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Nitrogen (N) is one of the important macronutrients in plants, and N deficiency induces 
leaf senescence. However, the molecular mechanism underlying how N deficiency affects 
leaf senescence is unclear. Here, we report an apple NAC TF, MdNAC4, that participates 
in N deficiency-induced leaf senescence. The senescence phenotype of apple leaves 
overexpressing MdNAC4 was enhanced after N deficiency. Consistently, the chlorophyll 
content of transgenic leaves was significantly lower than that in the WT control leaves, 
the expression of chlorophyll catabolism-related genes (MdNYC1, MdPAO, and MdSGR1) 
was significantly higher than that in the WT controls, and the expression of chlorophyll 
synthesis-related genes (MdHEMA, MdCHLI, and MdCHLM) was significantly lower than 
that in the WT control leaves. Furthermore, MdNAC4 was found to directly activate the 
transcription of the chlorophyll catabolism-related genes MdNYC1 and MdPAO. Additionally, 
MdNAC4 was proven to interact with MdAPRR2 proteins both in vitro and in vivo, and 
overexpression of MdAPRR2 seemed to delay N deficiency-induced leaf senescence. 
Correspondingly, the chlorophyll loss of MdAPRR2-overexpressing (MdAPRR2-OE) lines 
was significantly lower than in WT control plants. Although downregulated, the expression 
of the chlorophyll synthesis-related genes MdHEMA, MdCHLI, and MdCHLM in the 
transgenic plants was more than twice that in the WT control plants. Taken together, our 
results enrich the regulatory network of leaf senescence induced by N deficiency through 
the interaction between MdNAC4 and MdAPRR2.
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INTRODUCTION

Leaf senescence is the last stage of leaf development and is characterized by the breakdown 
of plant organs and overwhelming catabolism (Woo et  al., 2019). Through the leaf senescence 
process, the first visible phenotypic change is the color change of the leaf due to the breakdown 
of chlorophyll (Hörtensteiner, 2006, 2009). Leaf senescence involves the process of programmed 
cell death, in which the expression of some senescence-related genes is altered. Previous studies 
have identified transcription factors (TFs) that play a crucial role in the regulation of leaf 
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senescence (Kim et  al., 2018). These TFs include WRKY TFs 
(Besseau et  al., 2012; Guo et  al., 2017; Chen et  al., 2017b; Yu 
et  al., 2021), bHLH TFs (An et  al., 2019; Hu et  al., 2020), 
MYB TFs (Huang et  al., 2015; Qi et  al., 2015), and AP2/ERF 
TFs (Feng et  al., 2016; Tan et  al., 2018; Riester et  al., 2019).

In particular, some TFs not only regulate leaf age-dependent 
senescence but also integrate developmental and environmental 
signals to regulate leaf senescence. The poplar NAC TF RD26 
occurs as an alternative splicing variant (intron retention [IR]) 
and produces the truncated protein PtRD26IR. PtRD26IR inhibits 
leaf senescence, while normal PtRD26 promotes leaf senescence 
by regulating multiple senescence-related genes (Wang et  al., 
2021). RD26 is also involved in stress-induced leaf senescence 
and participates in chloroplast protein degradation by directly 
activating the chloroplast vesicle (CV) synthesis-related gene 
in the dark to accelerate leaf senescence (Kamranfar et  al., 
2018). The rice NAC TFs ORE1 and NAP regulate leaf senescence 
induced by plant hormones or stress by regulating the expression 
of senescence-related genes (Liang et  al., 2014; Mao et  al., 
2017). NAC2 indirectly regulates leaf senescence by upregulating 
the expression of abscisic acid (ABA) synthesis-related genes 
(NCED3 and ZEP1) and downregulating the expression of an 
ABA decomposition-related gene (ABA8 ox1; Singh et al., 2021). 
NAC33 can bind to the promoter of the chlorophyll degradation-
related gene SGR1 and regulate leaf senescence by promoting 
chlorophyll degradation (Kelly and Allan, 2021). These results 
suggest that NAC TFs play a key role in leaf senescence and 
directly or indirectly participate in leaf senescence through a 
variety of metabolic pathways.

N is an important macronutrient required for plant growth 
and development, and its deficiency can induce leaf senescence 
(Schulte auf 'm Erley et al., 2007; Meng et al., 2016). NRT1.5, 
a xylem nitrate-loading transporter, is strongly induced by 
nitrate starvation. The current study shows that NRT1.5 plays 
an important role in perceiving nitrate deficiency signals 
and suppresses nitrate deficiency-induced leaf senescence by 
facilitating potassium accumulation in the leaves (Chen et al., 
2012; Zhang et  al., 2014; Meng et  al., 2016). NRT1.7, a 
phloem nitrate transporter, is involved in nitrate remobilization 
from old leaves. During their vegetative growth, when plants 
encounter long-term N deficiency, NRT1.7 delays N deficiency-
induced leaf senescence by transferring nitrate from old leaves 
to developing tissues (Fan et  al., 2009). In addition, the 
NITROGEN LIMITATION ADAPTATION (NLA) gene plays 
an important role in regulating N deficiency-induced the 
leaf senescence (Kant et  al., 2011; Park et  al., 2018). NLA 
interacts with the NAC TF ORE1  in the nucleus and affects 
the process of leaf senescence by regulating the level of 
ORE1 proteins (Park et  al., 2018). The results indicate that 
NAC TFs are involved in leaf senescence induced by N 
deficiency, but the potential role of MdNAC4 in regulating 
leaf senescence induced by N deficiency has not been 
investigated in detail.

