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The complexity of natural elements seriously affects the accuracy and stability of field 
target identification, and the speed of an identification algorithm essentially limits the 
practical application of field pesticide spraying. In this study, a cabbage identification and 
pesticide spraying control system based on an artificial light source was developed. With 
the image skeleton point-to-line ratio and ring structure features of support vector machine 
classification and identification, a contrast test of different feature combinations of a 
support vector machine was carried out, and the optimal feature combination of the 
support vector machine and its parameters were determined. In addition, a targeted 
pesticide spraying control system based on an active light source and a targeted spraying 
delay model were designed, and a communication protocol for the targeted spraying 
control system based on electronic control unit was developed to realize the controlled 
pesticide spraying of targets. According to the results of the support vector machine 
classification test, the feature vector comprised of the point-to-line ratio, maximum 
inscribed circle radius, and fitted curve coefficient had the highest identification accuracy 
of 95.7%, with a processing time of 33 ms for a single-frame image. Additionally, according 
to the results of a practical field application test, the average identification accuracies of 
cabbage were 95.0%, average identification accuracies of weed were 93.5%, and the 
results of target spraying at three operating speeds of 0.52 m/s, 0.69 m/s and 0.93 m/s 
show that the average invalid spraying rate, average missed spraying rate, and average 
effective spraying rate were 2.4, 4.7, and 92.9%, respectively. Moreover, it was also found 
from the results that with increasing speeds, the offset of the centre of the mass of the 
target increased and reached a maximum value of 28.6 mm when the speed was 0.93 m/s. 
The void rate and pesticide saving rate were 65 and 33.8% under continuous planting 
conditions and 76.6 and 53.3% under natural seeding deficiency conditions, respectively.

Keywords: target spraying, independent nozzle control, target identification, effective spraying rate, pesticide 
saving amount
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INTRODUCTION

Cabbage is rich in nutrients, contains a variety of vitamins 
and mineral elements and has become one of the vegetables 
with the largest cultivated area in the world. In 2020, the 
cabbage total output of China was 339 million tons, which 
accounted for 47.71% of the global output, and it ranked first 
in the world. During the growth period of cabbage, pesticides 
need to be sprayed several times to resist the threat of diseases 
and insect pests. At present, the widely used continuous pesticide 
spraying method may cause soil and groundwater pollution 
due to the excessive use of pesticides (Zhao et  al., 2016; He, 
2020). However, automatic target pesticide spraying technology 
can be  used to obtain target information online and spray 
pesticides at a specific site according to target positioning to 
reduce pesticide pollution in nontarget areas for environmental 
reasons, allowing wide application prospects. There are two 
ways to conduct target pesticide spraying for field cabbage. 
The first approach is to spray pesticides to prevent diseases 
and insect pests of cabbage, that is, the cabbage crop is the 
target of pesticide spraying, and the other approach is to spray 
the weeds that damage cabbage fields, that is, the weeds 
associated with cabbage are the target of pesticide spraying. 
The keys to realizing automatic target pesticide spraying are 
the online classification and identification of cabbage and weeds.

Machine vision technology has the advantage of being fast 
and accurate, and is most widely used in crop and weed 
classification and recognition research (Wang et al., 2019). The 
technique focuses on crop/weed classification by features such 
as colour, texture, and shape (Woebbecke et al., 1995), then the 
traditional neural network or deep learning algorithm is used 
to classify crops/weeds. Field environments are complex and 
variable unstructured environments, and strength of illumination 
and spectral content may change over time. Direct sunlight 
causes highlights and shadows in the field of view, which makes 
segmentation and feature extraction of vegetation (crops and 
weeds) from the background (bare soil, rocks and residues) 
difficult. Therefore, it is necessary to design systems and their 
algorithms that are robust to changing light for the design. In 
the algorithm, in order to minimize the effect of light on 
segmentation, researchers have tried colour space transformations 
(García-Mateos et  al., 2015; Tang et  al., 2016), but the colour 
component channels of space are obtained by nonlinear 
transformations of R, G, and B components, which are prone 
to local noise in edge regions with significant colour mutations 
and slow computing time (Yuan et  al., 2020). Some researchers 
have directly investigated the accuracy of relevant algorithms 
for recognition of highlight and shadow problems under natural 
lighting conditions. Zheng combines mean shift segmentation 
algorithm and BP neural network to realize the segmentation 
of background and green plants, but this method is time-
consuming (Zheng et  al., 2017). Based on the assumption that 
the colour is gradually changing between the highlight region 
and the adjacent non-highlight region, Ye uses probabilistic 
superpixel Markov random fields to resist the strong illumination 
for the effect of shadows on segmentation under strong illumination 
conditions (Ye et  al., 2015). The above methods are tested on 

