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The root is an important plant organ, which uptakes nutrients and water

from the soil, and provides anchorage for the plant. Abiotic stresses like

heat, drought, nutrients, salinity, and cold are the major problems of potato

cultivation. Substantial research advances have been achieved in cereals

and model plants on root system architecture (RSA), and so root ideotype

(e.g., maize) have been developed for e�cient nutrient capture to enhance

nutrient use e�ciency along with genes regulating root architecture in plants.

However, limited work is available on potatoes, with a few illustrations on

root morphology in drought and nitrogen stress. The role of root architecture

in potatoes has been investigated to some extent under heat, drought,

and nitrogen stresses. Hence, this mini-review aims to update knowledge

and prospects of strengthening RSA research by applying multi-disciplinary

physiological, biochemical, and molecular approaches to abiotic stress

tolerance to potatoes with lessons learned from model plants, cereals, and

other plants.
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Introduction

The root is an integral plant part that provides anchorage, water, and nutrients

to the plant. The aboveground plant parts (e.g., stems and leaves) have been widely

investigated by several groups worldwide in crops for abiotic stresses like heat

and drought tolerance (Tracy et al., 2020; van der Bom et al., 2020), but limited

reports are available on underground roots. The root system architecture (RSA)

is the 3-dimensional structure of the root system of a plant in soil, and it is

highly essential for efficient water and nutrient acquisition and plant growth and

development (Lynch, 2019). Although, substantial information has been generated and

deployed in cereals for enhancing nutrient use efficiency (Lynch, 2019, 2021) and
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some RSA reports are also available on potatoes on heat,

drought, and nitrogen use efficiency (Villordon et al., 2014;

Tiwari et al., 2018, 2020). Hence, there is an urgent need

to enhance knowledge of root architecture in the potato

by applying multi-disciplinary physiological, biochemical,

and molecular approaches. Thus, RSA profiling is now a

promising breeding strategy for developing resource-efficient

potato cultivars.

The availability of information on RSA is crucial for abiotic

stress tolerance in potatoes, particularly heat and drought stress.

In potatoes, the tuber is the most economically important

plant part and the root is a vital organ, that supplies nutrients

and water for stolon formation, and then tuber growth and

development (Iwama, 2008). Considerable research on RSA

has been evidenced in cereals (Lynch, 2021) but very little

on potatoes (Wishart et al., 2013). For example, maize root

ideotype Steep, Cheap, and Deep has been designed to increase

the efficient uptake of water and nutrients through roots from

deep and shallow soils (Lynch, 2019). Likewise, a large number of

studies have been illustrated on heat and drought stress tolerance

but limited research on the exploitation of RSA for crop

improvement, except a few demonstrated toward improving

nitrogen use efficiency of plants (van Bueren and Struik, 2017).

Genetic variability has been explored in potatoes, including

root traits of N stress in potatoes (Zebarth et al., 2008; Trehan

and Singh, 2013; Ospina et al., 2014; van Bueren and Struik,

2017). Aeroponics technology has also been proven in potatoes

for precision phenotyping of root traits for improving N use

efficiency (Tiwari et al., 2018, 2020). Moreover, exploration of

root traits is essential to meet sustainable potato production by

improving nutrient and water use efficiency (Garnett et al., 2009;

Duque and Villordon, 2019; White, 2019; Tracy et al., 2020).

Overall, the focus has been driven to harness the potential of root

traits toward increasing nutrient acquisition along with water for

abiotic stress tolerance in plants.

Abiotic stresses in potato

Heat and drought stress

Potato is considered a crop of cool and temperate climate,

and high temperatures inhibit tuber growth and yield due

to heat stress. In general, tuberization is reduced at high

night temperatures above 20◦C with complete inhibition of

tuberization above 25◦C. Exposure of potato plants to high

temperatures alters the hormonal balance in the plants. The

heat stress tolerance breeding program considers tuberization

under high night temperatures (>22◦C). Potato is mostly an

irrigated crop in plains, and rain-fed crops in hilly regions.

