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Alpine plants’ distribution is being pushed higher towards mountaintops due to

global warming, finally diminishing their range and thereby increasing the risk

of extinction. Plants with specialized ‘glasshouse’ structures have adapted well

to harsh alpine environments, notably to the extremely low temperatures,

which makes them vulnerable to global warming. However, their response to

global warming is quite unexplored. Therefore, by compiling occurrences and

several environmental strata, we utilized multiple ensemble species distribution

modeling (eSDM) to estimate the historical, present-day, and future distribution

of two alpine ‘glasshouse’ species Rheum nobile Hook. f. & Thomson and R.

alexandrae Batalin. Rheum nobile was predicted to extend its distribution from

the Eastern Himalaya (EH) to the Hengduan Mountains (HM), whereas R.

alexandrae was restricted exclusively in the HM. Both species witnessed a

northward expansion of suitable habitats followed by a southerly retreat in the

HM region. Our findings reveal that both species have a considerable range

shift under different climate change scenarios, mainly triggered by precipitation

rather than temperature. The model predicted northward and upward

migration for both species since the last glacial period which is mainly due to

expected future climate change scenarios. Further, the observed niche overlap

between the two species presented that they are more divergent depending on

their habitat, except for certain regions in the HM. However, relocating

appropriate habitats to the north and high elevation may not ensure the

species’ survival, as it needs to adapt to the extreme climatic circumstances

in alpine habitats. Therefore, we advocate for more conservation efforts in

these biodiversity hotspots.
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Introduction

“Unless we move quickly to protect global biodiversity, we will

soon lose most of the species composing life on Earth.” —Edward

O. Wilson (1929–2021).

Global biodiversity hotspots (Myers et al., 2000) harbor high

levels of species richness and endemism (Sun et al., 2017; Rahbek

et al., 2019), yet they are vulnerable to large-scale climatic change

(Baker and Moseley, 2007). Two biodiversity hotspots, i.e., the

Himalayas and the Mountains of Southwest China (also known

as the Hengduan Mountains) (Myers et al., 2000; Mittermeier

et al., 2011) known to be the biodiversity reservoir of ‘the Third

Pole’, can’t remain intangible by present-day global warming

(Qiu, 2008). The alpine areas of this region are characterized by

low temperatures, intense solar radiation, strong winds, dense

cloudiness, frequent precipitation, and a short growing season

(He et al., 2006). Several plant species in this area have evolved

specific phenotypes, such as “downy plant”, “cushion plant”, and

“glasshouse plant” (Tsukaya and Tsuge, 2001; Körner, 2003) .

But those plants, which are well adapted to extreme

environments through specialized structures, might be

susceptible to climate warming (Doiron et al., 2014).

Nevertheless, plant species are known to respond to changes

in climate by altering their phenology (Cleland et al., 2007) or

shifting their distribution range (Parmesan and Yohe, 2003;

Chen et al., 2011). Meanwhile, in the past plant species in the

Himalaya-Hengduan Mountains (HHM) have been transformed

by quaternary climatic oscillations (Sandel et al., 2011; Muellner-

Riehl et al., 2019).

Global warming pushes the plant populations to upslope

along elevation and poleward along latitude to track isotherms

(Lenoir and Svenning, 2013; Zu et al., 2021). As mountain

species migrate upslope to cooler climatic conditions to avoid

rising temperatures, it results in a smaller inhabited area and

population reduction (Morueta-Holme et al., 2015; Freeman

et al., 2018). As they ascend higher in elevation towards

mountaintops, the elevational range becomes progressively

constrained, perhaps increasing the risk of extinction (Manne

et al., 1999; Freeman et al., 2018). Warming temperature drives

lowlands species to move upwards, and there may be no record

for species adapted to higher temperatures to compensate for the

loss (Colwell et al., 2008). Indeed, lowland species from warmer

microhabitats may relocate to cooler refuges at the same

elevation due to global warming (Bush et al., 2004). However,
02
alpine plants might face summit trap phenomena (Rana et al.,

2017; Salick et al., 2019). Due to climate change, plant

distribution patterns are changing, with species expanding in

more suitable areas and declining in increasingly hostile ones

(Kelly and Goulden, 2008). Notably, past temperature rise

presented an unusual and persistent upward movement of tree

lines for about 1000 m in the Himalayan alpine meadows

(Schickhoff et al., 2014) or the HM coniferous forest (Lenoir

et al., 2008; Wang et al., 2018; Yao et al., 2020). In line with these

predictions, several alpine plants (for instance, Anemone

rivularis, Abies delavayi) have shifted their ranges upward,

north-westward (Liang et al., 2018), or upslope (Kelly and

Goulden, 2008; Lenoir et al., 2008; Rumpf et al., 2018).

However, on the other hand, the alpine glasshouse species are

rarely explored for their range shifts.

The genus Rheum (Polygonaceae) has around 60 species

widely distributed across the QTP’s high latitudes. Only a few

species make it to Central and Western Asia and Europe

(Losina-Losinskaya, 1936; Kao and Cheng, 1975). Owing to

the therapeutic and pharmacological properties of Rheum, the

increased market demand has impaired the survival and

existence of wild species (Chen et al., 2018). The majority of

Rheum species have evolved specific morphologies to cope with

the harsh climate (Tsukaya and Tsuge, 2001). The ‘glasshouse’

plants, with their large upper translucent bracts covering the

inflorescences, are examples of such adaptations (Ohba, 1988).

Despite the fact ‘glasshouse’ morphology may be found in

more than ten plant families, including Ranunculaceae,

Caryophyllaceae, Lamiaceae, Asteraceae, and Polygonaceae

(Yoshida, 2002), the most known alpine ‘glasshouse’ plant

species that have piqued the interest of evolutionary and

conservation biologists are R. nobile Hook. f. & Thomson and

R. alexandrae Batalin. The multifunctional translucent bracts of

such plants are likely to have evolved independently in the

Himalayas as a response to low temperatures and high

irradiance, facilitating an upward range shift in response to

climate change (Tsukaya and Tsuge, 2001; Tsukaya, 2002; Sun

et al., 2012; Song et al., 2013c; Song et al., 2015; Song et al.,

2020a). On the other hand, cold-adapted alpine plants may

experience range contractions and/or local extinctions

(Giménez-Benavides et al., 2011; Wiens, 2016) due to a slower

rate of adaptation than that of climate change (Quintero and

Wiens, 2013). Therefore, to fill the unprecedented research gap

in Rheum species and to develop a scientific strategy to protect
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alpine glasshouse species (i.e., R. nobile and R. alexandrae) from

the negative consequences of global warming, we used species

distribution models and assessed the geographical distribution

range shift.