In recent years, research on leaf senescence has mostly 
focused on chlorophyll degradation. For example, 
PHYTOCHROME-INTERACTING FACTOR (PIF) family 
proteins PIF4/5 can directly or indirectly regulate the 

expression of chlorophyll catabolism-related genes (CCGs; 
including NYC1, PAO, and NYE1) and regulate darkness-
induced leaf senescence (Sanchez et  al., 2020). The maize 
NAC TF ZmNAC126 acts downstream of the ethylene 
metabolism pathway components and activates the expression 
of CCGs to accelerate leaf senescence (Yang et  al., 2020). 
The MADS box family TF SOC1 directly inhibits the 
transcription of the CCGs NYC1 and PPH to negatively 
regulate leaf senescence (Chen et  al., 2017a). Other TFs, 
namely, ANAC016, ANAC019, ANAC046, ANAC055, 
ANAC072 and ANAC092, directly bind to the promoters 
of a set of major CCGs and positively regulate leaf senescence 
(Sakuraba et  al., 2014, 2016; Qiu et  al., 2015; Zhu et  al., 
2015; Oda-Yamamizo et  al., 2016).

Chlorophyll degradation is often concomitant with chloroplast 
breakdown. In senescent leaves, the maintenance of chloroplasts 
plays an important role in counterbalancing leaf senescence 
(Rauf et al., 2013). Key elements in this process include Golden 
2-like (GLK2) TFs that maintain chloroplast development (Waters 
et  al., 2008). Studies have shown that the NAC TF ORE1 
interacts with GLK TFs protein, and ORE1 antagonizes GLK 
transcriptional activity, resulting in chloroplast breakdown (Rauf 
et  al., 2013). In addition, quantitative trait locus (QTL) studies 
have indicated that APRR2 may be  another candidate gene 
involved in the maintenance of chloroplast development (Brand 
et  al., 2012). Expression analysis of APRR2 showed that it was 
specifically expressed in immature fruit, and a nonsense mutation 
in APRR2 caused the fruits to have a white color (Pan 
et  al., 2013).

In the present study, it was found that the NAC TF MdNAC4 
promoted leaf senescence induced by N deficiency by directly 
activating the transcription of the CCGs MdNYC1 and 
MdPAO. We also identified a direct protein interaction between 
MdNAC4 and MdAPRR2. Overexpression of MdAPRR2 seems 
to delay leaf senescence induced by N deficiency by increasing 
the expression of chlorophyll synthesis-related genes. In summary, 
we identified a novel NAC TF that participates in leaf senescence 
induced by N deficiency, which provided a new insight to 
study the molecular mechanisms of N deficiency-induced 
leaf senescence.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The tissue-cultured plantlets of Malus domestica ‘GL-3’ were 
cultured under long-day conditions (14 h:10 h, light/darkness) 
at 24/22°C and the seedlings were subcultured once a month. 
The apple leaves used in the transient transformation experiments 
were taken from M. domestica ‘GL-3’ tissue culture seedlings. 
Detached leaves were placed on N-deficient plates under long-day 
conditions (14 h:10 h, light/darkness) at 22°C for 2 weeks. 
Sterilized tobacco (Nicotiana benthamiana) seeds were placed 
on Murashige and Skoog (MS) agar media at 4°C for 96 h, 
and then transferred to growth chamber. The tobacco plants 
were grown at 24/22°C under long-day conditions (14 h:10 h, 
light/darkness), and the leaves of tissue-cultured tobacco were 
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used for genetic transformation, the leaves of substrate cultivated 
tobacco were used for dual-luciferase assays.

RNA Extraction and Real-Time 
Quantitative PCR Analysis
Total RNA of the samples was extracted using an RNA prep 
Pure Plant Plus Kit (TIANGEN, Beijing, China). Afterward, 
single-stranded cDNA was synthesized using a cDNA Synthesis 
Kit (Vazyme, Nanjing, China). qRT-PCR analysis was performed 
using UltraSYBR Mixture (CW Biotech, Taizhou, China) in 
a CFX Connect™ Real-time System (Bio-Rad, CA, 
United  States). Three technical replicates and three biological 
replicates were carried out for each sample. The primers for 
qRT-PCR were designed by NCBI Primer-BLAST and synthesized 
by Sangon Biotech Technology (Shanghai, China). The internal 
reference gene used is MdActin (MD12G1140800). The 
transcription-level analysis was performed using the comparative 
Ct (2–ΔΔCt) method. All the primer sequences used are listed 
in Supplementary Table S1.