the off-line images collected under natural light. No real-time 
identification test of field environment was conducted.

Multispectral cameras can provide several narrow spectral 
band vegetation features that are used as weed identification, 
avoiding light variation to some extent, but in order to make 
weed detection robust to light variation, white diffusers or the 
colour-checker white patch must be  applied to estimate the 
strength of illumination (Shen et al., 2007; Macaire, 2021), which 
is a complex method for system model construction. Natural 
light is the most convenient for outdoor field work, but it is 
highly variable and not always reliable, and diffuse strip light 
sources with uniform intensity can eliminate many of the 
problems encountered with natural light Brown and Noble 
(2005). Therefore, physical methods such as artificial lighting 
and shading, have been used in many studies to obtain constant 
light conditions. By adding a hood and artificial light source 
approach is a simple and effective way to cope with variable 
natural illumination greatly reduces the difficulty of developing 
image processing algorithms (Pulido-Rojas et  al., 2016; Bawden 
et  al., 2017; Hall et  al., 2018), and improves the accuracy of 
target identification. Agricultural field robots use hoods and 
artificial lighting to control recognition area illumination and 
improve recognition accuracy (Chebrolu et  al., 2017; Elstone 
et  al., 2020). Therefore, the lighting method with active light 
source under the hood has better implementation in target 
recognition. This paper uses the active light source method 
under the hood for target recognition.

Diverse and irregular weeds are distributed among crops and 
need to be  identified using appropriate classifiers, which mainly 
include traditional machine learning-based classification and deep 
learning-based classification. Deep learning has a unique network 
feature structure that allows for higher-level features by learning 
local features from the bottom and then synthesizing these features 
from the top. However, current deep learning methods rely on 
large datasets for training (Kounalakis et al., 2019). Deep learning 
models need to be  deployed to embedded mobile devices for 
practical applications, but embedded devices have low arithmetic 
power and are expensive, and current deep learning-based target 
recognition is mostly in the model construction and optimization 
stage, with few practical deployment applications [15]. With the 
help of traditional machine learning, such as artificial neural 
network (ANN; Bakhshipour et al., 2017; Bakhshipour and Jafari, 
2018), k-NN clustering (Kazmi et al., 2015), support vector machine 
(SVM; Ahmed et al., 2012; Chen et  al., 2020) and random forest 
(RF; Lottes et al., 2016), researchers have combined different types 
of features to achieve the classification of crops and weeds. Among 
them, SVM is one of the classical supervised machine learning 
methods, which is able to construct the maximum classification 
surface between different classes with strong generalization ability 
(Azarmdel et  al., 2020), have high accuracy and efficiency in the 
case of small sample size and nonlinearity, and is the most 
commonly used method to distinguish between crops and weeds 
(Chang et  al., 2021).