The species distribution models (SDM) combined with

geographic information systems have ushered in a new era of

research into the consequences of climate change on species

ecology, biogeography, and conservation (Guisan and Thuiller,

2005; Warren et al., 2008). Ensemble SDM (eSDM) can discover

geographic places with a high possibility of having a focal species

present by focusing on biological niche demands (Guisan and

Thuiller, 2005). With the recent advancement in SDM

approaches (Miller, 2010), multi-model projections have been

widely utilized to identify the climatic envelope and range shift

for endemic and endangered species (Pearson et al., 2007;

Robinson et al., 2018).

This research looks at how global warming affects the

distribution ranges of the geographically co-occurring alpine

‘glasshouse’ species R. nobile and R. alexandrae (Polygonaceae).

With the following precise goals in mind, we adopted multiple

eSDM approaches to 1) characterize the realized niche

underpinning the distribution of the two focal species, 2)

predict range shifts of the two focal species under various

climatic scenarios, and 3) discuss potential adaptive responses

to changes in the distributional range of the two focal species in

response to global warming for biodiversity conservation.
Materials and methods

Focal species

Rheum nobile and R. alexandrae are two species that have

evolved specific adaptations to cope with the cold-foggy and damp

conditions prevalent at high elevations in the HHM, respectively.

Both species (Figure 1A) are giant perennial herbs endemic to the

Eastern Himalayas (EH) and the Hengduan Mountains (HM)

(Figure 1D), growing at elevations between 3,400 and 6,000 m

a.s.l. (Li and Gao, 1998; Chowdhery and Agrawala, 2009). Rheum

nobile is a monocarpic herb with individuals dying after a single

reproductive event after ca. 33 years of vegetative growth (Song

et al., 2020b), whereas R. alexandrae is a multi-stemmed

polycarpic perennial (Song et al. unpublished). Despite their

relatedness and morphological similarity (Sun et al., 2012), they

have distinct habitat and range distributions. Rheum nobile is

found chiefly on alpine open scree and occasionally in open

patches of alpine meadows, i.e., in well-drained habitats

(Chowdhery and Agrawala, 2009; Song et al., 2013c), whereas

the partly sympatric R. alexandrae is found mainly on alpine

wetlands, including marshes, swampy meadows, and lakeshores

(Chen, 1993).
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Rarefaction of species occurrence

We focused on the entire geographic distribution ranges of

the two species (Figure 1D). For this, the past field (1937–2020)

(Supplementary Table S1) datasets were compiled and cross-

checked with the herbarium records from the National

Herbarium and Plant Laboratories (KATH, Nepal) and

Kunming Institute of Botany, CAS (KUN, China) to construct

the geographic distribution of both species. In addition to past

field and herbarium collections, we also ground-validated

occurrence points (from 2015 to 2022) through GPS in the

field and cross-checked with the online databases of the Chinese

National Herbarium (PE; http://pe.ibcas.ac.cn/en/), Chinese

Virtual Herbarium (CVH; http://www.cvh.ac.cn/), the Global

Biodiversity Information Facility (GBIF.org, 2021), the Royal

Botanical Garden at Edinburgh (RBGE, United Kingdom; http://

data.rbge.org.uk/search/herbarium/) and the Herbarium at the

University of Tokyo (TI, Japan; http://umdb.um.u-tokyo.ac.jp/

DShokubu/). While compiling the occurrence datasets, we

mainly focused on geographic coordinates recorded by the

different resource persons during the field. So, the occurrence

points from the other herbarium specimens and online

databases were discarded in the datasets. Following Barbet-

Massin et al. (2012), the background points were randomly

chosen within a 25–50 km radius of the occurrence points.

Overfitting or biases in eSDM may result from geo-coding

errors in the herbarium label and spatially clustered localities

(Hijmans, 2012; Boria et al., 2014; Rana et al., 2021), making it

challenging to forecast range distribution and climatic suitability

accurately. Therefore, we spatially rarefied the gathered

geographic occurrences to avoid model bias (Boria et al., 2014;

Rana et al., 2017; Rana et al., 2020b). Due to the filter distances’

effectiveness in spatially high heterogeneous regions, like

mountains, the occurrences were rarefied using a 10-km

spatial grid (Veloz, 2009; Boria et al., 2014; Rana et al., 2021).

Finally, the models were developed using 56 out of 79 R. nobile

occurrences and 54 out of 77 R. alexandrae occurrences

after rarefaction.
Explanatory environmental variables

The potential distribution of the two focal species was

modeled for the present-day (ca. 1990–2000) and projected to

the paleo (LIG: last inter-glacial ca. 120,000–140,000 years BP;

the LGM: last glacial maximum ca. 22,000 years BP) and future

(2070, Representative Concentration Pathways, RCPs4.5)

climatic scenarios. The climatic projection was created using a

multi-model median (MMM) ensemble of General Circulation

Models (GCMs) (Rana et al., 2021) (see Supplementary Table S2

for GCMs).
frontiersin.org

http://pe.ibcas.ac.cn/en/
http://www.cvh.ac.cn/
http://data.rbge.org.uk/search/herbarium/
http://data.rbge.org.uk/search/herbarium/
http://umdb.um.u-tokyo.ac.jp/DShokubu/
http://umdb.um.u-tokyo.ac.jp/DShokubu/
https://doi.org/10.3389/fpls.2022.925296
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rana et al. 10.3389/fpls.2022.925296
We used three different eSDM in different environmental

strata, each with its unique set of predictive variables. Firstly,

bioclimatic variables (http://www.worldclim.org/version2) were

used to forecast under paleo climatic (LIG, LGM), present-day,

and future scenarios. Secondly, all environmental variables were

pooled and forecasted. Finally, ensemble forecasting was

performed by combining bioclimatic variables with other

environmental variable categories such as geo-climatic (http://

www.worldclim.org/version2; http://nelson.wisc.edu/sage;

http://www.cgiar-csi.org), habitat heterogeneity (Tuanmu and

Jetz, 2015; http://www.earthenv.org/texture), growing days

(https://chelsa-climate.org/), ultra-violet radiation (Beckmann

et al., 2014; https://www.ufz.de/gluv/) and consensus land-

cover (Tuanmu and Jetz, 2014; http://www.earthenv.org/

landcover). All these climatic variables (Hijmans et al., 2005)

and other environmental variables were used with a spatial

resolution of 2.5 arc-min (Table 1).