Generation of Transgenic Plant Materials
The specific sequence fragments of MdNAC4 were inserted 
into a tobacco rattle virus (TRV) vector to construct the 
antisense suppression expression plasmids. The full-length CDS 
of MdNAC4 were inserted into a pIR vector to construct the 
overexpression plasmids. The transient transformation of apple 
leaves was performed as described previously (An et al., 2019). 
Stable transgenic apple and tobacco seedlings were obtained 
by Agrobacterium-mediated genetic transformation. The coding 
DNA sequence (CDS) of MdAPRR2 was cloned into pBI121 
vectors containing a GFP tag to construct overexpression 
plasmids. Transgenic plant materials were subsequently obtained 
as described previously (An et  al., 2018; Zhao et  al., 2020).

Measurement of the Chlorophyll Content
The content of chlorophyll was determined as described above 
(Wen et  al., 2019). In short, 0.2 g of senescent leaves were cut 
into small pieces and then immersed in 20 ml 96% ethanol 
for 24 h in the dark to extract the chlorophyll. The absorbance 
was measured at wavelengths of 470, 649 and 665 nm using 
a spectrophotometer (UV-2600 Shimadzu, Shanghai, China).

Yeast One-Hybrid Assays
The full-length CDS of MdNAC4 were cloned into a pGADT7 
vector. Similarly, the MdNYC1 and MdPAO promoter fragments 
were inserted into a pAbAi vector. Different combinations of 
recombinant plasmids were cotransformed into a yeast one-hybrid 
(Y1H) yeast strain. The yeast transformation product was then 
tested on media (SD/-Ura/-Leu) containing an optimal 
concentration of AbA.

Yeast Two-Hybrid Assays
Fragments of MdNAC41–350 aa, MdNAC41–146 aa, MdNAC4147–285 aa,  
and MdNAC4286–350 aa were inserted into pGBKT7 vector. The 
recombinant plasmid of different fragments was transformed 

into a Y2H yeast strain and cultured on SD/−Trp, SD-Trp/X-
α-gal media at 30°C for 3–5 days. The full-length CDS of 
MdAPRR2 were cloned into pGADT7 vector. Different 
combinations of recombinant plasmids were subsequently 
cotransformed into a yeast two-hybrid (Y2H) yeast strain and 
cultured on SD/-Trp/-Leu media at 30°C for 3–5 days. Then, 
the yeast transformation product was transferred to SD/-Leu/-
Trp/-His/-Ade and SD/-Leu/-Trp/-His/-Ade media containing 
X-α-gal.

Dual Luciferase Assays
The promoter fragments of MdNYC1 and MdPAO were inserted 
into a pGreenII 0800-LUC vector to generate a reporter construct. 
The full-length CDS of MdNAC4 were then cloned into a 
pGreenII 62-SK vector to generate an effector construct. 
Transformation of Agrobacterium tumefaciens strain GV3101 
with the recombinant plasmids. Tobacco leaves were injected 
with different Agrobacterium strain mixtures. The injected 
tobacco leaves were collected and sprayed with a D-luciferin 
sodium salt solution in the dark for 3–5 min. Using an in 
vivo imaging system to detect the fluorescence (Xenogen, 
Alameda, United  States).

Bimolecular Fluorescence 
Complementation Assays
The full-length CDS of MdNAC4 and MdAPRR2 were cloned 
into pSPYNE and pSPYCE vectors, respectively. Transformation 
of A. tumefaciens strain GV3101 with the recombinant plasmids. 
Onion epidermal cells were infected with the mixture of 
A. tumefaciens strains for 30 min. The infected onion epidermal 
cells were transferred to MS media as previously described 
(Chen et  al., 2018). A laser scanning confocal microscope was 
used for fluorescence detection (Carl Zeiss, Oberkochen, 
Germany).

Pull-Down Assays
The full-length CDS of MdNAC4 and MdAPRR2 were inserted 
into pET32a and pGEX-4 T-1 vectors, respectively. The MdNAC4-
pET32a and MdAPRR2-pGEX-4 T-1 recombinant vectors were 
then transformed into Escherichia coli BL21 (TransGen, Beijing, 
China) and the recombinant proteins with HIS-tagged and 
glutathione S-transferase (GST)-tagged were induced by 
isopropyl-β-D-thiogalactopyranoside. The pull-down assays were 
performed using a HIS-tagged protein purification kit (CW 
Biotech, Taizhou, China) as previously described (Zhang et  al., 
2020). The sample proteins were collected after western blotting 
was performed and detected with anti-HIS and anti-GST 
antibodies (Abmart, Shanghai, China).

