of a. Similarly, for Bc  
and bc . The final feature map V is computed via the attention 
weights on various kernels, i.e.,

 V a U b U a bc c c c= + + =· · ,1 2 1  (7)

where V V V Vc= …[ ]1 2, , .

FIGURE 3 | Selective kernel attention enhancement module.
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The proposed MFEM effectively achieves multi-scale 
information existing in crop/weed segmentation by adaptively 
adjusting the respective field sizes, which significantly improves 
the performance of segmentation in the field.

Consistency Regularisation for Unsupervised 
Learning
There are two batches of inputs, xl  and xu , respectively 
denoting labelled and unlabelled data. As for the general 
semantic segmentation, the encoder architecture   embeds 
the labelled image in the feature maps f xl l= ( ) , and the 
decoder makes predictions p fl l= ( ) . The learning process 
is provided by ground truth labels yl  using the standard cross 
entropy loss ce . With respect to an unlabelled image, 
we randomly crop two patches xu1  and xu2  with an overlapping 
region xo , and then augment xu1 and xu2  using low-level 
augmentation. The two augmented patches are then fed to the 
encoder model   to obtain the feature map fu1  and fu2 , 
respectively. Following the work in (Chen et  al., 2020), the 
obtained two features are embedded using nonlinear projection 
as Φ, i.e.,

 ( )1 1φ = Φu uf  (8)

 ( )2 2φ = Φu uf  (9)

Accordingly, the features from the overlapping areas in φu1  
and φu2  are referred as φo1  and φo2 , respectively, where the 
φo1  and φo2  should remain consistent under different contexts.

To this end, we  use a context-ware consistency constraint, 
i.e., Directional Contrastive (DC) Loss, to enable the features 
from the overlapping areas to remain consistent with each 
other. The DC loss is inspired by the contrastive loss, which 
pulls the positive samples closer while separating the negative 
samples belonging to other classes. In our case, the features 
from overlapping locations φu1  and φu2  are regarded as a 
positive pair as they share the same pixels despite under different 
contexts, and any two features in φu1  and φu2  from different 
locations are regarded as a negative pair. Unlike contrastive 
loss, the DC loss further exploits a directional alignment for 
the positive pairs, which effectively avoids the high confident 
feature from suppressing the low confident one. This is because 
the prediction with higher confidence tends to be more accurate, 
and the feature with lower confidence need to be  aligned to 
its higher confident counterpart. The confidence of each feature 
φu1  is measured using maximum probability among all classes, 
i.e., max  fi( )( ) . For the t-th unlabelled image, the DC loss 
dc
t  is computed as
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where ldc
t  denotes the loss between the features at the two 

locations φo1  and φo2 , N is the number of spatial locations 
of overlapping area, h and w represent the 2-D spatial locations, 
φn  denotes negative counterpart of the feature φo

h w
1
,  and r  

represents the exponential function of the cosine similarity s 
between two features with a temperature τ , i.e., 
( ) ( )( )1 2 1 2, exp , /φ φ φ φ τ=r s , and u  denotes the set of negative 

samples. Since more negative samples result in better performance, 
a memory bank is used to store the features from the last 
few batches to acquire more negative samples (Lai et al., 2021). 
The final loss is then computed by summing the loss of each 
image, i.e.,

 1

1

=
= ∑

T
t

dc dc
tT

 
 

(13)

where T denotes the batch size during training.

Loss Function With OHEM Strategy
The joint loss function of the proposed semi-supervised based 
method comprises two parts: cross entropy loss ce for 
supervised learning, and consistency constraint loss dc  for 
unsupervised learning, which is defined as

   = +ce dcλ  (14)

where λ  is the hypermeter that balances the supervised loss 
and the unsupervised loss.

Based on our observation on samples, there are two problems 
that we  need to address. First, the samples of different classes, 
i.e., crop, weeds and soil are imbalanced, leading to inefficient 
training. This is because the model may focus more on the 
samples that can be  easily learned and ignore those samples 
that are difficult to be  distinguished, degrading the model 
performance. Second, the ambiguous boundary of crop and 
weed due to overlapping and occlusion makes it more difficult 
for the model to identify the targets. The standard cross entropy 
loss could not handle these two problems. Thus, we  employ 
OHEM to refine the training of the model, which focuses on 
those samples, which are difficult for the model to predict 
during training. The OHEM is first used to filter the input 
pixels, where pixels that are difficult to predict with a high 
impact on classification are selected for training in stochastic 
gradient descent (Shrivastava et al., 2016). Specifically, we modify 
the loss layer to select the difficult examples, where the loss 
for all pixels is computed, and is then sorted to select the 
difficult pixels. The nondifficult pixels are finally set to 0, and 
hence no gradient updates. The OHEM effectively deals with 
the problem of difficult samples existing in crop/weed mapping, 
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which lead to better training, and thus increases the performance 
in segmentation.