The elimination of highly correlated and/or redundant

variables reduces the high collinearity, uncertainties, and

predictive errors associated with clustered variables

(Ranjitkar et al., 2014). Therefore, we used successive steps of

variable selection. Firstly, variables were selected category-

wise; secondly, all variables from each category were pooled

together (for combined ensemble forecasting); and finally,

bioclimatic variables were combined with environmental

variables from other categories. Initially screened global

consensus landcover variables were analyzed with species
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occurrences larger than a 30% threshold out of all

occurrences (Supplementary Table S3). We used the variance

inflation factor (VIF; Fox and Weisberg, 2011) (calculated

using the R-package ‘car’ fixing elevation as a response

variable) in conjunction with a Pearson correlation matrix as

the significant core of variable selection. In VIF, the linear

function of the model employs numeric response variables and

is expressed as VIFj=1/(1–R2j), where R2j is the R2-value

obtained by regressing the jth predictor on the remaining

predictors (Jackson et al., 2009). Variables with VIFj >10

indicate strong multi-collinearity (Quinn and Keough, 2002),

and variables with a high VIFj have a negative impact on the

modeling output. Several tests were run with extracted values

of occurrences for bioclimatic and other environmental

variables until a set of predictors with VIFj values less than

10 was retained. The selection of explanatory variables includes

Pearson correlation values of < |0.8| (see Supplementary Tables

S4, S5 for correlation analysis results) and VIFj values of < 10

(see Supplementary Tables S6–S10 for VIFj analysis results).

Initially, variables were selected based on the Pearson

correlation (Supplementary Tables S4, S5) and VIFj analysis

(Supplementary Tables S6, S7). In contrast, the remaining steps

used VIF (Supplementary Tables S8–S10) as the primary

function of the variable selection for both focal species.

Several species-specific and environmental variables were

used as a subset of predictive variables for forecasting the

suitable range (Table 1).
FIGURE 1

(A) Images of Rheum nobile (above) and Rheum alexandrae (below) in their respective habitats. (B) The relative contribution of the predictive
environmental variables (colored arrows) to the two axes of biplots from principal components analysis (PCA). The distribution area of both
species as a function of (C) raster overlay and (D) fuzzy overlay depicts their present-day bio-climatically suitable niche in the Eastern Himalaya
(EH) and the Hengduan Mountains (HM). The two dots in (B, D) represent the occurrence points for R. nobile (white dot) and R. alexandrae
(black dot).
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TABLE 1 Multi-step selection of predictive environmental variables for ensemble species distribution modeling (eSDM) of two alpine ‘glasshouse’
herbs, Rheum nobile and Rheum alexandrae.

Environmental variables Rheum nobile Rheum alexandrae

1st 2nd 3rd 1st 2nd 3rd

Bioclimatic variables (V1)

Mean diurnal range (°C) – – bio2 bio2

Isothermality [(bio2/bio7) × 100] bio3 bio3 bio3 bio3

Temperature Annual Range (bio5-bio6) (°C) bio7 bio7 – –

Mean Temperature of Wettest Quarter (°C) – – bio8 –

Mean Temperature of Warmest Quarter (°C) bio10 – – –

Precipitation of Wettest Month (mm) bio13 bio13 bio13 bio13

Precipitation Seasonality (Coefficient of Variation) bio15 – bio15 bio15

Precipitation of Wettest Quarter (mm) bio16 bio16 bio16 bio16

Precipitation of Driest Quarter (mm) bio17 bio17 bio17 –

Precipitation of Coldest Quarter (mm) bio19 – – –

Geo-climatic (V2)

Elevation (m) ele ele ele bio3, bio7 bio10, bio13 bio16,
bio17 bio19

ele ele ele bio2, bio3 bio8, bio13
bio15, bio16Aspect (degree) asp asp asp asp asp asp

Net primary productivity (kg-carbon/m²/year) npp npp npp npp npp npp

Annual aridity (ratio) ai – – ai – –

Soil moisture (mm based on 150 mm water
holding capacity)

soilM soilM soilM soilM soilM soilM

Potential evapotranspiration (mm) pet pet pet pet – pet

Annual Relative Humidity (%) annRH annRH annRH annRH annRH annRH

Annual solar radiation (kJ/m²/day) annSR annSR annSR annSR annSR annSR

Soil pH (acidity-alkaline level) soil_pH soil_pH soil_pH soil_pH soil_pH soil_pH

Soil carbon (Kg-Carbon/m² to 1 m depth) soilC – soilC soilC – –

Annual water vapour (kPa) – – – annWV – –

Habitat heterogeneity (V3)

Correlation (linear dependency of EVI on
adjacent pixels, 1≥ x ≥-1)

corr corr corr bio3, bio7 bio10, bio13 bio15,
bio16 bio17, bio19

corr corr corr bio2, bio3 bio8, bio13
bio15, bio16 bio17

Coefficient of variation (normalized dispersion of
EVI, x ≥0)

cv – cv cv – cv

Evenness (evenness of EVI, 1≥ x ≥0) even even even even even even

Homogeneity (similarity of EVI between adjacent
pixels, 1≥ x ≥0)

homo – homo homo – homo

Maximum (dominance of EVI combinations
between adjacent pixels, 1≥ x ≥0)

max max max max max max

Range (Range of EVI, x ≥0) range range range – – –

Contrast (exponentially weighted difference in
EVI between adjacent pixels, x ≥0)

– – – cont cont cont

Growing days (V4)

Growing degree days (°C based on 5-degree base
temperature)

gdd gdd gdd bio3, bio7 bio13, bio15 bio16,
bio17 bio19

gdd gdd gdd bio2, bio3 bio8, bio13
bio15, bio16 bio17

Growing season length (number of days) gsl gsl gsl gsl gsl gsl

Growing season temperature (°C/10) gst gst gst gst – –

Last day of growing season (Julian day) – – – lgd lgd lgd

Ultra-violet radiations (V5)

UV-B seasonality (J/m²/day) uvb2 uvb2 uvb2 bio3, bio7 bio10, bio13 bio15,
bio16 bio17, bio19

uvb2 uvb2 uvb2 bio2, bio3 bio8, bio13
bio15, bio16 bio17Mean UV-B of lowest month (J/m²/day) uvb4 – uvb4 – – –

Sum of monthly mean UV-B during lowest
quarter

uvb6 – – uvb6 – –

(Continued)
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Furthermore, principal component analysis (PCA) was

performed to group the occurrences according to the

predictive bioclimatic and environmental variables of R. nobile

and R. alexandrae using the R-package ‘factoextra’ (Kassambara

and Mundt, 2020).
Ensemble model development
and validation

For a given species distribution model, we used the

standardized approach in ODMAP (Overview, Data, Model,

Assessment and Prediction) (Zurell et al., 2020) protocol

structure (Supplementary Methods). The ensemble of SDMs

was implemented using the R-package ‘Biomod2’ (Thuiller et al.,

2020). Biomod2 outperforms single algorithms by incorporating

simulations across multi-model classes, parameters, and climatic

conditions (Araujo and New, 2007). Moreover, the consistent

modeling approach was applied throughout the different

strategies implemented for R. nobile and R. alexandrae. The

assessment of SDM using niche-based modeling techniques

allows for different modeling approaches such as bioclimatic

envelopes, regression, classification methods, and machine

learning methods (Thuiller et al., 2020) (Table 2). Except for

MaxEnt with a maximum iteration of 5000 (Maximum Entropy

Models; Phillips et al., 2006), all other models in Biomod2 were

run with the default settings.