Electromobility Shift Assays
The fusion proteins of MdNAC4-GST are induced by isopropyl-
β-D-thiogalactopyranoside. Synthesis and labeling of the probes 
were performed by Sangon Biotech Co., Ltd. (Shanghai, China). 
The fusion protein and biotin-labeled probes were incubated at 
24°C in binding buffer under dark conditions for 30 min. An 
unlabeled probe as a competition probe. After incubation, a protein 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wen et al. MdNAC4 Regulates Leaf Senescence

Frontiers in Plant Science | www.frontiersin.org 4 June 2022 | Volume 13 | Article 925035

A

B

FIGURE 1 | Phylogenetic tree analysis and amino acid sequence alignment of NAC4 proteins in different species. (A) Phylogenetic tree analysis of NAC4 proteins 
in different species; (B) Multiple alignments of NAC4 amino acid sequences in different species. (AtNAC100: NP_200951.1; NtNAC100: XP_016439814.1; 
OsNAC2: XP_015633922.1; ZmNAC5: PWZ29660.1; SlNAC2: NP_001316319.1; FvNAC100: XP_004304286.1; PpNAC100:ALK27823.1; PmNAC100: 
XP_008230794.1; PbNAC100: NP_001289216.1; MdNAC4: XP_008379376.2).

loading buffer was added, and the polyacrylamide gel electrophoresis 
was performed (Thermo Scientific, San Jose, United  States).

Statistical Analyses
GraphPad Prism 6 software (GraphPad Software, La Jolla, CA, 
United States) was used for the drawing, and SPSS 19.0 software 
(SPSS, Chicago, IL, United  States) was used for the statistical 
analyses. The significance of the differences was tested by t-tests 
or one-way (ANOVA; *, p < 0.05, significant; **, p < 0.01, 
extremely significant).

RESULTS

Identification and Analysis of MdNAC4
A phylogenetic tree was constructed from the NAC4 amino acid 
sequences of Arabidopsis_thaliana, Nicotiana_tabacum, Oryza_
sativa, Zea_mays, Solanum_lycopersicum, Fragaria_vesca, Prunus_
persica, Prunus_mume, Pyrus_bretschneideri, and Malus_domestica 

(Figure  1A). The results showed that MdNAC4  in the apple 
was the closest to PbNAC100  in white pear, followed by plum 
and peach. The amino acid sequence alignment analysis showed 
that the amino acid sequence of MdNAC4 was similar to 
PbNAC100, PmNAC100, and PpNAC4 (Figure  1B).

Overexpression of MdNAC4 Causes Early 
Senescence of Apple Leaves
Leaf senescence is often accompanied by the degradation of 
chlorophyll. To investigate the biological function of MdNAC4 
in the regulation of leaf senescence, transient transgenic apple 
leaves were generated (Figure  2A). The MdNAC4-pIR construct 
was used to generate MdNAC4-OE lines, and the MdNAC4-TRV 
construct was used to generate MdNAC4-antisense (-Anti) lines. 
Apple leaves were infected via vacuum infiltration, and 
non-transgenic apple leaves in the same period and at the same 
leaf position were used as controls. The qRT-PCR results showed 
that the expression level of MdNAC4 in the leaves infected with 
MdNAC4-pIR was significantly higher than that in the controls 
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and significantly lower in the leaves infected with MdNAC4-TRV 
(Figure  2C), indicating that MdNAC4 was successfully injected 
into apple leaves. The infected leaves were placed on N-deficient 
plates, and the leaf phenotypes were observed under long-day 
conditions (14 h:10 h; light/darkness; 22°C). The results showed 
that the apple leaves overexpressing MdNAC4 showed a significant 
senescence phenotype and less chlorophyll content, while the 
apple leaves in which MdNAC4 was silenced showed a weakly 
senescent phenotype and higher chlorophyll content 
(Figures 2A,B). Leaf senescence is often accompanied by chlorophyll 
degradation, so we  measured the expression of chlorophyll 
metabolic pathway genes by qRT-PCR. The results showed that 
overexpression of MdNAC4 upregulated the expression of 
chlorophyll catabolism-related genes (MdNYC1, MdPAO, and 
MdSGR1) and downregulated the expression of chlorophyll synthesis 
pathway genes (MdHEMA, MdCHLM, and MdCHLI; Figure 2C). 
These results indicate that MdNAC4 may regulate apple leaf 
senescence through the chlorophyll metabolism pathway.

MdNAC4 Directly Regulates the 
Expression of the CCGs MdNYC1 and 
MdPAO
Considering the promoting role of MdNAC4  in leaf senescence 
and chlorophyll degradation, we  speculated that MdNAC4 may 
directly regulate the expression of genes related to chlorophyll 