Drought is an emerging problem in potato production due

to erratic rainfall and the unavailability of irrigation water

(Monneveux et al., 2013). The potato plant is highly sensitive

to moisture availability and the decline in photosynthesis is fast

and substantial even at relatively low water potentials of −3 to

−5 bars. Tuber traits such as shape, cracking, drymatter content,

and reducing sugars are highly influenced by the availability of

soil moisture during the vegetative period.

Nutrient, salinity, and cold stress

Macro- andmicro-nutrients are essential for good vegetative

growth, yield, and quality of potatoes. Potato is a shallow-rooted

crop and irrigated cultivation is followed on sandy-loam soils in

India. Out of the total N fertilizer applied, nearly 40–50% is only

used by plants (Garnett et al., 2015). The excessive application

of N fertilizers in potatoes increases production cost and also

causes nitrate leaching, and groundwater contamination, and

thereby causes environmental pollution (Tiwari et al., 2018,

2020). Salinity is also another problem that could be due to

soil salinity or irrigation water. It causes nutritional imbalances,

restricts plant growth, and early senescence, and reduces tuber

yield, particularly in semi-arid/arid regions. Besides, cold is

one of the problems in temperate regions. Temperatures below

−2◦C can result in partial or complete loss of crops. In temperate

zones, freezing injury can occur during the spring season when

the crop is at the initial stage of vegetative growth or during

autumn when it is near maturity.

Root system architecture research in
plants

Determining root ideotypes for e�cient
nutrient uptake/utilization

Harnessing the potential of RSA is now a priority research

to develop varieties for abiotic stress tolerance particularly, heat

and drought stress. A root ideotype with narrow and deep root

systems is ideal for N acquisition. The crops having deeper

roots are more efficient in N acquisition facilitated by steeper

root growth angles, fewer axial roots, lesser lateral branching,

and anatomical structures (Lynch, 2021). The Steep, Cheap, and

Deep root ideotype of maize is beneficial for subsoil foraging

or capture of N and water from deeper soils, which consists

of special architectural, anatomical, and physiological features

(Lynch, 2013, 2019). Dechorgnat et al. (2018) witnessed a dense

maize root ideotype of brace, seminal, and crown roots with

mainly increased crown root profile (root length, surface area,

and volume). More aerial nodal roots and fewer crown roots

increase the uptake of N and deep water under dense planting

in maize (Zhang et al., 2018). Lynch (2021) pointed out that

crop genotypes with reduced metabolic costs of soil exploration
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TABLE 1 Root system architecture studies on di�erent abiotic stresses in potato.

Sr. No. Trait/stress Potato genotype Technology used Key findings References

1. High-throughput root-trait

phenotyping

Root and tuber crops High-throughput root-trait

phenotyping techniques

Discussed new phenotyping methods based on root branching and

nutrient capture, and examined root morphology, anatomy, and

germplasm screening with enhanced root architecture. Non-invasive in

situ imaging in the field were advocated such as X-ray computed

tomography, laser, nuclear magnetic resonance (NMR), ground

penetrating radar (GPR), infrared (IR) imaging, and near-infrared

(NIR) imaging alongside a robust database and data analysis pipeline

Villordon et al.

(2014), Khan et al.

(2016), Duque and

Villordon (2019)

2. Root morphology IWA1/2/3/4 Norin 1 Konafubuki Win-RHIZO software Root mass showed a negative correlation with early tuber bulking, but

a positive correlation with shoot mass and final tuber yield

Iwama (2008)

3. Potato root architecture Desirée ImageJ program (http://imagej.nih.

gov/ij/)

Described adventitious root (AR) growth and lateral root (LR)

branching. Elucidated understanding of origin and nature of AR

systems in potato. Results indicate that LR formation in potatoes

follows a similar pattern as in model plants, and facilitates its

manipulation to improve soil exploitation and yield.