Apart from analyzing significant variables, the essential steps

in modeling are ensemble model development and validation for

consensus mapping, which is generally done using a four-step

modeling procedure in Biomod2. The initial step was calibrating

ten sub-models with the ‘BIOMOD_Modelling’ function, which

defined 4-fold cross-validation using 75% of the data to train the

models. The remaining 25% were used to assess the predictive

power using True Skill Statistics (TSS), Cohen’s Kappa, and Area

Under Curve-Receiver Operating characteristics (AUC)

statistics (Araujo et al., 2005; Allouche et al., 2006). The

threshold-dependent model accuracy matrices, i.e., TSS and

Cohen’s kappa, are independent of prevalence–the ratio of
Frontiers in Plant Science 06
presence to pseudo-absence data in presence-absence

predictions (Allouche et al., 2006). It considers both sensitivity

and specificity, with the values ranging from −1 to +1, with +1

denoting perfect agreement. Scores between 0.6 to 0.9 suggest

medium to good model performance (Allouche et al., 2006). The

threshold-independent model evaluation indicator AUC, on the

other hand, is likewise independent of prevalence (Phillips et al.,

2006) and examines the models’ discriminating abilities. AUC

values of less than 0.6 were regarded as poor, 0.6–0.9 were rated

moderate, and >0.9 were considered excellent (Phillips et al.,

2006). We applied the ‘BIOMOD_EnsembleModeling’ function

in the second step, with sub-model weights > 0.9 assessed by TSS

for ensemble modeling. The sampling procedure was replicated

five times. We then used ‘BIOMOD_Projection’ for projecting

the calibrated sub-models into a new space or time. Finally, the

‘BIOMOD_EnsembleForecasting’ function was used to forecast

and generate the consensus mapping of species over time and

space. The consensus model was then projected onto the past

(LIG, LGM) and future (2070) climatic scenarios. Each model’s

contribution to the final ensemble model was proportional to its

goodness-of-fit statistics.
Mapping the ensemble species
distribution model

The spatial conversion of the consensus ensemble model to a

binary model (presence/absence) was based on the thresholds

(50% of suitable habitats) that suit the present-day distribution

of the focal species (Forester et al., 2013; Rana et al., 2020a; Rana

et al., 2021). The spatial analyses were carried out in ArcMap

10.4.1 (Environmental Systems Resource Institute (ESRI), 2016)

using the extension Spatial Analysis to reclassify changes in LIG,

LGM, and future conditions compared to present-day suitability

into reduction, stable, and expanded areas of the focal species.

The predicted suitable habitat maps of the two focal species were

then overlapped to locate overlapping regions under present-day

climatic scenarios.
TABLE 1 Continued

Environmental variables Rheum nobile Rheum alexandrae

1st 2nd 3rd 1st 2nd 3rd

Consensus landcover (V6)

Evergreen/deciduous Needleleaf trees (%) lulc1 lulc1 lulc1 bio3, bio7 bio10, bio13 bio15,
bio16 bio17, bio19

lulc1 lulc1 lulc1 bio2, bio3 bio8, bio13
bio15, bio16 bio17Mixed/other trees (%) lulc4 lulc4 lulc4 lulc4 lulc4 lulc4

Shrubs (%) lulc5 lulc5 lulc5 – – –

Herbaceous vegetation (%) lulc6 lulc6 lulc6 lulc6 lulc6 lulc6

Cultivated and managed vegetation (%) lulc7 lulc7 lulc7 lulc7 lulc7 lulc7

Snow/ice (%) lulc10 lulc10 lulc10
1st, categories-wise selection; 2nd, all categories combinedly (for combined eSDM); 3rd, Bioclimatic variables with other environmental variables categories.
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TABLE 2 Model evaluation indices for the ensemble species distribution modeling (eSDM) of Rheum nobile and Rheum alexandrae using Biomod2 in R-programming language.

R. nobile/R. alexandrae V1 V1 + V2 V1+ V3 V1+V4 V1+ V5 V1+ V6 Environmental

AUC Kappa TSS AUC Kappa TSS AUC Kappa TSS AUC Kappa TSS AUC Kappa TSS AUC

1/1 1/1 1/1 1/1 1/1 1/1 1/1 0.95/1 0.99/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

1/1 0.97/
0.99

1/1 1/1 0.97/
0.96

1/1 1/1 0.97/
0.98

1/1 1/1 0.96/
0.98

1/1 1/1 0.98/
0.99

1/1 1/1

1/1 0.85/
0.83

0.93/
0.94

1/0.99 0.89/
0.92

0.95/
0.95

1/1 0.86/
0.82

0.93/
0.94

1/1 0.88/
0.83

0.94/
0.92

1/0.99 0.91/1 0.99/1 1/1

0.97/1 0.88/
0.91

0.85/
0.94

0.96/
0.97

0.9/
0.88

0.89/
0.85

0.96/
0.93

0.9/
0.92

0.91/
0.92

0.97/
0.99

0.91/
0.91

0.93/
0.94

0.97/
0.97

0.9/
0.88

0.85/
0.85

0.94/
0.93

1/1 0.91/
0.85

0.93/
0.97

0.99/
0.98

0.85/
0.97

0.97/
0.98

0.99/1 0.89/
0.97

0.89/
0.96

0.96/
0.99

0.92/1 0.93/1 0.99/1 0.79/
0.86

0.82/
0.85

0.93/
0.98

0.95/1 0.87/
0.86

0.89/
0.98

0.96/1 0.9/
0.87

0.97/
0.94

1/0.99 0.85/
0.88

0.94/
0.97

0.98/1 0.86/
0.9

0.91/
0.98

0.96/1 0.92/
0.94

0.97/
0.98

0.99/
0.99

1/0.94 0.9/
0.96

0.97/
0.98

1/0.99 0.94/
0.94

0.97/
0.99

1/1 0.9/
0.95

0.94/
0.98

0.99/1 0.92/
0.98

0.95/1 1/1 1/1 1/1 1/1

1/1 0.99/1 1/1 1/1 1/0.99 1/1 1/1 1/0.99 1/1 1/1 0.99/1 1/1 1/1 1/1 1/1 1/1

0.76/
0.78

0.6/
0.67

0.48/
0.52

0.74/
0.76

0.7/
0.81

0.6/0.7 0.8/
0.85

0.67/
0.81

0.55/
0.7

0.78/
0.85

0.61/
0.77

0.48/
0.65

0.74/
0.82

0.46/
0.62

0.32/
0.46

0.66/
0.73

1/1 0.95/
0.99

0.99/1 1/1 0.95/
0.95

0.97/
0.98

1/1 0.92/
0.95

0.97/
0.98

1/1 0.97/
0.97

0.97/
0.98

1/0.99 1/1 0.9/1 1/1

atic variables; V2, Geo-climatic; V3, Habitat-heterogeneity; V4, Growing days; V5, Ultra-violet radiations; V6, Consensus landcover
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Algorithms Kappa TSS AUC Kappa TSS