Identification speed is another important factor for the 
application of the algorithm in the field. In the process of 
field target identification based on an SVM, Mahajan et  al. 
proposed an SVM-based plant species identification model and 
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selected seven features of leaves as the input of the SVM. García-
Santillán and Pajares (2018) proposed a classification and 
identification approach for weeds among crops based on Bayes’ 
minimum criterion for the Mahalanobis distance and obtained 
an accuracy of 91.8% and a processing speed of 280 ms/f. Raja 
et al. (2020) designed a kind of micro herbicide spraying system 
for weed control in vegetable fields, in which two cameras 
and an on-board computer connected via an Ethernet port 
(Intel core i7, 3.4 GHz, 12 GB DDR3 RAM) were used for 
image acquisition and processing, with a processing time of 
160 ms/f. Esau et al. (2013) designed a variable pesticide spraying 
control system based on vision. According to the test results 
in a wild blueberry field, the image acquisition and processing 
time of the system was 0.079 ms, but the system only used 
green information to distinguish bare soil from wild blueberries. 
In this way, although it has a simple algorithm, it is quite 
different from target identification in a field of view. Wang 
et  al. (2021) realized row segmentation for corn roots and 
stubble based on an SVM and established a feature vector by 
selecting 21 features from the colour and texture features of 
the extracted target and background as the input of the SVM 
identification model; an average model identification time of 
60 ms was obtained. The above identification process based on 
an SVM involves a large number of features; however, for 
real-time target pesticide spraying at high speeds, as the number 
of features of the SVM affects the processing time of the 
SVM, the long image processing time of complex model will 
inevitably affect the spraying accuracy. This study uses cabbage 
as the recognition target, and the construction features of the 
support vector machine model are preferred to improve the 
speed of the algorithm according to the difference of shape 
features between cabbage and weeds. And the accuracy of the 
algorithm and the target application control system was verified 
by building a target spraying system and field trials, and a 
quantitative evaluation was given. This study is expected to 
improve the accuracy of on-target application, improve the 
intelligence of on-target application for field vegetables, and 

effectively reduce pesticide use and environmental pollution. 
This study is expected to improve the accuracy of target pesticide 
spraying, enhance the intelligence level of target pesticide 
spraying of vegetables in a field, and effectively reduce the 
environmental pollution caused by the use of pesticides.

MATERIALS AND METHODS

Overall Design of the Target Pesticide 
Spraying System
The target identification and pesticide spraying control system 
for cabbage crops based on an active light source is mainly 
composed of a visual unit and independent spray control unit, 
as shown in Figure  1. The visual unit primarily consists of an 
on-board computer (SKU-4, Shenzhen Dehang Intelligent 
Technology Co., LTD.), a camera (MER-500-14U3C, Beijing Image 
Vision Technology Branch, China Daheng (Group) Co., LTD.), 
an LED light source (HL-BL68738R, HaoLi Automation Technology 
Co., LTD.), and a light shield. The independent spray control 
unit is mainly made up of an electronic control unit (ECU; 
C37, Suzhou Hesheng Microelectronics Technology Co., LTD.), 
a self-developed solenoid valve, a spraying body (Vp110-02, 
Ningbo Licheng Agricultural Spraying Technology Co., LTD.), 
a pressure sensor (QDW90A-RG, Huaibei Ruigan Electronic 
Technology Co., LTD.), a flow sensor (YF-B2/B4, Saibao Electronic 
Technology Co., LTD.), and a vehicle speed sensor.

When working, the sprayer starts to move forward, and 
the camera collects field images in real time and transmits 
them to the on-board computer, which identifies the target 
in real time by processing the algorithm and issues control 
commands to the ECU through the USB-CAN module. Then, 
the ECU obtains the current speed in real time through the 
speed sensor and opens or closes the solenoid valve installed 
on the resistance drop valve to realize opening and closing 
control of the nozzle according to the target position information, 
distance information between the nozzle and the camera, the 

FIGURE 1 | Components of the target identification and pesticide spraying control system based on an active light source.
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computing and processing times and the transmission delay 
time received to achieve precise target spraying. For the pressure 
fluctuation caused by different numbers of nozzles or possible 
changes in the walking speed during the target pesticide spraying 
process, the system would automatically adjust the opening 
and closing size of the electric flow regulating valve to make 
the pressure stable within a set range and ensure the 
implementation of target pesticide spraying. Moreover, nozzles 
are distributed on the spraying rod, and the water inlet of 
the spraying rod is equipped with a flow sensor to monitor 
the spraying amount in real time. The composition of the 
control system is shown in Figure  2.