Joshi et al. (2016),

Joshi and Ginzberg

(2021)

4. Canopy development and

nitrogen use efficiency

189 cultivars Field phenotyping Assessed phenotypic variation for NUE traits in potatoes and

determined association between NUE and canopy development under

high and low N input.

Ospina et al. (2014)

5. Root traits under N stress Kufri Jyoti, Kufri Gaurav Aeroponics and WinRhizo software Demonstrated precision phenotyping of potato roots and determined

NUE variables in aeroponics under low and high N supply.

Tiwari et al. (2020),

Tiwari et al. (2022)

6. Root traits 28 genotypes (Tuberosum and

Phureja groups)

Root excavation from field and glass

house screening

Root traits variation indicated that final yield was correlated negatively

with basal root length, and weakly but positively with total root weight.

Phureja genotypes had more numerous basal roots than stolon roots

compared to Tuberosum group.

Wishart et al. (2013)

7. Drought stress 12 genotypes Destructive field phenotyping and

general linear model (GLM)

Applied field phenotyping to identify the useful traits to an

environmental stress. Study showed that stolon root traits were

associated with drought tolerance in potato and could be used to select

genotypes with resilience to drought.

Wishart et al. (2014)

8. Root traits under drought

stress

Tolerant: Gwiazda and Tajfun

Sensitive: Oberon and Cekin

Field phenotyping Established relationship between root system architecture and drought

tolerance. Root dry mass decreased under drought stress, and

drought-tolerant cultivars developed elongated roots, unlike

drought-sensitive cultivars.

Boguszewska-

Mańkowska et al.

(2020)

(Continued)
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can improve water and nutrient acquisition efficiency. Table 1

summarizes some recent work on root architecture studies

in potatoes.

The role of the roots-based approach has been described in

breeding for nutrient uptake in cereals and other crops (Garnett

et al., 2009). It is now clearly evident that root branching plays a

very crucial function in nutrient acquisition, which determines

plant growth and tuber yield in potatoes (Duque and Villordon,

2019; White, 2019; Tracy et al., 2020). The potato is a model

tuber crop species for analyzing underground plant parts like

roots, stolons, and tubers (Iwama, 2008). Potato is a shallow-

rooted crop that includes basal and stolon roots. The basal roots

are involved in plant anchorage and water uptake, whereas the

stolon roots capture nutrients and promote tuber growth in

potatoes (Villordon et al., 2014). The deeper basal roots and

numerous short roots are more advantageous for high tuber

yield (White, 2019). It has been determined that basal root

length and total root weight are associated with total tuber

yield in potatoes (Wishart et al., 2013), and root length and

surface area are correlated with higher N uptake (Sattelmacher

et al., 1990). Khan et al. (2016) suggest that root traits such as

root length, spread, number, and length of lateral roots show

greater plasticity in response to environmental changes and have

better nutrient use efficiency in potatoes. It is evident that the

concentration of abscisic acid (ABA) increases in roots under

drought stress and shows a linear relationship with stomatal

conductance in potatoes (Liu et al., 2005). Drought stress has

been witnessed to increase root depth with a high root-to-

shoot ratio and allow for uptake of water from deeper strata,

whereas, decreased total rot length, increased or decreased

root dry mass and stolon number were recorded in different

reports (Hill et al., 2021). High-temperature stress reduces plant

growth, including reduced root and stolon, delayed tuberization,

and thereby lowers tuber yield but increases starch degrading

enzymes, heat-sock proteins, and transpiration rate in potatoes

(Dahal et al., 2019). Salinity causes reduced root length, root

volume, and tuber yield, while it causes stomatal closure and

increased ABA, proline, and Na+ transport in potato roots

(Dahal et al., 2019). Despite these studies, root branching,

adventitious roots, and lateral roots, and their mechanism as

well as functions in plant growth and development are poorly

understood in potatoes. Hence, research on root architecture

needs a priority in potato breeding for developing nutrient-

use efficient cultivars. In our study, Figure 1A depicts root

morphology in potatoes under the field and aeroponics (a

soil-less culture of liquid nutrient supply in the mist form)

conditions: (a) plant canopy and root biomass at 45 days after

planting (DAP) in aeroponics, (b) hanging root growth and

tuber initiation in aeroponics system at 45 DAP, (c) harvesting

of minitubers at 50 DAP in aeroponics, (d–e) pattern of root

branching and laterals development of 10 days-old seedlings

in aeroponics, and (f) root biomass of plants at harvesting

stage (90 DAP) grown in the field with limited N (50 kg/ha)
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FIGURE 1