catabolism. To explore the mechanism by which MdNAC4 regulates 
the expression of CCGs, we  analyzed the promoter region of 
NYC1, PAO, and SGR including the region 2 kb upstream of the 
start codon. There were seven ABRE cis-acting elements found 
in the NYC1 promoter region, which were grouped into four 
regions (a, b, c, d) based on their distance (Figure  3A). Three 
ABRE cis-acting elements identified in the PAO promoter region 
could be  further grouped according to three regions (a, b, c; 
Figure  4A). An ABRE cis-acting element identified in the SGR 
promoter region (Supplementary Figure  1A). To confirm the 
regulatory relationships between MdNAC4 and MdNYC1, MdPAO, 
and MdSGR, we  established a transient dual effector-reporter 
system in tobacco leaves. The MdNAC4 CDS were fused to 
pGreenII 62-SK to generate an effector construct. The MdNYC1, 
MdPAO, and MdSGR promoter fragments were fused to the 
pGreenII 0800-LUC vector to generate a reporter construct. Tobacco 
leaves were injected with different Agrobacterium strain mixtures 
(62SK + LUC, 62SK + MdNYC1 pro-LUC, MdNAC4-
62SK + MdNYC1 pro-LUC, MdNAC4-62SK + LUC). It was clear 
that the LUC activity of tobacco co-injected with the MdNAC4-
62SK and MdNYC1 pro-LUC was higher than that of the control 
groups (Figure 3B). Similarly, the LUC activity of tobacco co-injected 
with the MdNAC4-62SK and MdPAO pro-LUC was also higher 
than that of the control groups (Figure  4B). However, the LUC 
activity of tobacco co-injected with the MdNAC4 and MdSGR 
promoters was no significant difference with the control groups 

A

B C

FIGURE 2 | Overexpression of MdNAC4 caused early senescence in apple leaves. (A) Phenotypes of apple leaves of WT (Control, pIR, TRV), MdNAC4 
overexpression (MdNAC4-OE), and antisense MdNAC4 (MdNAC4-Anti) plants after 2 weeks of N-deficiency treatment; (B) Total chlorophyll content in apple leaves; 
(C) Expression levels of chlorophyll metabolism-related genes (MdNAC4, MdNYC1, MdPAO, MdSGR1, MdHEMA, MdCHLI, and MdCHLM). pIR: IL60-1 + IL60-2; 
MdNAC4-OE: IL60-1 + MdNAC4-IL60-2; TRV: TRV1 + TRV2; MdNAC4-Anti: TRV1 + MdNAC4-TRV2. The data are expressed as the means ± SDs (n = 3). The 
significance of the differences was tested by one-way ANOVA; p < 0.05.
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B

D

C

FIGURE 3 | MdNAC4 activated the expression of MdNYC1. (A) Diagram of the MdNYC1 gene promoter region. a-d, represent the potential sites to which 
MdNAC4 might bind. (B) Transient expression assay of tobacco leaves showing that MdNAC4 activated the expression of MdNYC1. (C) EMSA showing that the 
MdNAC4-GST fusion protein was bound to the MdNYC1 promoter. Unlabeled probes were used as competitors, with “Mut” representing the mutated probe in 
which the 5’-ACGTG-3′ motif was replaced by 5’-CCGTC-3′. (D) Y1H assay revealing the interaction between MdNAC4 and the MdNYC1 promoter. The data are 
expressed as the means ± SDs (n = 3). The significance of the differences was tested by one-way ANOVA; p < 0.05.

(Supplementary Figure 1C). This indicates that MdNAC4 directly 
activated the reporter driven by the promoters of NYC1 and 
PAO, but did not activate the reporter driven by the promoter of SGR.

To further confirm the binding of the MdNAC4 proteins 
to these regions, an integrated EMSA assay was performed. As 
shown in Supplementary Figures  2, 3, MdNAC4-GST fusion 
protein could bind to these regions. In addition, the MdNAC4-GST 
fusion protein could specifically bind the MdNYC1 and MdPAO 
probes (ABRE 5′-ACGTG-3′) but not the mutant probe 
(5′-CCGTC-3′; Figures 3C, 4C). When different concentrations 
of competing probes were added, the binding bands became 
weaker, and this binding was lost with the addition of the 
mutation probe. Alternatively, Y1H assays were performed to 
confirm the interaction between the MdNAC4 protein and the 
MdNYC and MdPAO promoters. The full-length MdNAC4 gene 
and the promoter fragments of MdNYC and MdPAO containing 

ABRE cis-acting elements were cloned into the pGADT7 and 
pAbAi vectors, respectively. The resulting pGADT7-MdNAC4 
and pAbAi-MdNYC, pAbAi-PAO fusion plasmids were 
co-transferred into Y1H yeast competent cells. The positive 
cloned strains grew normally on the selected media, but the 
growth of the empty vector was inhibited (Figures  3D, 4D), 
indicating that there was a direct interaction between MdNAC4 
and MdNYC1, MdPAO, respectively. Taken together, these results 
suggest that MdNAC4 can directly bind the promoters of 
MdNYC1 and MdPAO and activate their expression.

MdNAC4 Interacts With MdAPRR2
To further explore the mechanism by which MdNAC4 regulates 
leaf senescence, a Y2H assay was used to screen for proteins 
interacting with MdNAC4 from the apple leaf cDNA library. 
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First, we  detected the auto-activation activity of the MdNAC4 
protein and found that full-length MdNAC4 has auto-activation 
activity (Supplementary Figure  4). We  then divided the full-
length MdNAC4 protein into three regions: amino acids 1–146, 
amino acids 147–285, and amino acids 286–350. Among them, 
1–146 aa contains a NAM conserved domain with slight auto-
activation activity, 147–285 aa without self-activation activity, 
and 286–350 aa also has auto-activation activity. Finally, 147–285 
aa regions were selected to screen the library.

