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Plants are exposed to various environmental stresses. The sensing of environmental cues 
and the transduction of stress signals into intracellular signaling are initial events in the 
cellular signaling network. As a second messenger, Ca2+ links environmental stimuli to 
different biological processes, such as growth, physiology, and sensing of and response 
to stress. An increase in intracellular calcium concentrations ([Ca2+]i) is a common event 
in most stress-induced signal transduction pathways. In recent years, significant progress 
has been made in research related to the early events of stress signaling in plants, 
particularly in the identification of primary stress sensors. This review highlights current 
advances that are beginning to elucidate the mechanisms by which abiotic environmental 
cues are sensed via Ca2+ signals. Additionally, this review discusses important questions 
about the integration of the sensing of multiple stress conditions and subsequent signaling 
responses that need to be addressed in the future.
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INTRODUCTION

Plants encounter various abiotic stresses in their natural environment, for example, mechanical 
stimuli, drought, flood, cold, and salinity stress. These adverse conditions often limit plant 
growth and crop productivity worldwide (Zhang et  al., 2018b). To survive, plants, which are 
sessile organisms, must detect the nature and strength of environmental stimuli, transduce 
these signals into intracellular signaling and activate appropriate physiological responses (Kissoudis 
et  al., 2014; Zhang et  al., 2022). The perception of environmental stress and the subsequent 
transduction of stress signals are initial events in the adaptation of all organisms to stresses 
in their environment (Lamers et  al., 2020). Therefore, how plants sense abiotic stress signals, 
transduce them into cellular signaling and subsequently adapt to adverse environment is a 
fundamental and significant biological question.

Typically, a primary abiotic stress sensor is required to perceive external environmental 
changes; in response to such changes, the sensor remodels signal transduction pathways and 
initiates appropriate responses that allow the plant to adapt to the stress condition. Thus, 
perception of the external environment by a sensor is the earliest step in the conversion of 
external stimuli into cellular signals by plants.

Calcium (Ca2+), an indispensable second messenger, is considered to be  a critical element 
by which plants modulate a complicated network of signaling pathways to respond to various 
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abiotic stresses (Hetherington and Brownlee, 2004; Pandey 
et  al., 2004; Dodd et  al., 2010; Yuan et  al., 2014). The increase 
in intracellular calcium concentrations ([Ca2+]i) is one of the 
earliest signaling events when plants are challenged with abiotic 
stimuli, and the resulting Ca2+ signaling regulates many processes 
in plants, including transcriptional regulation and subsequent 
physiological as well as developmental responses (Dodd et  al., 
2010; Kudla et  al., 2010; Cao et  al., 2017; Aldon et  al., 2018). 
Bioluminescence-based aequorin technology for the detection 
of [Ca2+]i oscillations has been reported, and this technology 
uses the aequorin system to detect abiotic stimuli-induced Ca2+ 
signals (Knight et  al., 1991, 1997). The results obtained with 
this approach have suggested that Ca2+ is an important second 
messenger for understanding plant-abiotic stimulus interactions 
(Van Zelm et  al., 2020).

In the resting state, [Ca2+]i is maintained within a range 
of 50–200 nM (Berridge et  al., 2000; Mehlmer et  al., 2012; 
Lee and Seo, 2021). However, this concentration increases by 
approximately 10-fold and reaches millimolar levels upon 
stimulation (Lee and Seo, 2021). Transient increases in Ca2+ 
levels are caused by Ca2+ influx from the extracellular space 
or Ca2+ release from organelles through Ca2+ channels and 
transporters in membranes (Rentel and Knight, 2004; Kudla 
et al., 2010; Batistic and Kudla, 2012; Stael et al., 2012). Various 
stresses activate different Ca2+ channels and trigger [Ca2+]i 
increase in cells, and these increases exhibit tissue-specific and 
stress-specific differences in peak amplitude, peak oscillation 
pattern, and wave propagation. This stress-specific phenomenon 
is known as a “Ca2+ signature,” which leads to the activation 
of downstream events, such as stress-responsive gene expression 
and protein interactions (Jeworutzki et  al., 2010; Stael et  al., 
2012; Steinhorst and Kudla, 2013; Seybold et al., 2014). Despite 
several potential stress sensors functioning as Ca2+-permeable 
cation channels (e.g., several ion channels that directly sense 
membrane tension), the link between abiotic stress sensors 
and the Ca2+ influx channels that are regulated by these sensors 
is still largely unknown. Here, we mainly discuss recent findings 
related to Ca2+ signaling to reveal the mechanisms by which 
plants sense stressful environment; these findings have advanced 
our understanding of plant sensory mechanisms.