(A) Illustrates the root biomass and tuber growth in potato plants grown under aeroponics: a) complete plant growth including root biomass at

45 days after planting (DAP), b) root architecture showing root volume and tuber initiation under hanging roots in aeroponics system at 45 DAP,

c) fully grown tubers and harvesting of minitubers at 50 DAP (<5g each), d, e) pattern of root branching and laterals development at a very early

stage (10 days-old seedlings), and f) root biomass of plants at harvesting stage (90 DAP) grown in the field with limited N (50 kg/ha) supply. (B)

depicts plant phenotype (foliage and roots) under di�erent stresses like nitrogen (left) (N starvation vs. high N), drought (right top) (control, 50%

field capacity and 25% field capacity) and high temperature stress (right bottom) (>24◦C night temperatures).
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supply. In our other studies, Figure 1B illustrates plant foliage

and roots under different stresses like nitrogen (N starvation vs.

high N), drought (control, 50% field capacity soil moisture, and

25% field capacity soil moisture), and high temperatures stress

(>24◦C night). In aeroponics, we observed variable responses

for root traits in 56 potato varieties under optimal N supply

(Tiwari et al., 2022), and in two contrasting varieties under N

stress and N sufficient conditions (Tiwari et al., 2018, 2020).

Under heat stress, lesser root growth and little or no tuber

formation were observed at above 24◦C night temperatures

in potatoes compared to the counterpart, and similar was

the case under drought stress. Taken together, the effects of

these stresses are detrimental to plant growth particularly

root and stolon development, and thus reduces tuber yield

in potatoes.

Multi-disciplinary approaches to
investigate root traits

A large number of agronomic, physiological, breeding,

and molecular works substantiate root traits studies in

many plants such as Arabidopsis thaliana (De Pessemier

et al., 2013) and tomato (Abenavoli et al., 2016) targeting

different traits (Table 1). The significance of RSA to improve

nutrient acquisition, translocation, remobilization, and nutrient

utilization efficiency has been remarkably known in plants

(Chen and Liao, 2017). Recently, Lecarpentier et al. (2021)

measured the plasticity of RSA, where lateral root density

played a key role under limited N in Brassica napus. Sinha

et al. (2020) documented genetic variation in wheat RSA traits

and association with high- and low-affinity nitrate transport

systems under optimum and limited N. The roles of nitrate and

amino acid regulation of shoot branching, flowering, and panicle

development, as well as cell division and expansion in shaping

of plant architecture have been demonstrated in cereals (Luo

et al., 2020). In plants, N regulation of root branching (Walch-

Liu et al., 2006) and the process of nitrate- and auxin-mediated

regulation of root structure have been unveiled recently (Hu

et al., 2021).