According to the results of the Y2H screening library 
(Supplementary Table  2), we  found that the ARR-B TF 
MdAPRR2 interacted with MdNAC4. To further confirm 
that MdNAC4 interacts with the MdAPRR2 protein, we tested 

by Y2H experiments the interactions of MdNAC4 with 
MdAPRR2 using pGBKT7-MdNAC4 (147–285 aa) as bait, 
pGADT7-MdAPRR2 as prey and empty vector as controls. 
The results of the Y2H experiment showed that only yeast 
strains cotransformed with MdNAC4 and MdAPRR2 were 
able to grow on SD/-T/-L/-H/-A media, while the growth 
of yeast strains transformed with the empty vectors was 
inhibited (Figure  5A). These findings indicate that there 
is an interaction between MdNAC4 and MdAPRR2 proteins 
in yeast cells.

In addition, we  carried out a pull-down assay in vitro. The 
MdAPRR2-GST fusion protein could be  pulled down by the 
MdNAC4-HIS protein, but the GST protein could not, which 

A

B

D

C

FIGURE 4 | MdNAC4 activated the expression of MdPAO. (A) Diagram of the MdPAO gene promoter region. a-c, represent the potential sites to which MdNAC4 
might bind. (B) Transient expression assay of tobacco leaves showing that MdNAC4 activated the expression of MdPAO. (C) EMSA showing that the MdNAC4-GST 
fusion protein was bound to the MdPAO promoter. Unlabeled probes were used as competitors, with “Mut” representing the mutated probe in which the 
5’-ACGTG-3′ motif was replaced by 5’-CCGTC-3′. (D) Y1H assay revealing the interaction between MdNAC4 and the MdPAO promoter. The data are expressed as 
the means ± SDs (n = 3). The significance of the differences was tested by one-way ANOVA; p < 0.05.
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FIGURE 5 | MdNAC4 interacted with MdAPRR. (A) Interaction between MdNAC4 and MdAPPRR2 via a Y2H assay; (B) Interaction between MdNAC4 and 
MdAPPRR2 via a pull-down assay; (C) Interaction between MdNAC4 and MdAPPRR2 via a BiFC assay.

indicated that MdNAC4 interacts with MdAPRR2 in vitro 
(Figure  5B).

Finally, a bimolecular fluorescence complementation (BiFC) 
assay was performed to verify the interaction between MdNAC4 
and MdAPRR2 (Figure  5C). The MdNAC4 protein and the 
MdAPRR2 protein were fused to the N-terminal (pSPYNE) 
and C-terminal (pSPYCE) of yellow fluorescent protein, 
respectively. The recombinant MdNAC4-YFPN and MdAPRR2-
YFPC vectors were transformed into onion epidermal cells. The 
fluorescence detection results indicated that MdNAC4 interacts 
with MdAPRR2. In summary, these results suggest that MdNAC4 
interacts with MdAPRR2 proteins in vivo and in vitro.

Overexpression of MdAPRR2 Delays Leaf 
Senescence Induced by N Deficiency
Considering that MdAPRR2 interacts with MdNAC4 and that 
MdNAC4 positively regulates leaf senescence induced by N 
deficiency, MdAPRR2 may also be  involved in leaf senescence 
induced by N deficiency. First, stable transgenic tobacco and 

apple plants were generated (Supplementary Figure  5). Four-
week-old tobacco was cultured for 3 weeks under N deficiency. 
The results showed that MdAPRR2-OE lines exhibited a delayed 
senescence phenotype, and the chlorophyll content of leaves 1–3 
and 4–6 was significantly higher than that of the controls 
(Figures  6A,B). In addition, we  measured the expression of 
chlorophyll synthesis-related genes (NtHEMA, NtCHLI, and 
NtCHLM) in tobacco by qRT-PCR. The results showed that the 
expression levels of chlorophyll synthesis-related genes in both 
transgenic and wild-type (WT) tobacco decreased after N-deficiency 
treatment, but the decrease was more significant in WT tobaccos 
(Figures  6C–E). Similarly, compared with the WT controls, 
MdAPRR2-OE transgenic apple seedlings showed a weaker 
senescence phenotype and higher chlorophyll content after 
N-deficiency treatment (Figures 6F,G). Consistently, the expression 
of chlorophyll synthesis-related genes (MdHEMA, MdCHLI, 
MdCHLM) was significantly higher than that of the controls 
(Figures 6H–J). Considering the role of MdAPRR2 in chlorophyll 
metabolism, we  measured the expression levels of CCGs in 
MdAPRR2-OE lines (Supplementary Figure 6). The results showed 
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that the expression levels of CCGs in both transgenic and wild-
type (WT) apple seedlings increased after N-deficiency treatment, 
but the increase was more significant in WT apple seedlings.