MECHANICAL STIMULI

Responses to environmental stress are essential features of plant 
behavior (Braam, 2005). A fundamental characteristic of plants 
is their ability to sense and respond to mechanical stimuli, 
such as touch, gravity, and flexure (Trewavas and Knight, 1994; 
Braam, 2005; Nakagawa et  al., 2007). When Arabidopsis plants 
that express a Ca2+-sensitive aequorin are exposed to touch 
and gravistimulation, the recombinant plants emit light 
immediately (Plieth and Trewavas, 2002; Toyota et  al., 2008), 
suggesting that mechanical stimuli influence membrane-localized 
Ca2+-permeable channels and immediately trigger a transient 
increase in [Ca2+]i; this is an early event in the response to 
mechanical stimuli, and it subsequently influences plant growth 
and development. In addition, osmotic stress (including both 

hyperosmotic stress caused by drought and hypoosmotic shock) 
also influences membrane tension and triggers a [Ca2+]i increase 
by activating certain Ca2+-permeable channels, allowing plant 
cells to perceive changes in the physical properties of the 
membrane (Gong et  al., 2020).

To date, five families of mechanosensitive channels have 
been reported in plants: mechanosensitive channel of small 
conductance (MscS)-like proteins (MSLs), Mid1-complement 
activity protein channels (MCAs), two-pore potassium channels 
(TPKs), Piezo channels (PZO), and reduced hyperosmolality 
induced [Ca2+]i increase channels (OSCA; Haswell and 
Meyerowitz, 2006; Nakagawa et  al., 2007; Haswell et  al., 2008; 
Coste et  al., 2010; Yamanaka et  al., 2010; Maathuis, 2011; 
Yuan et  al., 2014).

MCA proteins were identified as PM-localized Ca2+-permeable 
mechanosensitive ion channels that regulate mechanoresponsive 
Ca2+ influx (Nakagawa et  al., 2007; Figure  1). AtMCA1 and 
AtMCA2 are two paralogous MCA genes in Arabidopsis 
(Yamanaka et  al., 2010; Nishii et  al., 2021). Mca1-knockout 
seedlings have reduced amplitudes and very slow [Ca2+]i increases 
(Nakano et al., 2021). Ectopic overexpression of MCA proteins 
increases Ca2+ uptake in Arabidopsis seedlings as well as in 
cultured rice cells and enhances the hypo-osmotic shock-induced 
increase in [Ca2+]i (Nakagawa et al., 2007; Kurusu et al., 2012a,b). 
In addition, MCA1 was first reported to induce a gravistimulation-
induced [Ca2+]i increase under the condition of 1–5 g gravitational 
acceleration (Nakano et  al., 2021). Recently, the mechanisms 
underlying MCA activation have been elucidated. Yoshimura 
et al. purified and reconstituted MCA1 and MCA2 into artificial 
liposomal membranes and examined their Ca2+ permeability 
properties. They found that a C-terminally truncated form of 
the MCA2 protein that acts as a Ca2+-permeable and 
mechanosensitive channel directly senses membrane tension 
to regulate channel opening (Yoshimura et  al., 2021).

Using calcium imaging, Arabidopsis thaliana PIEZO1 has 
been shown to exhibit the conserved function of the mammalian 
PIEZO mechanosensitive ion channel, and this channel responds 
to a mechanical stimulus with transiently increasing Ca2+ levels 
(Mousavi et  al., 2021). Evidence has shown that plant PIEZO1 
is expressed in the columella and lateral root cap cells of the 
root tip, which experience robust mechanical strain during 
root growth. Deleting PIEZO1 from the whole plant significantly 
reduced the ability of roots to penetrate denser barriers compared 
to that of the wild-type plants. The root tips of piezo1 mutant 
plants exhibited decreased transient changes in Ca2+ levels in 
response to mechanical stimulation, supporting a role of plant 
PIEZO1 in root mechanotransduction. Recently, a very interesting 
finding was reported that plant PIEZO was found to be localized 
to the vacuole membrane, where it plays an important role 
in regulating the formation of vacuole morphology and inducing 
[Ca2+]i oscillation (Radin et  al., 2021; Figure  1).