Classification and Identification Method of 
Cabbage and Weeds Based on an SVM
Image Acquisition
The collection objects include cabbage in the early growth 
stage and the three most common weeds, Portulaca oleracea, 
Descurainia sophia, and Galinsoga parviflora, which are in the 
field at the same time. From August 5, 2020 to August 30, 
2020, from April 15, 2021 to May 12, 2020, and from July 
26, 2021 to August 22, 2021, image acquisition was carried 
out by a GoPro digital camera (HERO_9, GoPro Co., LTD.) 
and Daheng Mercury series camera (MER-500-14U3CMER-U3C, 
Beijing Image Vision Technology Branch, China Daheng Co., 
LTD.) at the Beijing Xiaotangshan National Precision Agriculture 
Demonstration Base. The GoPro digital camera has good anti-
shake capability, and the acquisition was carried out with the 
lens plane mounted parallel to the ground on the test sprayer 
with a height of 0.8 m above the ground and a field of view 
size of 1.55 m*0.76 m. In order to improve the adaptability of 
the algorithm to illumination, the acquisition is divided into 
natural illumination environment and shading active light source 

environment, 100 images of cabbage and 100 images of each 
species weed in the two light source environments were randomly 
selected. Mer-500-14u3c camera has a resolution of 
2,592 pixels × 1,944 pixels, installed on the Pan tilt of the camera 
tripod, and the camera mounting height was 0.5 m. Adjust 
the angle between the camera lens and the ground through 
the pan tilt to 0°, 10° and 20°, respectively, and 100 images 
of cabbage and 100 images of each species weed were collected 
at each angle. To ensure the diversity of the image samples, 
the acquisition was carried out at different surface water content, 
and the surface images would present different colour and 
texture information, and some of the samples are shown in 
Figure  3. The experiment randomly selected 400 images of 
cabbage and various weeds, respectively, a total of 1,600 images 
as training samples, and the remaining 400 images as test 
samples. In order to improve the training speed and recognition 
accuracy of the recognition model, as well as the subsequent 
segmentation performance (Yang et  al., 2018), the acquired 
image size is first Gaussian transformed by the OpenCv library 
pyrDown() function on the original image, and then by discarding 
the even rows and even columns, realize downsampling to 
adjust the image to 640 pixels × 480 pixels.

Identification Model Training on Cabbage Images 
Based on SVM
First, the green information in the background was extracted 
by the ultragreen operator (2G-R-B), average filter core size 
is 5*5 pixels. Then, noise points were removed by means of 
average filtering, and finally, an open and close operation was 
used to eliminate small objects, the size of corrosion and 
expansion structure elements in opening and closing operation 
is 3*3 pixels, smooth the boundary of large objects, and fill 
small cavities in the body. When used shape features are used 
in the classifier, the model has a better computing speed 
compared to when the same amount of texture features are 
used in the classifier; hence, because cabbage is the identification 
target, on the basis of image segmentation, this paper selected 
the circularity degree of Rod and the maximum inscribed 
circle radius R as classification features and proposed a point-
to-line ratio and concentric ring structure according to the 
different shape features of cabbage and weeds. Of which, the 
point-to-line ratio refers to the ratio of the number of intersection 
points of the skeleton line to the length of the skeleton line 
after skeleton extraction from images, which was denoted as 
RAT_I_L. Taking cabbage and D. sophia as an example, the 
original images of cabbage and weeds are shown in Figures 4A,D, 
the extracted skeleton lines and intersection points are shown 
in Figures  4B,E, and the distribution characteristics of the 
concentric circles are shown in Figures  4C,F. Then, with the 
centre of mass as the centre of the circle and k*r/8 (k = 1,2… N)  
as the radius of the circle, the radius, centre of mass of the 
minimum enclosing circle, and the proportion of white pixels 
within each ring were calculated. Furthermore, the proportion 
of white pixels within each ring was subjected to quadratic 
curve fitting for the extraction of curve coefficients a and b, 
and the fitted curve coefficient ratio b/a was taken as the 

FIGURE 2 | Components of the target variable spraying system based on 
vision.
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A B C D

E F G H

FIGURE 3 | Partial acquisition samples. (A) Cabbage. (B) Portulaca oleracea. (C) Descurainia sophia. (D) Galinsoga parviflora. Natural lighting environment. 
(E) Cabbage. (F) P. oleracea. (G) D. sophia. (H) G. parviflora. Shaded active light source environment.