In addition, the chloroplasts in apple leaves were observed 
via transmission electron microscopy (Supplementary Figure 7). 
No significant difference was found between MdAPRR2 
overexpression and WT plants before treatment. The chloroplast 
morphology was changed, the chlorophyll membrane was 
degraded, the grana thylakoid was bent, and the stromal lamella 
was reduced after N-deficiency treatment. Furthermore, the 
number of starch granules in MdAPRR2-OE cells was significantly 
higher than that in WT control cells, and there were more 
stroma lamellae. These observations suggest that MdAPRR2 
may act as a negative regulator of leaf senescence.

DISCUSSION

Leaves are the main photosynthetic organs used to harvest energy 
and produce carbohydrates during growth and development (Woo 
et  al., 2019). When leaves enter the senescence stage, catabolic 
activity increases, and metabolism and gene expression change 

orderly. The major transitions in the process of leaf senescence 
are chloroplast degradation, chlorophyll breakdown, and the 
reallocation of cellular materials that accumulated during vegetative 
growth from senescent leaves to younger tissues (Gregersen et  al., 
2008). Thus, leaf senescence is an important process to ensure 
crop yields and increased survival (Buchanan-Wollaston et al., 2003; 
Lim et  al., 2007). Apple (M. domestica) is a perennial deciduous 
fruit tree species whose leaf life has a great impact on fruit yield 
and quality. Premature leaf senescence reduces the time for 
photosynthesis and carbon assimilation, which eventually leads to 
a reduction in yield and poor quality (An et al., 2019). It is therefore 
highly important to study the metabolic pathway and regulatory 
network of leaf senescence with respect to understanding the growth 
and development of fruit trees and promoting apple production.

Leaf senescence is a complex and strictly regulated biological 
process influenced by internal factors and external environmental 
stresses (Woo et al., 2019). The senescence process is accompanied 
by a large number of senescence-associated gene (SAG) expression 
changes. Previous studies have shown that NAC TFs are key factors 
regulating transcriptional changes in leaf senescence (Breeze et  al., 
2011; Woo et  al., 2019). Arabidopsis NTL4 (Lee et  al., 2012), 
Medicago truncatula NAC969 (de Zélicourt et  al., 2012), wheat 
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FIGURE 6 | Overexpression of MdAPRR2 delayed chlorophyll degradation induced by N deficiency. (A) Phenotypes of WT (Control) and transgenic tobacco 
(MdAPRR2) leaves after 3 weeks of N-deficiency treatment; (B) Total chlorophyll content in tobacco leaves indicated in (A); (C–E) Expression levels of the chlorophyll 
synthesis-related genes MdHEMA, MdCHLI, and MdCHLM in tobacco; (F) Phenotypes of WT and transgenic apple (MdAPRR2) leaves after 4 weeks of N-deficiency 
treatment; (G) Total chlorophyll content in tobacco leaves indicated in (F); (H–J) Expression levels of the chlorophyll synthesis-related genes MdHEMA, MdCHLI, 
and MdCHLM in apple seedlings. The data are expressed as the means ± SDs (n = 3). Significant differences were detected by a t-test: *p < 0.05 and **p < 0.01.
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GPC (Distelfeld et al., 2012), Populus RD26/ANAC072 (Wang et al., 
2021), and other NAC TFs regulate leaf senescence by activating 
the transcriptome of SAGs. In addition, NAC TFs are also involved 
in nutrient stress-induced leaf senescence. The Arabidopsis NAC 
TF ORE1 is considered to be  the main factor in N deficiency-
induced leaf senescence, and the NLA gene delays N deficiency-
induced leaf senescence by reducing the abundance of the NAC 
TF ORE1, while UBP12 and UBP13 accelerate N deficiency-induced 
leaf senescence by increasing the level of ORE1 protein (Park 
et  al., 2018, 2019). These results suggest that NAC TFs may play 
positive regulatory roles in N deficiency-induced leaf senescence.

In the process of leaf senescence, chlorophyll degradation 
is the most characteristic, and the degradation of chlorophyll 
is an indicator of leaf senescence (Mao et  al., 2017). The 
degradation of chlorophyll is mainly governed by the pheophorbide 
an oxygenase (PAO)/phycobilin pathway, which includes a series 
of CCGs (Hörtensteiner and Kräutler, 2011). Previous studies 
have shown that NAC TFs directly bind to a series of CCGs 
promoters to regulate leaf senescence. Arabidopsis NAC TF 
ANAC046 directly binds to the promoters of the CCGs NYC1, 
SGR1, SGR2, and PAO to positively regulate chlorophyll catabolism 
(Oda-Yamamizo et  al., 2016). The rice NAC TF NAC2 directly 
interacts with the promoter sequences of the CCGs SGR and 
NYC3 to promote chlorophyll catabolism (Mao et  al., 2017). 
Additionally, other NAC TFs, such as NAP, NTL4, and NAC106, 
also participate in leaf senescence by directly controlling the 
expression of CCGs (Lee et al., 2012; Liang et al., 2014; Sakuraba 
et  al., 2015). Although substantial progress has been made in 
the regulation of leaf senescence by NAC TFs, the molecular 
mechanism through which NAC TFs regulate N deficiency-
induced leaf senescence remains unclear.