In potatoes, very high genetic variability has been observed

in varieties/germplasm for yield, N use efficiency (NUE), and

root traits under field conditions (Errebhi et al., 1999; Zebarth

et al., 2008; Vos, 2009; Ospina et al., 2014), and aeroponics

(Tiwari et al., 2020). Studies confirmed that genetic variation

in root traits and root dry weight was positively correlated

with final tuber yield (Sattelmacher et al., 1990; Stalham and

Allen, 2001; Wishart et al., 2013). Recently, our aeroponics

study demonstrated a highly significant and positive correlation

between root traits and tuber yield along withN use efficiency in

potatoes (Tiwari et al., 2022). In RSA studies on drought stress

in potatoes, Wishart et al. (2014) evidence that stolon roots are

associated with drought tolerance in fields, whereas elongated

roots are noticed in drought-tolerant cultivars (Boguszewska-

Mańkowska et al., 2020). Recently, Hill et al. (2021) concluded

that an open stem-type plant canopy increases light penetration

and shallow but densely rooted cultivars increase water uptake

under drought stress in potatoes. The adventitious roots of

potatoes are formed post-embryonically from consecutive nodes

on shoots and also include lateral root formation through auxin-

dependent cell cycle activation, whereas the tap/primary root

is formed in the embryo (Joshi et al., 2016). Thus, the root

elongation, growth angles, lateral branching, and longevity are

governed by genetic, physiological, and environmental factors

in potatoes (Joshi and Ginzberg, 2021).

The knowledge about genes involved in N metabolism is

an essential requirement for providing abiotic stress tolerance

by applying modern genomics tools. The understanding of the

genes/quantitative trait loci (QTLs) regulation of the symbiotic

associations between host plants and arbuscular mycorrhiza

fungi or rhizobial bacteria is an important strategy to enhance

nutrient acquisition (Li et al., 2016). In rice, the QTL DEEPER

ROOTING 1 was evidenced to increase root growth angle to

increase N uptake under limited N availability (Arai-Sanoh

et al., 2014). Kiba and Krapp (2016) highlighted increasing

nitrogen acquisition efficiency through high-affinity nitrogen

transporters, and root architecture modifications through low-

nitrogen-availability-specific regulators of primary and lateral

root growth under low N. Another study illustrated genomic

regions for marker-assisted selection on root morphology in

Brassica napus (Wang et al., 2017). MicroRNAs play key

roles in abiotic stress tolerance like plant adaptation under

limited N (Khan et al., 2011; Fischer et al., 2013). Recently,

Shi and Tong (2021) demonstrated that the TaLAMP1 gene

expression determines wheat plant architecture by regulating

spike number/plant and grain number/spike in response

to N (Table 1). Many genes have been proven in various

plants such as Arabidopsis for root architecture (e.g., NRT1.1,

TAR2, AHA2, and miR393) and lateral root development

(e.g., NRT2.1, CLE-CLV1, and miR167); and root architecture

modification in rice (OsMADS25, EL5, and OsNAR2.1) and

wheat (TaNAC2-5A; review by Li et al., 2016). The root-

specific N transporters such as nitrate transporter (NRT),

ammonium transporter (AMT), and signaling molecules or

regulatory elements (transcription factors and miRNAs) could

be targeted for engineering new genotypes with better

nutrient use efficiency, heat and drought stress tolerance.

The miR156 is a potential graft-transmissible and a phloem

mobile signal that plays a key role in plant architecture

and tuberization (Bhogale et al., 2014). Recently, a study

illustrated that miR160a/b participates in root architecture

and auxin signaling-related gene expression in potatoes. The

knockdown miR160 led to a reduction in root length and fresh

weight but an increase in lateral root number (Yang et al.,

2021). Overall, integrated agronomic, physiological, breeding,
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and molecular research strengthens our understanding of

root architecture.

High-throughput phenotyping to
dissect root architecture

The available approaches for root phenotyping in laboratory,

greenhouse, and field include simple agar plates to labor-

intensive root digging (“shovelomics”) and soil boring methods,

the construction of underground root observation stations, and

now sophisticated computer-assisted root imaging techniques.

A wide range of high-throughput phenotyping (HTP) systems

has been demonstrated in crop species to measure RSA and

multiple plant phenotypic traits (Nguyen and Kant, 2018; Tracy

et al., 2020). Table 1 outlines the RSA studies on potatoes.

Paez-Garcia et al. (2015) summarized root architectural traits

relevant to crop productivity and developed root phenotyping

strategies for crop and forage breeding programs. A scanner

system has been developed for high-resolution quantification

of root growth dynamics in Brassica rapa (Adu et al., 2014).