Based on forward genetic screening to isolate 
EMS-mutagenized aequorin-expressing Arabidopsis seedlings, 
OSCA1 was the first potential osmosensor to be  identified 
(Yuan et  al., 2014). Mutation in OSCA1 results in a decrease 
in Ca2+ accumulation in guard cells and root cells, as well 
as a lack of transpiration regulation and reduced root growth 
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in response to osmotic stress. OSCA1 was identified as a 
hyperosmolality-gated Ca2+-permeable channel, and it is 
responsible for the initial increase in free Ca2+ concentrations 
upon the sensing of osmotic stress (Yuan et al., 2014; Figure 1). 
The activation of these channels has been hypothesized to 
be  caused by mechanical forces on the cell membrane or 
cell wall generated by osmotic stress (Gong et  al., 2020). 
Phylogenetic analysis demonstrated that Arabidopsis has 15 

homologs of OSCA1, suggesting that the sensing of 
hyperosmotic conditions could be  mediated by a redundant 
family of Ca2+ channels (Liu et al., 2018). Using cryo-electron 
microscopy (cryo-EM), three groups have separately 
characterized the structures of OSCA1.1, OSCA1.2, and 
OSCA3.1, and these groups found that the OSCA proteins 
belong to a new class of mechanosensitive ion channels with 
structural similarities to mammalian TMEM16-family proteins 

FIGURE 1 | Mechanisms underlying the sensing of abiotic stress in plants. In response to mechanical stimuli, mechanosensitive channels, such as MSLs, MCA, 
Piezos, and OSCAs, are activated to induce Ca2+ influx. MCAs and OSCA are plasma membrane mechanosensitive cation channels, while Piezo is located in the 
vacuole membrane. OSCA1 is a plasma membrane protein that functions as a hyperosmolality-gated calcium-permeable channel that induces the initial increase in 
[Ca2+]i during osmotic stress. Salt stress is sensed by the binding of monovalent cations to the negatively charged GlcA of the GIPC sphingolipids. Upon Na+ 
binding, the GIPC-gated unknown Ca2+ channel is activated to trigger the Ca2+ influx. ANN1, ANN4, and CNGC10 are also involved in the salt-induced Ca2+ influx. In 
addition, the cell wall-localized leucine-rich repeat extensins LRX3, LRX4, and LRX5, RALFs and the receptor-like kinase FER also participate in sensing salt stress 
signals. The vacuolar ion channel TPC1 is involved in systemic salt and Ca2+ signaling. Environmental stresses trigger tissue-specific and stress-specific [Ca2+]i 
increases, which are known as “Ca2+ signatures.” The crucial protein in sensing cold stress in rice is COLD1. COLD1 interacts with RGA1 in response to cold 
temperatures, resulting in increased GTPase activity, which activates an unknown calcium influx channel. Plasma membrane-localized RLCK plays a negative role in 
regulating freezing tolerance. In addition, plant CNGCs, such as CNGC9, CNGC14, and CNGC16 in rice, are involved in cold sensing, while CNGC2 and CNGC6 in 
Arabidopsis and CNGCb in Physcomitrella mediate the heat-induced [Ca2+]i increase. Glutamate receptors, including GLR1.2 and GLR1.3 in Arabidopsis and 
GLR3.3 and GLR3.5 in tomato plants, also play roles in cold sensing and tolerance. ANN1 and ANN4 are involved in the heat-induced [Ca2+]i increase and tolerance 
to heat, while ANN1 is also involved in the cold-induced Ca2+ influx. H2O2 perception causes oxidation of HPCA1, and oxidative modification of HPCA1 might act 
alone or with a coreceptor to phosphorylate and activate an unknown Ca2+ channel to trigger Ca2+ influx. GHR1, a plasma membrane receptor-like kinase, may also 
sense H2O2 signals and regulate ABA signaling and stomatal closure in guard cells. MSL3 and TPC1 are involved in systemic ROS and Ca2+ signaling.
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(Jojoa-Cruz et  al., 2018; Liu et  al., 2018; Zhang et  al., 2018a; 
Figure  1).