A

D E F

B C

FIGURE 4 | Characteristics of concentric rings. (A) Cabbage. (B) Cabbage skeleton image. (C) Cabbage ring characteristic distribution. (D) Descurainia sophia. 
(E) Skeleton image of D. sophia. (F) Ring characteristic distribution of D. sophia.
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construction feature. Taking into consideration the different 
proportions of rings and the sizes of crops and weeds, in this 
paper, n = 8 was selected.

The training objective of the cabbage identification model 
based on an SVM is to find the hyperplane that can divide 
cabbage and weed samples with the largest interval. The 
reasonable selection of the kernel function type and parameters 
has a significant influence on the performance of the identification 
model. After many experiments, the radial bias function (RBF), 
which has high identification accuracy, was selected as the 
kernel function of the SVM identification model for cabbage.

 
K x x x xi i,( ) = -( )exp g  

2

 
(1)

where g
s

=
1

2
.

The parameters that affect kernel function include penalty 
factor C and kernel function σ (He and Luo, 2019), the penalty 
factor C is the control of the penalty degree of the misclassified 
samples. The larger the penalty is, the heavier the penalty is, 
but its generalization ability will also be  reduced at the same 
time. σ is width parameter of the kernel function, indicating 
the control over the radial range. Penalty factor C and kernel 
function σ. The selection of SVM classifier is very important. 
The optimal values of penalty coefficients C and σ were obtained 
by N-fold hierarchical cross verification based on the grid 
search method. According to related literature, n = 5 was selected 
in Equation (1) (Jung, 2017), where n represents the amount 
of data and d represents the number of features.

 

N n
n N d
» ( )

>
ì
í
î

log

/ 3
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Then, the selected ranges of C and σ were 2−15 ~ 215 and 
2−10 ~ 210, respectively, and the optimal C and γ were selected 
as the optimal parameters after the search was conducted in 
the plane composed of C and γ. The maximum average accuracy 
of hierarchical cross verification of the training set was taken 
as the index. To select the optimal classification feature 
combination among b/a, RAT_I_L, ROD and R, the four features 
were normalized and trained through the SVM method based 
on the radial kernel function.

The training platform was a Hewlett-Packard (HP) computer, 
the processor was an Intel (R) Core (TM) i7-9750H, 12-core 
2.60 GHz, 32 GB RAM, the graphics card was an NVIDIA GeForce 
GTX 1650, and the operating system was Windows 10. The visual 
open-source libraries used in the training stage of image processing 
and SVM-based cabbage contained OpenCV and SVMlight.

In order to verify the feasibility of the method in this 
paper and its classification performance, the system is tested 
using a designed test set of samples. Back Propagation Neural 
Network (BPNN) and Random Forest (RF) were selected to 
train the cabbage/weed recognition model, which constitutes 
the BPNN classification method and RF classification method, 
and compared with the support vector machine method used 

in this paper. Among them, after referring to the settings of 
the main parameters of BP neural network and RF classification 
method in machine learning, image processing and other related 
studies (Goel et  al., 2003; Wu et  al., 2013), it was determined 
on the basis of the preliminary experiments that the BP neural 
network in this study adopts a 4500-300-20-2 4-layer structure, 
the activation function is a sigmoid function, the learning rate 
is 0.02, the target error is 0.01.The random forest algorithm 
is operated in the Pycharm environment, and the Random 
Forest Classifier classification module is called, through sklearn 
ensemble. The number of decision trees (n_estimators) is 100, 
the maximum depth of decision tree (max_depth) is 400, the 
minimum number of split samples (i.e., the minimum number 
of samples required to split the nodes of the decision tree) 
min_samples_split is 2, the minimum number of leaf node 
samples (i.e., the minimum number of samples required to 
be  included in a leaf node) min min_samples_leaf is 1, and 
max_features (i.e., the number of feature variables to 
be  considered in finding the best node split) is N , N is 
the number of features. In order to objectively evaluate the 
performance of the proposed methods in this paper, the accuracy, 
precision, recall, and computing time are selected to quantitatively 
evaluate the recognition results of different methods.