Araya et al. (2016) applied a statistical modeling approach

to investigate modulations of root architecture in Arabidopsis

thaliana in response to varied N availability. The RhizoTubes

system has been deployed for high throughput imaging of

plant roots architecture in the model plantMedicago truncatula,

crops like Pisum sativum, Brassica napus, Vitis vinifera,

Triticum aestivum, and weed species Vulpia myuros (Jeudy

et al., 2016). The selection criteria have been developed for

spinach roots under low N using machine learning tools

based on root architecture traits such as the number of

root tips, root length, crossings, and root average diameter

(Awika et al., 2021). Thus, HTP methods and simulation

models will necessarily speed up the trait improvement

by non-destructive simultaneous phenotyping of both roots

and shoots.

A non-invasive and non-destructive phenotyping technique

warrants special attention for a more accurate assessment

of root traits in response to various stresses, for instance,

limited N availability. In recent years, different platforms have

been developed for root HTP under environment-controlled

as well as natural field conditions, such as the in situ root

imaging technique (Richner et al., 2000). Han et al. (2009)

successfully applied the X-ray computed tomography (CT)

technique to extract the architecture of first-order roots in

potatoes. The magnetic resonance imaging (MRI) technique

can be deployed to assess RSA in the early stage of potato

growth (Monneveux et al., 2013). Root phenotyping techniques

comprise some degree of automation with imaging, image

analysis, and processing. Various imaging and its analysis

techniques/software have been found effective as reliable tools

for root phenotyping, such as WinRhizo, Smart Root, EZ-

Rhizo, Image J, Root System Analyzer, Root Nav, IJ_Rhizo,

and Root Trace (Wasaya et al., 2018). Duque and Villordon

(2019) discussed the role of investigation on root morphology

and anatomy under N stress in potatoes. Recently, 3D

models have been developed for tuber-root systems based on

topological and geometric structures (Zhao et al., 2020). The

advancement in sensor technology allows for measuring root

architecture and tuber growth in potatoes. The use of HTP

at the harvesting stage will help to assess tuber characteristics

such as shape, size, skin color, texture, and number, and

to predict yield. Moreover, hyperspectral and multispectral

imaging could be used to assess the tuber quality parameters

like carbohydrates, starch, protein, reducing sugar, and water

content. Thus, there is an immense opportunity to harness

the potential of HTP in potato improvement via dissection of

root traits.

Concluding remarks and future
perspectives

Nutrients, heat, drought, salinity, and cold are the important

abiotic stresses of potatoes. Excessive application of chemical

fertilizers, mainly nitrogen, increases production costs and

causes a negative impact on the environment. Knowledge

of root architecture, anatomy, and function is important for

nutrient-efficient crop breeding (Lobet et al., 2019). Root

architecture plays a very essential role in plant anchorage,

nutrient and water acquisition, and environmental benefits

such as carbon sequestration and reducing soil erosion.

Unlike advanced research on rice, wheat, and maize, limited

information is available on RSA in potatoes. Given that N

compounds are mobile and prone to leaching underground,

a shallow-rooted potato root ideotype can capture nutrients

and water from top soils, whereas a deep root ideotype

would be advantageous for deeper soils. In addition, the

molecular and genetic basis and physiological or developmental

regulation of basal and stolon root architecture variation will

greatly benefit breeding for abiotic stress tolerance (Kochian,

2016). Information about the association between basal and

stolon roots architecture vis-a-vis carbon partitioning and

tuber yield remains unclear in potatoes. The advancement

in modern technologies such as sensors, robotics, cameras,

and HTP platforms allow dissection of root architecture

and phenomics-based crop breeding. Concomitantly, it is

a challenging task due to massive data and computation

analysis. In the 21st century, crop breeding will shift from

single root traits to rhizosphere selection and phenotype-

based crop improvement. Profiling RSA and its application is

a promising and underexploited avenue to address climate-

resilient and resource-efficient crops that are urgently needed

in global agriculture. Thus, a renewed emphasis is needed on

root architecture to develop abiotic stress-tolerant varieties by

applying modern genomics tools.
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