SALT STRESS

Soil salinization is a severely adverse abiotic factor that affects 
seed germination, crop growth, and productivity (Zhao et  al., 
2020). In contrast to animals, sodium is not an essential element 
to most plants, and at high concentrations, it is very detrimental 
to plant growth. High concentrations of Na+ and Cl− in soil 
induce both osmotic stress and ionic stress. When exposed 
to high levels of Na+, large, low-affinity Na+ fluxes occur that 
are mediated by HKT-type carriers (Garciadeblas et  al., 2003; 
James et  al., 2011) and nonselective ion channels (NSCCs), 
including glutamate receptor-like (GLR) and cyclic nucleotide-
gated channels (CNGCs; Amtmann and Sanders, 1999).

By performing a forward genetic screen, an Arabidopsis 
monocation-induced [Ca2+]i increases 1 (moca1) mutant was 
isolated successfully, and this mutant exhibits decreased Na+-
induced increases in [Ca2+]i and is hypersensitive to growth 
inhibition by Na+ (Jiang et  al., 2019). The lack of MOCA1 
activity also impairs the membrane surface potential and, 
notably, the activity of the Na+/H+ antiporter SOS1, making 
the mutant plants more sensitive to salt than the wild-type 
plants. Thus, MOCA1 represents one of the missing links 
between salt perception and SOS pathway activation. MOCA1 
was identified as a glucuronosyltransferase that transfers a 
negatively charged GlcA to inositol phosphorylceramide (IPC) 
to form glycosylinositol phosphorylceramide (GIPC) 
sphingolipids in the external layer of the plasma membrane, 
and it is essential for NaCl-triggered depolarization of the 
cell-surface potential (Jiang et  al., 2019). The study found that 
moca1 mutant plants contained lower levels of GIPCs but 
higher levels of IPCs than wild-type plants (Jiang et  al., 2019). 
Since IPCs do not contain a negatively charged head, there 
are fewer monovalent cation binding sites on the membranes 
of moca1 mutant plants than on the membranes of wild-type 
plants, which is consistent with the previously described strong 
Na+-binding properties of GIPCs (Markham et  al., 2006). 
Regarding the Na+ perception mechanism, Na+ directly binds 
to GIPCs and presumably regulates Ca2+ influx channels, 
providing the molecular basis for Na+ sensing in plants (Figure 1). 
However, the exact mechanism of GIPC-mediated Ca2+ influx 
remains unknown as long as the Ca2+ channel involved remains 
unidentified (Steinhorst and Kudla, 2019). In addition, 
downstream of GIPCs, the Ca2+ wave speed is altered in the 
tpc1 (two-pore channel 1) mutant, indicating that TPC1 mediates 
Ca2+ release from the vacuole and facilitates the propagation 
of Ca2+ waves (Choi et al., 2014). A putative glycosyltransferase 
QUA1, required for normal pectin synthesis and cell adhesion, 
was reported to regulate [Ca2+]i in response to salt stress in 
Arabidopsis (Zheng et  al., 2017).

Luminescence-based detection of [Ca2+]i showed that the 
Ca2+-permeable transporter AtANNEXIN1 (AtANN1) is required 
for NaCl-activated Ca2+ influx through the plasma membrane 
in root epidermal cells. The loss-of-function mutation of AtANN4 

also disrupts the salt-induced [Ca2+]i increases in Arabidopsis 
(Laohavisit et al., 2013; Ma et al., 2019). In addition to AtANNs, 
CNGC10 was reported to negatively regulate salt tolerance in 
Arabidopsis (Jin et al., 2015). It would be interesting to investigate 
whether there is a direct functional association between GIPC 
and AtANN1, AtANN4, or CGNC10. In addition, the cell wall 
is involved in salt sensing. A receptor-like kinase FERONIA 
(FER) possibly perceives salt-induced changes in the cell wall. 
Mutation of FER results in decreased salt-induced Ca2+ signaling 
and increased sensitivity to high salinity (Feng et  al., 2018; 
Figure 1). Recent studies have shown that the cell wall-localized 
leucine-rich repeat extensins LRX3, LRX4, and LRX5 and the 
secretory peptide RALFs participate in sensing salt stress signals 
along with FER (Figure  1). However, the mechanism of the 
initial sensing of salt-induced changes in the cell wall by LRXs 
remains unknown (Zhao et  al., 2018).