 
Accuracy
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´100%
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Precision
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TP FP
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+
´100%
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Recall

TP

TP FN
=

+
´100%

  
(5)

Where TP is True positive; FP is False positive; TN is True 
negative; FN is False negative.

Target Positioning Method
The cabbage planting agronomy is shown in Figure  5, where 
every 4 rows of cabbage was a ridge, with a ridge spacing of 
50 cm, row spacing of 35 cm, and plant spacing of 40 cm. When 
operated, the operation range of the spraying machine reached 
50 cm, so that 4 rows of cabbage in a ridge were identified 
at the same time. In addition, each row of cabbage was divided 
into an identification area to install a nozzle accordingly to 
ensure that each nozzle corresponded to a row of cabbage. 
The system controls the opening and closing of the corresponding 
solenoid valve according to the cabbage target information to 
realize targeted application. Additionally, the camera adopts a 
zoom lens with a mounting height of 0.9 m and a field of 
view width of 1.5 m, and the clarity of the image is controlled 
by adjusting the focal length. Because the actual camera imaging 
pixel length and width is 1,280*1,024, the length of the field 
of view in the advancing direction is 120 cm.
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To position the target accurately during the walking process 
of the spraying machine, it is necessary to obtain the target 
position and spraying machine walking distance. The walking 
distance is obtained by the encoder installed on the walking 
wheel. When forward distance is equal to the longitudinal 
length of the field of view, the camera is triggered to take 
photos, and the target can be  positioned in the field of view 
García-Santillán and Pajares (2018). However, the skidded 
walking wheel and uneven ground caused a large cumulative 
error, resulting in a decrease in the quality of target positioning. 
This study used video streaming to locate the target and establish 
the region of interest in the field of view, and the longitudinal 
positions of the targets (Yn) before and after the frame image 
was calculated (n is the number of image frames, where 
n = 1,2,3… N). When equation 3 is satisfied, it was judged 
that a target was passed by, as shown in Figure  6.

 

Yn Y
Y Yn

>
<=

ì
í
î -

threshold

threshold1  
(6)

Additionally, there is a certain distance d between the camera 
target and the nozzle and a running time of the control system, 
which includes target identification and operation time t1, 
communication time t2, solenoid valve response time t3, and 
fog droplet falling time t4. The time delay model of target 
control is shown in Figure 6. To be specific, the graph acquisition 
and processing time was obtained through the gettickcount() 
function; by Yuan’s method, the time was 38 ms, and the 
response time of the solenoid valve was 20 ms (Yuan et  al., 
2020). According to the high-speed photography test, a 115,200 
baud rate and binary transmission was applied under the 
conditions that the system pressure was 0.42 mp and the spraying 
height was 0.35 m. The fog droplet falling time and 
communication time between the upper computer and the 
lower computer controller were 35 ms and 820 μs, respectively. 
Based on these results, it can be  calculated that from system 
image acquisition to solenoid valve response, there was a total 
of 138.82 ms. Then, according to Figure  6, when the distance 
between the lower edge of the region of interest and the nozzle 
is 0.7 m. To achieve accurate target pesticide spraying, the 
following conditions should be  met:

 
T

L t t t t v
v

=
- + + +( )*1 2 3 4

 
(7)

where T is the set delay time by the system, and the unit 
is seconds.