Generalized additive model (GAM) 0.92/1 0.98/1 1/1 1/1 1/1

Generalized boosting model (GBM) 0.96/
0.97

1/1 1/1 0.99/
0.97

1/1

Generalized linear model (GLM) 0.84/
0.75

0.94/
0.91

1/0.99 0.89/
0.94

0.97/
0.99

Classification tree analysis (CTA) 0.91/
0.93

0.93/
0.94

0.97/
0.99

0.91/
0.93

0.91/
0.99

Artificial neural network (ANN) 0.84/
0.99

0.8/
0.98

0.96/
0.99

0.98/
0.95

0.98/
0.98

Flexible discriminant analysis
(FDA)

0.87/
0.89

0.93/
0.98

0.98/1 0.84/
0.87

0.89/
0.99

Multiple adaptive regression splines
(MARS)

0.9/
0.95

0.97/
0.98

1/1 1/0.91 1/0.89

Random forest (RF) 1/0.99 1/1 1/1 1/1 1/1

Surface range envelops (SRE) 0.7/
0.82

0.62/
0.72

0.81/
0.86

0.65/
0.69

0.52/
0.56

Maximum Entrophy (MaxEnt) 0.93/
0.96

0.98/
0.97

1/0.99 0.99/
0.95

1/0.98

Kappa, Cohen’s kappa; TSS, True Skill Statistics; AUC, Area Under the Curve; V1, Bioclim
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Niche equivalency test

Under the current bioclimatic scenario, we used the ecospat

test in R-package ‘ENMTools’ (Warren and Dinnage, 2021) for

the two focal species, R. nobile, and R. alexandrae, to test the

hypothesis that the environmental niche model formed by

population occurrences is identical. The R version of

ENMTools has a more straightforward user interface of ecospat

hypothesis testing with enmtools.species objects. It further

conducts principal component analysis for multiple predictor

variables to reduce them to a two-dimensional environment

space (Warren et al., 2021). The bioclimatic niches were

measured and validated using Schoener’s ‘D’ and Hellinger’s-

based ‘I’ through enmtools.ecospat.id function of identity test

and enmtools.ecospat.bg function of background test (symmetric

and asymmetric) (Warren et al., 2010; Warren et al., 2021).

Schoener’s D is a formula that calculates the appropriate range

depending on the probability of occupied grid cells. Hellinger’s-

based I works in a similar way as Schoener’s D, but without the

assumption (Warren and Seifert, 2011). The pairwise similarity

values of D and I indices ranged from 0 (complete divergence/no

overlap) to 1 (high similarity/complete overlap), indicating that

as the score increases, so does the niche overlap.
Results

Explanatory variables analysis and model
performance

The series of variable selection resulted in a robust set of

bioclimatic and other environmental variables to predict the

environmental niche of the two species. Initially screened

variable selection through Pearson correlations (r <|0.8|) and

VIF (VIFj <10) yielded 36 and 34 least correlated and non-

redundant variables for R. nobile and R. alexandrae, respectively.

These variables are species-specific to determine the distribution

of R. nobile and R. alexandrae (refer to Table 1 for details on

predictive variables). Landcover, being an influential factor in

determining species range for SDM (Bucklin et al., 2015), we

chose the number of occurrences found within each landcover

variable (Supplementary Table S3). The first model employs

bioclimatic variables, including eight for R. nobile (three

temperature-dependent, five precipitations dependent) and

seven for R. alexandrae (three temperature-dependent, four

precipitations-dependent). Highly contributing algorithm with

TSS >0.9 (Table 2) were selected to estimate the response curves

of the variables, notably for bioclimatic variables from eSDM

(Figure 2) and ENMTools (see Supplementary Figure S1).

The suitability of R. nobile is more favored by temperature

annual range (bio7: ca. 28 ˚C), mean temperature of warmest
Frontiers in Plant Science 08
quarter (bio10: ca. 10 ˚C), precipitation of coldest quarter

(bio19: ca. 12 mm) than that of R. alexandrae by mean

diurnal range (bio2: ca. 14 ˚C), mean temperature of the

wettest quarter (bio8: 8 ˚C) (Figure 2; Supplementary Figure

S1). Furthermore, the co-existing niches for both focal species

are characterized by isothermality (bio3; ca. 45), precipitation

of wettest month (bio13, ca. 200 mm), precipitation seasonality

(bio15; ca. 100 mm), precipitation of wettest quarter (bio16;

300–500 mm), and precipitation of driest quarter (bio17; ca.

12 mm) (Figure 2; Supplementary Figure S1). However, other

environmental variables contributed to forecasting suitable

habitats for the two focal species. When all predictive

environmental variables were combined as in the second

modeling, robust comparable model algorithms were

produced (Table 2). Also, in the third modeling when all

these environmental variables were independently modeled

with bioclimatic variables only, suitability was found to

be predictive.

Meanwhile, the first two components of a PCA with all

predictive variables explained 51.6% (PC1: 35.3% and PC2:

16.3%) of the observed variance for the two focal species, and

their environmental niches were demarcated from each other in

biplots (Figure 1B; Supplementary Figure S2). Bioclimatically

(V1), bio2, bio3, and bio15 are the most important for R.

alexandrae, whereas bio7 and bio17 are the most important

for R. nobile. Although the contributions of the different

variables in the biplots are species-specific, R. nobile’s niche is

characterized by an assembly of most variables. When compared

to R. alexandrae, the niche of R. nobile is characterized largely by

environmental variables (refer to Figure 1B and Table 1 for more

details on variables contribution). The model evaluation indices

AUC and Cohen’s kappa value varied from 0.66 to 1 and 0.46 to

1. The SRE algorithm scored the lowest, and the RF, GAM, and

GBM algorithms scored the highest (Table 2). Finally, the

consensus model was evaluated and calibrated for all three

modelings, with TSS >0.9 (details in Table 2). The result

indicates that the consensus models were highly predictive and

accurate regarding AUC, Cohen’s kappa, and TSS (Table 2).
Ecological niche analysis

Quantitatively, the average weight of the identity test (D, I <

0.82; Figure 3A) and the low weight of the background test (D,

I<0.6; Figures 3B, C) show that the two focal species R. nobile

and R. alexandrae, have quite different environmental niches.