TEMPERATURE STRESS

Temperature is one of the major environmental factors that 
affect plant growth and development. Extreme temperatures 
induce a series of biochemical, physiological, and morphological 
changes in plants and often reduce plant productivity (Cui 
et  al., 2020a). Cold stress decreases the fluidity of cellular 
membranes and causes membrane rigidification in plant cells, 
which also disrupts the stability of proteins or protein complexes 
and decreases the activities of enzymes (Orvar et  al., 2000; 
Zhu, 2016; Gong et  al., 2020). To survive under extreme 
temperatures, plants must be  able to perceive temperature 
signals and transduce them to the downstream signaling pathways, 
subsequently activating appropriate defense mechanisms (Guo 
et  al., 2018).

Cold sensing is followed by the generation of secondary 
messengers, including Ca2+ (Yan et  al., 2006). After exposure 
of both plants and animals to cold, [Ca2+]i is increased very 
rapidly via Ca2+ channels, which is thought to be  one of the 
earliest events in cold stress signaling (Knight et  al., 1991; 
Ding et  al., 2019). Cold stress induces transient Ca2+ influx 
into the cell cytoplasm, and repeated cold treatment can induce 
repetitive transient Ca2+ influxes (Krebs et al., 2012). In mammals, 
the transient receptor potential (TRP) superfamily of cation 
channels is involved in thermosensation (Waszczak et al., 2018). 
However, no TRP orthologs have been identified in plants. 
How Ca2+ signals are involved in cold perception in plants is 
unclear. Ma et  al. identified a transmembrane protein named 
COLD1 (chilling-tolerance-divergence 1), which was the first 
potential cold sensor to be  identified in rice. Overexpression 
of COLD1 significantly improves survival rates after chilling 
treatment, whereas mutants with deficiency or decreased 
expression of COLD1 are sensitive to chilling stress (Ma et  al., 
2015). These results suggest that COLD1 is an important 
component of the regulation of chilling tolerance in rice. Further 
study showed that COLD1 regulates G protein signaling by 
interacting with rice G protein subunit 1 (RGA1) to increase 
GTPase activity under conditions of cold stress. Furthermore, 
COLD1-RGA1 form a complex to trigger a cold-induced increase 
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in [Ca2+]i, leading to the activation of the cold tolerance response 
(Figure  1). However, the molecular mechanism by which 
COLD1 senses cold stress and COLD1 activates Ca2+ channels 
remains unclear. It would be  interesting to determine whether 
COLD1 itself functions as a temperature-regulated membrane 
ion channel and how COLD1 acts as a cold sensor to trigger 
cold-induced Ca2+ influx in plants.

In addition, cold can decrease the fluidity of cellular 
membranes (Zhu, 2016). This change in membrane fluidity 
may be  sensed by membrane-localized proteins, such as Ca2+ 
channels and receptor-like kinases (RLKs; Zhu, 2016, Gong 
et  al., 2020). Several RLKs have been reported to play critical 
roles in regulating cold responses. CRLK1 and CRLK2 are 
two calcium/calmodulin-regulated receptor-like cytoplasmic 
kinases (RLCKs) that positively regulate cold tolerance (Yang 
et  al., 2010). Recently, a plasma membrane-localized RLCK, 
cold-responsive protein kinase 1 (CRPK1), was found to play 
a negative role in regulating cold tolerance (Liu and Howell, 
2016; Figure 1). Plant CNGCs are involved in thermal sensing 
and thermotolerance (Finka et  al., 2012). In rice, loss-of-
function mutant of OsCNGC9 is defective in cold-induced 
Ca2+ influx, which make plants more sensitive to cold treatment; 
these results suggest that OsCNGC9 could positively regulate 
chilling tolerance (Wang et  al., 2021). Additionally, the loss 
of either OsCNGC14 or OsCNGC16 reduced or abolished 
the [Ca2+]i escalation by either heat or chilling stress, indicating 
that OsCNGC14 and OsCNGC16 modulate Ca2+ signaling in 
response to temperature stress (Cui et  al., 2020b; Figure  1). 
A previous study reported that CNGCb in Physcomitrella and 
its Arabidopsis ortholog AtCNGC2 mediate heat-induced [Ca2+]i 
increases, enhancing plant survival at high temperatures (Finka 
et  al., 2012; Figure  1). In addition, AtCNGC6  in Arabidopsis 
is also involved in heat-induced induced [Ca2+]i increases 
(Gao et  al., 2012; Figure  1). In addition to CNGCs, AtANNs 
are involved in temperature dependent Ca2+ influx. A recent 
study reported that loss-of-function mutations in AtANN1 
significantly impair cold-induced Ca2+ influx and reduce 
tolerance to cold stress in Arabidopsis (Liu et  al., 2021; 
Figure 1). Moreover, AtANN1 and AtANN4 are also involved 
in heat-induced [Ca2+]i increases and consequently heat tolerance 
in Arabidopsis (Liao et al., 2017; Figure 1). Additionally, GLR 
could act as sensors and mediators for temperature in plants. 
Plants with loss-of-function mutations in AtGLR1.2 and 
AtGLR1.3 are sensitive to cold stress, while AtGLR1.2 and 
AtGLR1.3 increase cold tolerance by regulating jasmonate 
signaling in Arabidopsis (Zheng et al., 2018; Figure 1). GLR3.3 
and GLR3.5 are involved in cold tolerance in tomato plants 
(Li et  al., 2019; Figure  1).