In this study, the NAC TF MdNAC4, which acts as an important 
regulator in N deficiency-induced leaf senescence, was identified 
and characterized. Overexpression of MdNAC4 caused early 
senescence induced by N deficiency, suggesting that MdNAC4 
may be a positive regulator of leaf senescence under those conditions. 
The measurement of chlorophyll content and the expression of 
genes related to the chlorophyll metabolic pathway provided evidence 
for further study (Figure  2). The chlorophyll content of MdNAC4 
overexpression apple leaves was significantly lower than that of 
WT control leaves after N-deficiency treatment. The expression 
of chlorophyll synthesis-related genes was downregulated, and 
chlorophyll catabolism-related genes was upregulated in MdNAC4 
overexpression apple leaves. Furthermore, the LUC activity of 
tobacco co-injected with the MdNAC4-62SK and MdNYC1 pro-LUC 
was higher than that of the control groups. Similarly, the LUC 
activity of tobacco co-injected with the MdNAC4-62SK and MdPAO 
pro-LUC was also higher than that of the control group. Since 
only when MdNAC4 coexisted with MdNYC1 or MdNAC4 coexisted 
with MdPAO, the high expression of LUC activity in tobacco 
leaves could be induced. The results suggest that MdNAC4 activates 
the expression of MdNYC1 and MdPAO. In addition, the results 
of EMSA and Y1H assays also showed that MdNAC4 directly 
interacts with the promoter of the CCGs MdNYC1 and MdPAO 
(Figures  3, 4). Therefore, MdNAC4 may be  a new N deficiency-
induced leaf SAG and that MdNAC4 may mediate the chlorophyll 
metabolic pathway to influence leaf senescence.

Changes in leaf color are mainly caused by the degradation 
of chlorophyll. Brand et al. revealed that the chlorophyll content 
of pepper fruits was mainly controlled by two QTLs-GLK2 
and Arabidopsis pseudo-response regulator 2-like (APRR2; Brand 
et al., 2012, 2014). Previous studies have shown that the GLK2 
TF can coregulate and synchronize the expression of light 
capture and chlorophyll synthesis genes and that overexpression 
of MdGLK2 results in increased chlorophyll accumulation and 
delayed leaf senescence (Pan et  al., 2013; Song et  al., 2014; 
Jeong et  al., 2020). APRR2 is closely related to fruit pigment 
accumulation, and overexpression of MdAPRR2 significantly 
was shown to increase the chlorophyll content compared with 
that of the controls (Pan et  al., 2013). In addition, APRR2 
can interact with the calmodulin-like protein CLM9, which is 
involved in tolerance to abiotic stress (Perochon et  al., 2010). 
APRR2 can also interact with the ABSCISIC ACID INSENSITIVE 
3 (ABI3) TF, which is involved in promoting the expression 
of genes containing ABA-responsive elements (Kurup et  al., 
2000). These results indicated that APRR2 may be  involved 
in chlorophyll metabolism mediated by abiotic stress. In the 
present study, MdAPRR2 was shown through a series of 
biochemical assays to interact with MdNAC4 proteins (Figure 5). 
The results shown in Figure  6 indicate that the function of 
MdAPRR2 in the N deficiency-induced leaf senescence process 
was opposite to that of MdNAC4. Furthermore, both the 
MdAPRR2 overexpression and WT plants showed leaf yellowing 
and chlorophyll loss, while overexpression of MdAPRR2 helped 
prevent the senescence phenotype and chlorophyll loss induced 
by N deficiency. The expression of chlorophyll synthesis-related 
genes in the MdNAC4-OE lines was higher than that in the 
controls. Therefore, MdAPRR2 may promote chlorophyll synthesis 
by activating the expression of chlorophyll synthesis-related 
genes and thus delay leaf senescence induced by N deficiency.

In summary, based on our current study, a model was 
proposed to explain how MdNAC4 and MdAPRR2 interact 
to regulate N deficiency-induced leaf senescence (Figure  7). 
MdNAC4 binds to CCGs (MdNYC1 and MdPAO) promoters 
and activates their expression, thus accelerating N deficiency-
induced leaf senescence. On the other hand, MdAPRR2 
delays N deficiency-induced leaf senescence by upregulating 
the expression of genes related to chlorophyll synthesis. 
MdNAC4 interacts with MdAPRR2 to form an inactive 
heterodimer, which activates the expression of the MdNAC4 
target gene, while the expression of MdAPRR2 target genes 
is inhibited. Thus, the yellowing of leaves induced by N 
deficiency are mainly caused by MdNAC4. It seems that 
apple may employ a balancing mechanism to regulate N 
deficiency-induced leaf senescence. Our findings provide a 
new insight for studying the molecular mechanism of leaf 
senescence induced by N deficiency.
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