The ENM similarity score for the present-day occurrence of two

species is average compared to what would be expected based on

the null hypothesis of niche equivalency, indicating that the two

species’ environmental niches may not be similar (Figure 3A).

However, the observed overlap between the two species in
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background tests is lower than expected under the null

hypothesis, showing that the two species are more divergent

depending on their habitat (Figures 3B, C). However, the

predictive power of the niche assemblage differs significantly

as a consequence of multiple algorithms. The lowest to average

score on the identity test and background test through GAM

indicates that the two species are ecologically apart

(Supplementary Figures S3A, C, E). In contrast, RF algorithms

with the highest identity and background tests imply that the

two species’ ecological niches are comparable and co-occur at

the same locality (Supplementary Figures S3B, D, F).
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Climate-induced range shifts of the two
alpine ‘glasshouse’ Rheum species

The predicted suitable habitat under the initial bioclimatic

modeling inferred the better suitability of R. nobile across the EH

than the HM (Figure 4A). On the other hand, R. alexandrae has

a robust distribution range in the eastern HM and is scattered

across the EH (Figure 4B). The projected suitability using all

environmental variables coupled with bioclimatic variables

(second modeling) (Supplementary Figures S4A, G) or

bioclimatic + each environmental variable (third modeling)
A B D

E F G

I

H

J K L

M N

C

O

FIGURE 2

Response curves of the highly predictive top three algorithms showing the probability of presence (y-axis) under the (A–C, I–K) temperature-
dependent and (D–H, L–O) precipitation-dependent variables (x-axis) for (A–H) Rheum nobile and (I–O) Rheum alexandrae. The predictive
algorithms are the Generalised Additive Model (GAM; red line), Generalised Boosting Models (GBM; blue line), and Random Forest (RF; green
line), with high model accuracy TSS > 0.9. Temperatures are expressed in °C (degree Celsius) and precipitation in mm (millimeter). Refer
to Table 1 for the bioclimatic variables.
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(Supplementary Figures S4B–F, H–L) resulted in similar

patterns for the distribution ranges. The continuous pattern of

the distribution range of R. nobile runs from the EH to the HM

(Supplementary Figures S4A–F). In contrast, all three modeling

approaches revealed a narrower distribution range of R.

alexandrae restricted in the HM (Supplementary Figures S4G–

L). The conservative prediction of high suitability in the HM for

both species represents the present-day distribution range of the

species (Figures 1C, D and 4A, B; Supplementary Figure S4).

Although they appear in distinct locations, their range comprises

the same geographic region in the HM, namely Huluhai and

Hongshan (field observation) (Figures 1B–D).

The prediction under four different climate scenarios

(LIG, LGM, present-day, and future) are mainly observed

across the Eastern Himalayas and the Hengduan Mountains

(Figures 1C, D and 4; Supplementary Figure S4). From LIG to

the present-day, Rheum nobile has a varied suitable

distribution range, whereas a future range is comparable

with the present-day (Figures 4A, C, E, G). Throughout

LIG, the paleo-distribution model predicted refugial
Frontiers in Plant Science 10
habitats in the southern HM (Figure 4C), which relocated

east and west in distinct regions during the LGM (Figure 4E).

Similarly, R. alexandrae’s suitable distribution expands from

the LIG to the present-day and then to the future (Figures 4B,

D, F, H). R. alexandrae was more common in the central HM

during the LIG than R. nobile. Then, the distribution range

shifts towards the eastern HM, with some patches towards the

EH during the LGM. When projected to the future scenario,

the suitable range in the northern HM moves even higher

(Figure 4H). Both species were predicted to have suitable

distribution ranges and a strong expansion towards the north

(Figure 5). However, their distribution ranges were only

slightly reduced from the paleo climatic scenario [LIG

(Figures 5A, B) and LGM (Figures 5C, D)] to the present-

day, and from the present-day to the future (Figures 5E, F).

However, in comparison to the present-day situation, the

expansion towards the north is accompanied by a habitat

contraction in the south, notably in the HM. Conclusively, the

ensemble forecasting for the two species shows different range

shifts under different climatic scenarios.
A

B C

FIGURE 3

Pairwise niche (A) identity test and background test (B), symmetric; (C), asymmetric calculated between the two alpine ‘glasshouse’ herbs
Rheum nobile and Rheum alexandrae as a function of niche.overlap ecospat test implemented in ENMtools. The niche equivalency test as
species-wise pair comparisons was measured by Schoener’s D (in black color) and Hellinger’s-based I (in green color) indices.
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Discussion

Predictiveness of the multi-model
median for eSDM

Climate change in mountainous regions is projected to shift

plant distribution upwards, consequently, declining their

populations in those areas where it is no longer suited for

them. The capacity to model such alterations in plant

distribution ranges is heavily reliant on the availability of

sufficient environmental data and algorithms to analyze the

temporal changes. Ensemble modeling has proven to be robust

and predictive, overcoming the uncertainty and variability of

single models across multiple GCMs (Murphy et al., 2004; Pierce

et al., 2009; Rana et al., 2021). The use of ensemble modeling in
Frontiers in Plant Science 11
conjunction with consensus projections not only reduces the

predictive uncertainty of single models (Araujo and New, 2007;

Ranjitkar et al., 2014) but also improves accuracy (Marmion

et al., 2009) and addresses uncertainties inherent in SDM

techniques (Barry and Elith, 2006). However, it is equally

important to consider the selective nature of variables selected

through a series of variable filtration used in the different

modeling. Our study is the first to use an ensemble forecasting

procedure in an assemblage of variables related to bioclimatic,

geo-climatic, habitat heterogeneity, the number of growing days,

landcover, and ultraviolet radiation to predict the range shift of

plant species. It is anticipated to have a comparable predictive

value when forecasting the range shift of montane plants based

on only bioclimatic variables (Rana et al., 2021). Nonetheless,

alpine plants must use bioclimatic variables with macro/micro-
A B

D

E F

G H

C

FIGURE 4

Predicted potentially suitable habitat of two alpine ‘glasshouse’ herbs, (A, C, E, G) Rheum nobile and (B, D, F, H) Rheum alexandrae under (A, B)
present-day scenario of bioclimatic variables classifying their suitability level (suitable habitat in the left top corner of each map), (C, D) last-inter
glacial (LIG), (E, F) last glacial maximum (LGM), and (G, H) future scenarios.
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climatic environmental variables, habitat heterogeneity,

landcover, canopy cover, and UV radiation (Austin and van

Niel, 2011; Robinson et al., 2018). As a result, model uncertainty

is minimized, and the algorithm’s accuracy is improved. We

analyzed and evaluated the algorithms using threshold-

independent (i.e., AUC) and threshold-dependent (i.e., TSS

and Cohen’s kappa) model performance measures and

outlined the accuracy and predictiveness (matrices values >0.9)

of algorithms in different eSDM for both species.
Ecological niche characterization of the
two alpine ‘glasshouse’ Rheum species