Dataset
To evaluate the effectiveness of the proposed semi-supervised 
learning segmentation method for crop/weed mapping, we  use 
a publicly available dataset WeedMap (Sa et al., 2018) to conduct 
experiments. This dataset is collected from two sugar fields 
in Switzerland and Germany using two UAV platforms mounting 
two multispectral sensors, i.e., RedEdge and Sequoia. The 
platforms include Orthomosaic and Tile folders which, 
respectively, generate orthostatic maps and the associated tiles 
at a fixed size of 480 × 360. There are seven subsets of images 
denoting the different parts of the fields, where the subsets 
numbered from 000 to 004 are acquired by RedEdge in Germany, 
and those numbered from 005 to 007 are acquired by Sequoia 
in Switzerland. These images are used to generate tile images 
from an orthostatic map by using a sliding window, where 
some tiles may contain invalid pixel values. In our experiment, 
we select the effective tile images that contain no invalid pixels, 
and only choose the RGB channel as the input of our model. 
Overall, 289 RGB pixel-wise labelled images are collected from 
the subfolders of 000 to 004 (as shown in Figure  4). These 
images are randomly split into training set and testing set in 
the ratio of 8:2.

RESULTS AND DISCUSSION

In this section, the implementation details are demonstrated, 
the segmentation results are compared with state-of-the-art 
methods qualitatively and quantitatively. This section also 
presents the ablation study to evaluate the contributions of 
the various elements of the proposed method.

Implementation Details
DeepLabV3+ is employed as the encoder–decoder  
network of the proposed method, SemiWeedNet, due to its 
effectiveness on multi-scale information, where Resnet50 
and Resnet101 are used as the backbone. Since other existing 
state-of-the-art methods adopt Resnet as the backbone, 
we replace Inception model with the Resnet in our experiment 
for fair comparison.

The proposed method is implemented using Pytorch 
toolbox on a workstation with an NVIDIA RTX3080Ti 
GPU. The input images are resized to 480 × 480 pixels, and 
then augmented using random flipping. During training, 
we  use SGD optimizer and set the learning rate, weight 
decay, and momentum to 0.02, 0.0001, and 0.9, respectively. 
The training batch size is set to 8, including 4 labelled and 
4 unlabeled images. The weight λ  for unsupervised loss 
is set to 0.7.

The Intersection-over-Union (IoU) for each class and mean 
Intersection-over-Union (mIOU) are employed as our evaluation 
metrics. IoU is also known as the Jaccard Index, and is a 
statistic indicating the similarity and diversity of samples. In 
semantic segmentation, IoU denotes the ratio of the intersection 
of the pixel-wise classification results and the ground truth, 
to determine the spatial overlap between the prediction and 
ground truth, i.e.,

 

IoU =
+ +

≠
∑
n

t n n
j iii

i j ji ii
,

 

(15)

where nii  denotes the total number of pixels both predicted 
and labelled as class I, and nij  denotes the number of pixels 
of class i-th predicted to belong to class j, and ti  is the total 
number of pixels of class ith in ground truth segmentation. 
The mIoU is computed by averaging the IoU of all classes, i.e.,

FIGURE 4 | Image samples with ground truth mask from WeedMap. Green denotes the crop, Red denotes the weed, and Black denotes the background (soil).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Nong et al. Weed and Crop Segmentation

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 927368

FIGURE 6 | Performance of the proposed method using Resnet 101 under different labelled data proportions.
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Performance of SemiWeedNet and 
Analysis
To evaluate the effectiveness of SemiWeedNet, we  made 
comparisons with state-of-the-art methods including CAC (Lai 
et  al., 2021), ST++ (Yang et  al., 2021), Adv-Semi (Hung et  al., 

2018) and cycleGAN (Zhu et al., 2017). We implemented these 
methods within a unified framework following their official 
code, where the same base backbone (i.e., Resnet) is used and 
the same data lists are used for training and testing. We compared 
the proposed method under the setting with various labelled 
data proportions, i.e., 2/8, 3/7, 5/5 and full labelled data. In 
the full data setting, images fed to the unsupervised branch 
are simply collected from the labelled set.

The segmentation performance of individual class using our 
method under various data proportions are shown in Figure 5 
(using Resnet50 backbone) and Figure  6 (using Resnet101 

FIGURE 5 | Performance of the proposed method using Resnet 50 under different labelled data proportions.
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backbone). We  used only 20% labelled images incorporating 
unlabelled images and achieve a competitive performance with 
training using full labelled data, which significantly reduces 
the demand for annotating images.

