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Editorial on the Research Topic

Al-Induced and -Activated Signals in Aluminium Resistance

As phytotoxic aluminum (Al) appears in the acid soil at pH <5.5 (Kobayashi et al., 2013), plants
have evolved resistance mechanisms to cope with the Al rhizotoxicity (Daspute et al., 2017).
Research in this field has identified various constitutive and induceble Al resistance mechanisms
that protect Al-sensitive cells in the roots (Daspute et al., 2017). For example, exudation of organic
acid (OA) from the roots protects the sensitive cells by chelating the phytotoxic Al3+ to less toxic Al-
OA chelated compounds. This OA exudation is controlled by both Al-activated and Al-inducible
mechanisms, as reported for themalate transporter ALMT1 (ALUMINUMACTIVATEDMALATE
TRANSPORTER 1) in various plant species (Wu et al., 2018). In addition, recent studies identified
pleiotropic roles of Al tolerant proteins such as SENSITIVE TO PROTON RHIZOTIXICITY1
(STOP1) (Koyama et al., 2021; Sadhukhan et al., 2021b) and ALMT1 (Wu et al., 2018). The level of
such proteins play crucial role to manage Al tolerance and growth response (Fang et al., 2021a).
This Research Topic, “Al-Induced and -Activated Signals in Aluminium Resistance,” aimed to
enrich our knowledge, enabling a better understanding of the complexity underlining Al resistance
mechanisms. The Research Topic contains six original research articles, including three studies
using the model species Arabidopsis and three others in crops species, namely tomato, lentil,
and cicer.

The studies in Arabidopsis focused on the transcription factor STOP1-regulated system. This
extensively studied zinc finger transcription factor regulates the expression of several genes, such
as AtALMT1, critical for Al resistance (Sadhukhan et al., 2021b). AtALMT1-expression requires
direct binding of STOP1 to the promoter, while the activity and amounts of STOP1 are regulated
by complex mechanisms, including posttranslational modification. Huang’s group reported several
signaling proteins involved in the process of controlling STOP1 using rae (REGULATION OF
ATALMT1 EXPRESSION) mutants with altered AtALMT1 expression levels. For example, RAE1,
an F-box protein component of a SCF-type E3 ligase complex, alters AtALMT1 expression by
degradation of STOP1 through ubiquitination (Zhang et al., 2019), while the SUMO protease
RAE5/EARLY IN SHORT DAYS 4 (ESD4) and SUMO E3 ligase SIZ1 can influence AtALMT1
expression by deSMOylation and SUMOylation of STOP1, respectively (Fang et al., 2021b;
Xu et al., 2021). In addition, RAE3, a core component of the THO/TREX complex, regulates
AtALMT1 expression by modulating nucleocytoplasmic STOP1 mRNA export and consequently
influencing the STOP1 protein accumulation. In the current Topic, Zhu et al. provided additional
information on RAE2/TEX1, another core component of the THO complex, which is also
involved in the regulation of Al resistance and low Pi response by regulating AtALMT1 expression
level. Interestingly, rae2 did not show defective nucleocytoplasmic STOP1 mRNA export but
accumulated less STOP1 protein and consequently had reduced expression ofAtALMT1. It appears
that THO-complex, possibly conjugated with mRNA, plays essential role in regulating STOP1’s
downstream Al resistant genes and development.
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On the other hand, Agrahari et al. implemented a Genome-
Wide Association (GWAS) to explore the upstream region of
STOP1-regulated Al resistant genes. POLYGARACTRONASE
INHIBITOR PROTEIN 1 (PGIP1), a stabilizing cell wall pectin,
possesses STOP1 binding cis-elements in its promoter and
showed Al-inducible expression. eGWAS identified a STOP1-
independent NO signaling pathway and a STOP1-dependent
regulation in the phosphatidylinositol (PI) signaling pathway,
involved in the regulation of PGIP1 expression under Al stress.
The former included one of the TRX superfamily proteins, while
the latter included NAC027 and an R-R-type MYB transcription
factors. A similar eGWAS approach provided further genetic
evidence that PI signaling is also involved in the regulation
of the Al-resistance gene ALUMINUM SENSITIVE3 (ALS3),
possibly through the activation of STOP1 (Sadhukhan et al.,
2021a). Furthermore, that study identified the involvement of a
Ca signaling pathway in the Al inducible ALS3 expression, which
would be independent of the STOP1 pathway.

Desnos and coworkers previously studied the activation of
STOP1 in response to P-deficiency in gel medium, providing
evidence that the STOP1-activation could occur in the absence
of Al stress (Balzergue et al., 2017). In the current topics, the
authors (Le Poder et al.) discovered that the STOP1-AtALMT1
pathway could be activated by Al at a level that does not inhibit
root growth of the Al-hypersensitive mutant stop1, suggesting
that Al signaling can be uncoupled from its toxicity. Furthermore,
they found that Al and iron (Fe) can play a synergistic role in
activating the STOP1-AtALMT1 pathway. These three studies in
Arabidopsis provided new insight into the STOP1-dependent Al
signaling, including a very sensitive response to Al, a coordinated
regulation with other signaling pathways (i.e., PI, NO, and Ca
signaling), and the complex regulation at the STOP1 level via
the THO-complex. On the other hand, the regulation of various
stress tolerance responses (e.g., Al, proton, P-deficiency hypoxia,
and drought) by STOP1 could be referred to as pleiotropy of
stress tolerance reported in Arabidopsis and other plants.

Three other manuscripts describe Al signaling and tolerance
responses in crop plants. The AAEs (acyl-activating enzymes
superfamily) are involved in multiple metabolic pathways, with
some of them identified as being related to Al tolerance, Jin et al.
studied the expression of AAEs in tomato under aluminum stress.
A synteny analysis of AAEs in tomato and Arabidopsis and cis-
element predictions suggested that someAl-inducibleAAEs carry

STOP1-binding motifs in the promoter. Lentil is one of India’s
oldest cultivating legume and is currently grown as a winter
legume. Singh et al. studied inter-and intraspecies transcriptomes
that identify different metabolic pathways regulating Al tolerance
in lentil. The main upregulated and differentially expressed genes
(DEGs) identified under stress conditions are underline organic
acid synthesis and exudation, production of antioxidants, callose
synthesis, protein degradation, and phytohormone- and calcium-
mediated signaling pathways. These genes and pathways are
homologous to those Al-inducible processes described in model
plants. The study also identified several transcription factors
upregulated in tolerant varieties and wild species, probably
associated with auxin signal. These findings represent a novel and

useful target to improve lentils’ Al tolerance using expression-
level polymorphisms. Finally, Vance et al. reported Al resistance
in wild cicer, a relative species of chickpea. The authors
conducted a large-scale screening of Al and low pH tolerance
using relative root elongation as a tolerance index, resulting in
the identification of resistant cultivars associated with the original
locations. Although this study did not focus on Al signaling, it
provides novel information on Al resistant varieties of chickpea,
a commercially important legume.

This Research Topic shine shed some light in compiling
crucial information for a better understanding of the complex
signaling involved in the response to Al stress. We welcome
readers to explore the six research papers for deeper analysis of
their findings.
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