Global warming will significantly impact the distribution

and resilience of the earth’s ecological communities (Mclaughlin

and Zavaleta, 2012). These impacts will most likely be felt in

mountainous regions, as many alpine plants’ ranges are

projected to migrate upwards/polewards (IPCC, 2014).

Meanwhile, we found that the distribution of alpine plants,

such as the two ‘glasshouse’ Rheum species, are characterized

by precipitation-dependent variables more than temperature-

dependent variables, thereby confirming Fu et al. (2018) and Sun
Frontiers in Plant Science 12
et al. (2016). Along with that, the climatic niche for R. nobile is

also characterized by a ‘temperature annual range’ with peak

suitability at ca. 28˚C, higher than Wang (2006) estimation (i.e.,

15 ˚C). Rheum alexandrae, on the other hand, has a ‘mean

temperature of warmest quarter’ of ca. 8 ˚C. Therefore, the

temperature-induced shift in bioclimatic zones is the decisive

factor responsible for the decline in the suitability range of the

two alpine species. However, their local occurrence and

ecological microhabitat are frequently associated with soil

water conditions. Rheum alexandrae is found chiefly in alpine

wetlands, including marsh, swampy meadows, and lakeshores

(Chen, 1993); while R. nobile, usually occurs on alpine scree and

rarely in open patches of alpine meadow, i.e., in well-drained

habitats (Song et al., 2013a; Song et al., 2013b).

Specifically, climate regulates the distribution limitations of

the two Rheum species. The species’ cool range limits are

governed directly by climatic factors, while the warm range

limits are more impacted by biotic interactions, such as

predation, mutualism, and resource competition (Paquette and

Hargreaves, 2021). Furthermore, our model exemplifies the

hypothesis of a combined latitudinal/upward range shift of

species with cool range limitations. Despite their close

relationship and similar morphology (Sun et al., 2012; Song
A B

D

E F

C

FIGURE 5

Potentially reduced, stable, and expanded range for the alpine ‘glasshouse’ herbs, (A, C, E) Rheum nobile and (B, D, F) Rheum alexandrae
compared among different climate scenarios: (A, B) last interglacial (LIG) versus present-day; (C, D) last glacial maximum (LGM) versus present-
day; and (E, F) present-day versus future [2070, Representative Concentration Pathway (RCP) 4.5].
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et al., 2020b), R. alexandrae and R. nobile exhibit distinct life

histories, distribution limits, and ecological niches related to soil

water conditions. Consequently, their specific local niches might

underpin the biogeographic patterns of alpine ‘glasshouse’

species. Their specific areas of occurrence were barely apart

from each other. They are in comparable geographical places.

However, they had never existed together in the same

microhabitat. Consequently, niche identity and background

analyses for the two ‘glasshouse’ species revealed minimal

evidence of comparable niche composition.
Global warming affects the distribution
range of the two alpine ‘glasshouse’
Rheum species

Will species be able to adapt in the face of distribution range

shift as a result of climate warming? Such topics have been hotly

debated, but it is still poorly understood in science. Many

researchers argue that species that have previously adapted to

worsening climate conditions may be threatened more seriously.

In contrast, others fear that the shift in species ranges caused by

global warming may result in species extinction (Williams et al.,

2007). For mountainous plant species, global warming is

expected to act as an ‘escalator to extinction’ (Freeman et al.,

2018). This is especially true for species living near

mountaintops that cannot move higher. Our model illustrates

the range shifts due to global warming for the two alpine

‘glasshouse’ Rheum species. The model identified their distinct

niches, influencing their responses to predicted climate change

and their shift across the Himalayas and the Hengduan

Mountains (You et al., 2018). Further, our model suggested

that the appropriate range for Rheum species has risen since the

past LIG, as a result of climate change. The existence of suitable

habitats in the HM for both the species during glacial-

interglacial periods, especially for R. alexandrae, reflects that

the HM was not completely glaciated and likely served as a

refugium for many plants during glacial periods (Qiu et al., 2011;

Zhang et al., 2018; Muellner-Riehl, 2019). The specific nature of

the habitat niches for the two Rheum species led to an increased

suitable range from LIG to LGM.

The southern HM provided a refugium for R. nobile and the

southeast HM for R. alexandrae. As a result of global cooling, the

eSDM suggested that both species were able to expand their

geographic range from LIG to LGM in different magnitudes

(Retallack, 2001; Meng et al., 2017). Possibly, glaciations during

the LGM might have pushed the suitable range of R. nobile

towards the EH and east of the HM. At the same time, R.

alexandrae, during the LIG, slightly retreated its area of

occurrence towards the southern HM. However, an occasional

long-distance dispersal of the seed by wind (Song et al., 2013b)

may have shaped the current HHM distribution for R. nobile.

The present-day model of the suitable distribution range
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represents the actual distribution for both species, except for

that of R. alexandrae in the EH. Rheum nobile is predicted to

have a wide suitable range in the EH and the HM, but for R.

alexandrae only in the HM. The HHM endemic R. nobile

conjunctly occurs in the HM (especially in the Huluhai and

Hongshan regions) but in the distinct areas from R. alexandrae.