In addition, we  conducted experiments to compare the 
proposed method with other methods, and the results are 
shown in Table 1. The table shows that the segmentation result 
of proposed method outperforms other methods by a large 
margin on all data proportions. This is due to the facts that 
the proposed method uses the effective attention module to 
enhance the ability of capture the weed and crop with different 
scales. Furthermore, the online hard sample mining addresses 
the problem of overlapping between crop and weed. Both 
Adv-Semi and cycleGAN suffer from unstable training due to 
the use of adversarial learning, achieving unsatisfactory 
performances in our scenarios. ST++ and CAC use pseudo 
label based self-training method, which might lead to incorrect 
labeling especially in images with overlap and occlusion.

We also present a visual comparison with other state-of-
the-art methods in Figure 7. The figure shows that the proposed 
method is the only method which effectively identifies the 
crop and weeds with small size, and the results are almost 
consistent with the ground truth.

Performance of SemiWeedNet Variants 
and Analysis
To thoroughly assess the performance of SemiWeedNet, 
we  conducted an ablation study to illustrate the contribution 
of its key modules, and the results are shown in Table  2. 
We  used DeepLabV3+ with Resnet101 as the segmentation 
network, and the baseline method, i.e., the model trained 
without using SKA enhancement and OHEM. We  performed 

FIGURE 7 | Visual comparison between our method with state-of-the-art methods and SupOnly.

TABLE 2 | Ablation study under different labelled data proportion.

Allocation 
strategy

Baseline SK Attention OHEM Loss mIOU

2/8 ✓ 0.675
✓ ✓ 0.690
✓ ✓ 0.680
✓ ✓ ✓ 0.692

3/7 ✓ 0.679
✓ ✓ 0.681
✓ ✓ 0.686
✓ ✓ ✓ 0.690

5/5 ✓ 0.683
✓ ✓ 0.695
✓ ✓ 0.686
✓ ✓ ✓ 0.696

full ✓ 0.686
✓ ✓ 0.696
✓ ✓ 0.693
✓ ✓ ✓ 0.700

TABLE 1 | Comparison with the baseline (SupOnly, i.e., using only supervised 
loss) and other state-of-the-art on WeedMap dataset with 2/8, 3/7, 5/5, and full 
labelled data.

Method Backbone 2/8 3/7 5/5 full

SupOnly Resnet50 0.664 0.675 0.698 0.700
CAC Resnet50 0.663 0.673 0.679 0.676
ST++ Resnet50 0.598 0.597 0.598 0.613
Ours Resnet50 0.698 0.695 0.695 0.701
SupOnly Resnet101 0.670 0.673 0.688 0.705
CAC Resnet101 0.675 0.679 0.683 0.686
ST++ Resnet101 0.599 0.607 0.594 0.611
Adv-Semi Resnet101 0.599 0.586 0.587 0.622
cycleGAN Resnet101 0.388 0.443 0.421 0.558
Ours Resnet101 0.692 0.690 0.696 0.700

Values in bold denotes the best IoU performance.
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four sets of experiments: (1) Using baseline method; (2) Using 
SKA enhanced features; (3) Using OHEM; and (4) Using 
SemiWeedNet. Table  2 shows that SemiWeedNet yields a 
constant improvement under different data proportions, where 
both SKA enhancement and using OHEM have generally 
improved the performance for segmenting crop and weeds 
using UAV imagery. This verifies the effectiveness of the attention 
mechanism and hard sample mining strategy.

CONCLUSION AND FUTURE WORK

In this paper, we  focus on addressing the problem of automatic 
mapping crop and weeds using UAV acquired images from the 
real field environment, and propose a semi-supervised based 
semantic segmentation method, which significantly reduces the 
workload of manual annotations. Due to the complexity of the 
application environment, the multiscale enhancement module 
is designed by intergrading an effective attention mechanism to 
the encoded features to highlight the useful features of the 
targets, i.e., crop and weeds, while mitigating the influence of 
the background. OHEM is employed in the training of the 
model, which aims at addressing the similarity and overlapping 
of crop and weeds which resulted in poor recognition performance. 
An auxiliary consistency constraint is further introduced to fully 
exploit the information of the large amount of unlabelled images, 
to extract the meaningful and discriminative features for crop 
and weed segmentation. The performance of the proposed method 

is evaluated using WeedMap dataset, which demonstrates the 
superiority of our method compared with state-of-art methods 
and also shows the promising potential of our deigned modules. 
In the future, interesting possible extensions of this work could 
be  designing a lightweight model by reducing the parameters 
and increasing the inference speed.
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