Program Design of the Electronic Control 
System
The ECU receives the spraying instructions issued from the 
controller in real time through the CAN bus, controls the 
opening and stopping of the nozzle through the solenoid valve, 
and receives and processes real-time data, such as solenoid 
valve control data and the speed and pressure state of the 
pesticide supply system, to achieve accurate spraying control. 
Referring to the ISO11783 standard, the arbitration field and 
data field of the CAN bus protocol are designed. Specifically, 
the CAN packet includes the frame information (one byte), 
frame ID (four bytes), and frame data (eight bytes), and during 
data transmission, SC/SM, the start character of the frame, 
and the CRC check at the end of the frame were added. The 
data field protocol is shown in Table  1.

According to the above target positioning method, to achieve 
precise position spraying, the system delay time needs to be set 
according to different speeds. In this regard, after target 
identification, the upper computer sends the information in 
four packets, with an interval of 2 ms for each packet, which 
is longer than the communication time of packets to prevent 
packet transmission conflicts. The encoder was installed on 
the right rear wheel so that the C37 controller could read the 
pulse frequency of the encoder and convert it into the advancing 
speed of the spraying machine, with the accumulated pulses 
as the advancing distance. The controller of the lower computer 
stored the target information of four rows cabbages into four 
arrays upon receiving it from the host computer, after which 

FIGURE 6 | Schematic diagram of each delay component of control system.

FIGURE 5 | Schematic diagram of spraying control with multiple targets in a 
single field of view.
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FIGURE 7 | Control flow chart of targeted pesticide spraying.

the current driving distance was stored into an array called 
Distance[]. Table  2 shows that the target information includes 
the current distance when the ECU receives the target 
information. When the spraying control condition meets Equation 
(5), the nozzle is opened; otherwise, it is closed, effectively 
preventing the error accumulation of the displacement sensor 
caused by the tractor wheel skid.

distance Distance distance distance Distacne
open cl

+ [ ] < [ ] < + [ ]i i
oose  

(8)

The overall control flow chart is shown in Figure  7.

Targeted Field Pesticide Spraying Test
To verify the accuracy and saving effect of the target pesticide 
spraying control system, experiments were carried out in the 
cabbage fields of Xiaotangshan National Precision Agriculture 
Research Demonstration Base, Changping District, Beijing. First, 
the measurement distance of the encoder and the shooting range 
of the image were calibrated, and the acquisition frequency was 
28 frames/s. The row spacing of field cabbage was 35 cm, the 
plant spacing was 40 cm, and the ridge length was 70 m. Additionally, 
before the test, a white paper strip, which turned red when is 
encountered water, with a width of 40 mm was placed in the 
middle of the row of the cabbage. After spraying, the red colour 
deepened over time, but its depth did not affect the result 
discrimination. The test site is shown in Figure  8. By adjusting 

TABLE 2 | Comparison of the training results of different training feature combinations.

Training feature
Kernel function 

parameter
Number of SVMs

Correct classification 
rate of training 

samples/%

Correct classification 
rate of test samples/%

Operation time of test 
identification/ms

Rod, R, C = 29, σ = 2−6 23 78.9 76.0 23
RAT_I_L, Rod C = 29, σ = 2−6 23 82.3 81.7 26
RAT_I_L, R C = 29, σ = 2−6 49 89.3 87.9 26
RAT_I_L, b/a C = 29, σ = 2−6 13 90.3 90.1 29
Rod, b/a C = 29, σ = 2−6 13 90.7 86.2 27
b/a, R C = 29, σ = 2−6 11 92.6 90.7 27
RAT_I_L, Rod, R C = 213, σ = 2−8 13 92.3 90.1 32
RAT_I_L, b/a, Rod C = 213, σ = 2−8 13 94.6 91.2 33
RAT_I_L, b/a, R C = 213, σ = 2−8 11 97.6 95.7 35
Rod, R, b/a C = 213, σ = 2−8 11 94.3 93.1 34
RAT_I_L, Rod, R, b/a C = 213, σ = 2−8 9 97.8 95.9 38

TABLE 1 | Data field protocol of the pesticide spraying bus system.