The present-day similar distribution ranges of the two

species in the EH and the HM will no longer exist under

climate warming (Figures 4, 5). We speculate that super-

competitor species that increase their range northward may

benefit from identical niche requirements due to climate

change (Liang et al., 2018; Rumpf et al., 2018). Species’ ability

to adapt genetically or modify their physiological tolerance will

determine their local survival. The dramatic temperature

fluctuation during the quaternary glacial cycles has led plant

species to move downslope during the LGM and then return

upslope with the Holocene warming (Flenley, 1998; Bush et al.,

2004). Similarly, since glacial-interglacial periods, our model of

warming scenarios predicted north- and upwards expansion of

suitable habitats in the HHM and retreat of suitable habitats in

the south. The complex topography in the high HM provides

enough land surface, allowing upward relocation of suitable

habitats and a northward expansion into adjacent areas with

suitable habitats (Liang et al., 2018). Similar results were found

in SDM studies for other Himalayan species (Song et al., 2004;

Xiaodan et al., 2011; Zhao et al., 2011; Manish et al., 2016;

Lamsal et al., 2017), which predicted a northward vegetation

shift and re-shuffling of plant assemblages in the future due to

global warming. Apart from that, comparable findings were

observed for Australian plants (Auld et al., 2022), along with

other mountain species in the European Alps (Thuiller et al.,

2005; Benito et al., 2011; Dullinger et al., 2012), the Andes (Ruiz

et al., 2008; Feeley and Silman, 2010), and in arctic regions of the

northern hemisphere (Kaplan and New, 2006). However, such

range shifts may not be sufficient to ensure population and

species survival (Rana et al., 2017). Alpine species may need to

change physiologically to cope with the specific climatic

circumstances found at the higher elevations (Körner, 2003);

seeds, in particular, must be viable for germination and resistant

to the ‘summit trap phenomena’ (Pertoldi and Bach, 2007). A

failure to adapt might cause mountaintop species to face the risk

of ‘mountaintop extinction’ unless they have disjunct

populations elsewhere on higher mountains or in colder

latitudes (Williams et al., 2007; Lenoir et al., 2008).
Conservation implication in response to
the rise in global temperature

Local extinction of mountain species is a significant driver

altering ecosystem structure and misbalancing biodiversity in

hotspots. The Himalayas and the Mountains of Southwest China

(also known as the HM) are two crucial biodiversity hotspots
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(Myers et al., 2000; Mittermeier et al., 2011) with a high

proportion of endemic mountaintop species. Endemic high

mountain species like R. nobile and R. alexandrae are more

vulnerable to local extinction due to global warming as their

distribution range is pushed higher and higher. The species’

ability to survive in extreme conditions may be jeopardized if its

distribution range expands towards mountaintops. Instead,

despite having the adaptive capacity to endure challenging

conditions at the mountaintops, the species must suffer local

extinction due to increased elevational range contraction

(Freeman et al., 2018). Therefore, a centerpiece of biodiversity

conservation always warrants the conservation of remaining

habitats from further loss.

Moreover, the quantification and mapping of the suitable

range of the alpine ‘glasshouse’ Rheum in response to climate

change have implications for conservation policies aimed at

protecting their natural habitats. Our future-predicted map of

suitable habitats can be used to identify critical habitat areas and

prioritize conservation requirements, reducing biodiversity loss

due to habitat degradation and loss. As a result, given the current

period of biodiversity loss, there is a desperate need to understand

the mechanisms driving the biodiversity dynamics in hotspots, as

these findings will aid in the development of conservation policies

to safeguard species threatened by environmental changes and

human influences. We know that conservation efforts will be

challenged by the severity of climate change and the different

range shifts of certain species due to climate change (Williams

et al., 2007). Furthermore, rising anthropogenic pressure from

increased root harvesting for Tibetan medicinal purposes (Song

et al., 2020b) has enhanced the need for conservation.

Additionally, grazing pressure by yaks has dramatically

increased in grassland during summer and autumn (Yang and

Du, 1990). It is likely to pose a threat to the rare R. nobile even by

moderate grazing and thus this flagship species could be

endangered by intensified traditional pastoralism (Song et al.,

2020b). The information presented here about future climate

refugia should be utilized to drive the establishment of

conservation areas and conservation initiatives.
Conclusions

Our research investigates the range shift pattern of two

alpine ‘glasshouse’ species, R. nobile and R. alexandrae, under

different climate change scenarios using different eSDM. We

explored climatic variables in conjunction with environmental

variables to forecast the species’ geographical distribution range.

This research demonstrated the importance of applying eSDM

and multi-matrices model evaluation methodologies for robust

alpine plant range shift projections. Our model predicted the two

Rheum species’ northward and upward migration from the last

glacial period to a future climate change scenario. We not only

predicted a shift in the two focus species’ distribution ranges but
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also exemplified the sympatric coexistence of two Rheum

species, albeit in distinct ecological niches. Despite having

evolved to deal with extreme alpine climatic conditions, the

predicted distribution range north- and upwards of the two

Rheum species may not ensure their survival in the future. Our

findings highlight the necessity of combining mechanistic

research with knowledge of the physiological and molecular

mechanisms that underpin distribution range and current

biodiversity patterns. In this era of accelerating biodiversity

loss, it is critical to understand the mechanism that drives

biodiversity dynamics in hotspots. Through eSDM, we argue

for a better understanding of alpine plants’ species range shifts

and better biogeographer insight into adaptations and

biodiversity conservation objectives.
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SUPPLEMENTARY FIGURE 1

Response curves of the highly predictive top two algorithms showing the
probability of presence and suitability (y-axis) under the (A–C, I–K)
temperature-dependent and (D–H, L–O) precipitation-dependent
variables (x-axis) for (A–H) Rheum nobile and (I–O) Rheum alexandrae

under the function of ENMTools. The predictive algorithms are the
Generalised Additive Model (GAM; red line) and Random Forest (RF;

green line). Temperatures are expressed in °C (degree Celsius) and
precipitation in mm (millimeter). Refer to for the bioclimatic variables.

SUPPLEMENTARY FIGURE 2

(A) The scree plot representing the variance explained by the first ten

principal components of predictive environmental variables. (B, C) The
contribution of top predictive environmental variables under the PC1 (B)
and PC2 (C) scores. The Red dashed line indicates the expected average
contribution if variable contributions were uniform. Refer to for

abbreviated environmental variables.

SUPPLEMENTARY FIGURE 3

Pairwise niche (A, B) identity test and background test (C, D, symmetric; E,
F, asymmetric test) for the highly predictive top two algorithms (A, C, E)
Generalized additive model (GAM) and (B, D, F) Random forest (RF) model,
between the two alpine ‘glasshouse’ herbs Rheum nobile and Rheum

alexandrae, calculated as a function of niche.overlap ecospat test using

ENMtools. The niche equivalency test as species-wise pair comparisons
was measured by Schoener’s D (in black color) and Hellinger’s-based I (in

green color) indices.

SUPPLEMENTARY FIGURE 4

Predicted potentially suitable habitat of two alpine ‘glasshouse’ herbs, (A–
F) Rheum nobile and (G–L) Rheum alexandrae, under the present-day

scenario of predictive (A, G) environmental variables, (B, H) geo-climatic,
(C, I) habitat heterogeneity, (D, J) growing days, (E, K) ultra-violet

radiations, and (F, L) consensus landcover.
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