OXIDATIVE STRESS

Reactive oxygen species (ROS) play a key role in plant cell 
signaling. Plant cells generate various ROS, including hydrogen 
peroxide (H2O2), which is produced extracellularly in response 
to external stresses and internal cues. Extracellular hydrogen 
peroxide (eH2O2) plays a vital role in many physiological 

processes during the lifecycle of plants, such as root development, 
pollen tube growth, organ wilting, and responses to biotic and 
abiotic stress (Waszczak et  al., 2018).

It has been reported that the H2O2 signal can be  sensed 
by Guard Cell Hydrogen Peroxide-Resistant1 (GHR1), which 
regulates ABA signaling and stomatal closure in guard cells 
(Hua et al., 2012; Figure 1). Additionally, GHR1 is also involved 
in stomatal responses to high CO2 concentrations, activating 
guard cell anion channel slow anion channel1 (SLAC1) and 
stimulating stomatal closure (Horak et  al., 2016; Sierla et  al., 
2018). In addition, the influx of eH2O2 into the cytosol via 
aquaporin channel proteins has also been reported, but whether 
and how plants perceive eH2O2 at the cell surface is unknown. 
Although little is known about the initial sensing of eH2O2, 
the fact that eH2O2 triggers an influx of Ca2+ is much better 
defined and is thought to be  involved in H2O2 sensing and 
signaling. Interestingly, Ca2+ was also found to bind respiratory 
burst oxidase homolog protein D (RBOHD) EF-hands and 
promotes H2O2 which then subsequently activates Ca2+ channels 
in response to a range of abiotic stresses (Ogasawara et  al., 
2008; Miller et  al., 2009; Suzuki et  al., 2011).

By using a forward genetic screen based on Ca2+ imaging, 
Wu et  al. isolated hydrogen peroxide-induced Ca2+ increase 
(hpca) mutants in Arabidopsis and showed that HPCA1 encodes 
a leucine-rich repeat receptor kinase that localizes to the cell 
surface. It was the first molecular component found to 
be  responsible for sensing eH2O2 (Pei et  al., 2000; Wu et  al., 
2020). The hpca1 mutant did not display growth or developmental 
phenotypes, but eH2O2- and ABA-insensitive phenotypes were 
observed in terms of stomatal closure. In addition, the hpca1 
mutant exhibits decreased eH2O2-induced Ca2+ influx, indicating 
that HPCA1-mediated activation of Ca2+ channels is critical 
for eH2O2 signaling. Further study demonstrated that HPCA1 
can be  activated by eH2O2 via the covalent modification of 
its extracellular cysteine residues, which leads to 
autophosphorylation of HPCA1 and its function as an eH2O2 
sensor to induce Ca2+ influx (Figure  1).

A recent research finding suggested that MSL3 could function 
downstream of HPCA1, indicating that HPCA1 is required 
for systemic ROS and Ca2+ cell-to-cell signaling and plant 
acclimation to stress (Fichman et  al., 2022). In addition, ROS 
also stimulate the vacuolar ion channel TPC1 to release Ca2+ 
from the vacuole, allowing substantial propagation of systemic 
Ca2+ waves (Evans et  al., 2016).

CONCLUSION AND PERSPECTIVES

As sessile organisms, plants cannot escape from environmental 
stress. It is very important for plants to accurately and specifically 
recognize environmental signals and initiate the correct responses. 
In the last decade, some major advances have been made in 
the elucidation of mechanisms underlying abiotic stimulus 
perception, such as the role of OSCA1  in response to osmotic 
stress, the role of COLD1  in sensing cold stress, the role of 
GIPCs as monovalent cation sensors, and the role of HPCA1 
as an eH2O2 sensor. At present, many gaps remain in our 
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understanding of plant stress sensing. Identifying stress sensors 
is an important goal for studying abiotic stress responses in 
plants, but overcoming genetic redundancy and lethality remains 
a challenge.

The increase in [Ca2+]i is one of earliest signaling events 
when plants are challenged with abiotic stimuli. Ca2+ influx 
occurs within a few seconds after the perception of environmental 
stress. Different sensors sense specific stressors to directly or 
indirectly activate Ca2+ channels and mediate the influx of 
Ca2+. However, the identity of the Ca2+ channel involved in 
signal sensing and transduction and how environmental signals 
activate Ca2+ channels remain largely unknown. Therefore, the 
identification of sensing mechanisms is an indispensable step 
in the elucidation of cellular signaling pathways that participate 
in the response to environmental stress and how they lead to 
appropriate responses. Furthermore, more attention should 
be  given to the functional coordination of Ca2+ channels in 
different cellular organelles because [Ca2+]i could be complicated 
by the interplay of PM-localized influx channels and organelle-
specific efflux channels.

Molecular genetics methods and various bioimaging 
techniques have contributed greatly to our current knowledge. 
With recent advances in bioimaging techniques and genetic 
methods, utilizing Ca2+ imaging-based forward genetic screens 
may be  an effective way to reveal the mechanisms underlying 
stress sensing and potential Ca2+ channels in the future. These 
advances in understanding mechanisms underlying abiotic 
stimulus perception demonstrate that genetic screens based on 
“imaging technologies” represent the new standard for discovering 
new genes involved in important signaling pathways. In addition 
to bioluminescence approaches, fluorescence-based Ca2+ 
indicators have potential for single-cell analyzes (Krebs et  al., 
2012), but they are also mainly used at the tissue level. 
Fluorescence-based Ca2+ indicators can be  broadly categorized 
into single fluorescent proteins (such as green fluorescent 
GCaMPs/G-GECOs and red fluorescent R-GECOs; Diao et  al., 
2018; Vigani and Costa, 2019; Luo et  al., 2020) and dual-
fluorescent protein indicators (such as FRET-based yellow 
cameleons; Allen et  al., 1999; Walia et  al., 2018; Vigani and 
Costa, 2019). Note that ratiometric Ca2+ indicators can 
compensate for variations in fluorescence readouts due to 
differences in expression levels between different cell and tissue 

types. It is clear that the increasing development of plant Ca2+ 
indicators should provide a fruitful foundation for novel  
discoveries.

Although several stress sensors have been reported recently, 
their physiological functions and biochemical sensing mechanisms 
remain unclear. Furthermore, because plants are exposed to 
multiple abiotic stresses simultaneously in the natural 
environment, determining stress-specific sensing mechanisms 
at the molecular level is important. Thus, to improve our 
understanding of abiotic stress resistance in plants, more attention 
should be  given to the perception of multiple abiotic stresses 
by plants in the future.

In addition to sensing mechanisms, a great deal of responses 
and crosstalk are observed in downstream signaling pathways, 
which could lead to additive, synergistic or antagonistic effects, 
resulting in either enhanced or compromised stress resistance. 
However, since most current studies have focused on a single 
stress condition, the mechanisms by which plants respond to 
combined stresses remains largely unpredictable. Thus, revealing 
the mechanisms underlying plant perception and responses to 
multiple stresses at the molecular level will be  necessary to 
gain knowledge about the integration of stress-induced signaling 
pathways, which is a promising direction for future research. 
Knowledge of how plants perceive and respond to stress will 
allow us to answer fundamental questions of how plants convert 
abiotic stress into electrochemical signals and will allow us to 
understand important biological processes by which how plants 
grow and develop to tolerate stressful environment.
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