Node Identifier Effective data length Frame data meaning

TTC32 18E96664 8 Data0: Open state 0×0A Close state 0×00;

Data2-Data3: Speed;

Data4-Data5: System pressure;

Data6-Data7: Flow;
On-board 
computer

0 CE76468

0 CE76469

0 CE76470

0 CE76471

8 Data0, Data1: Opening and closing distance of the solenoid valve corresponding to the cabbage;

Data2, Data3: Opening and closing distance of the solenoid valve corresponding to the cabbage;

Data4, Data5: Opening and closing distance of the solenoid valve corresponding to the cabbage;

Data6, Data7: Opening and closing distance of the solenoid valve corresponding to the cabbage;
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the movable mechanism, the spray body and the crop row deviated 
by 17.5 cm so that the paper strip was within the spray range. 
The overall layout is shown in Figure  9.

To improve the contrast of the paper strip before and after 
spraying, the physical liquid was replaced by a solution composed 
of 0.1% crystal violet biological stain and distilled water. The 
length of the coloured area sprayed on the filter paper was 
measured and compared with the longitudinal length of the 
corresponding cabbage, as shown in Figure  10. The distances 
of the spraying range relative to the front end and back end 
of the advancing direction of the cabbage were called D_open 
and D_close, respectively, where D_open > 0 indicates the valve 
opened in advance, D_open < 0 indicates valve opening lagged, 
D_close > 0 indicates valve closing lagged, and D_close < 0 
indicates the valve closed in advance. When the crops are 
contained in the coloured area, the target spray is considered 
to have hit the crops. When D_open < −7 cm or D_close < −7 cm 
(half of the average longitudinal length of the crop target), 
the spray is invalid; otherwise, it is effective. Again, the plant 
spacing range L is the plant spacing of transplanted cabbage, 

l is the length of cabbage in the advancing direction, and the 
ratio of the spraying length is the ratio of the target spraying 
length to the total spraying length under the effective spraying 
state. If the traditional nontarget pesticide spraying is the 
complete spraying within the range of the plant spacing, the 
theoretical saving rate ε is defined in Equation (6) under the 
condition of effective spraying. The average length of a cabbage 
is 160.3 mm, and the preset spraying advance distance and 
lag distance are both 30 mm; namely, the preset average spraying 
distance is 220.3 cm.

 e = - - -( ) *L D D Lopen close 1 100/ %  (9)

On September 14, 2021, a hailstorm occurred in Changping 
District, resulting in crop seeding deficiency, with a seeding 
deficiency rate of 33% and a void rate of 76.6%. To obtain 
the pesticide saving rate, a targeted pesticide spray operation 
and a continuous spraying operation were carried out in a 
cabbage field with eight ridges under the condition of natural 
seeding deficiency and in a cabbage field with 10 consecutive 
cabbage under the condition of no seeding deficiency (the 
void ratio is 65%). During the test, four speed modes, including 
one-gear low speed, one-gear high speed, two-gear low speed 
and mixed speed of the above three, were used to spray 
two-ridge cabbage fields. Then, the number of accurate sprays 
of cabbage and weeds, the number of missed sprays and the 
number of invalid sprays were counted, the length, opening 
distance, and closing distance of each spraying target were 
measured, and the actual dosage was obtained by measuring 
the volume of physical liquid.

TEST RESULTS AND DISCUSSION

Identification Test Based on an SVM
The identification results of different training feature combinations 
are shown in Table  3.

FIGURE 8 | Field map of cabbage pesticide spraying.

FIGURE 9 | Layout map of a nozzle and paper strip.

FIGURE 10 | Effect definition diagram of the target spray.
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A B C

FIGURE 11 | Partially incorrectly identified samples. (A) Leaf defect. (B) Local reflection. (C) Overlapping weeds.

It can be  seen from the table that all the classifiers can 
classify cabbage and various weeds as expected, which proves 
that the SVM has good high-dimensional and nonlinear processing 
abilities. Among them, the identification accuracy of the Rod 
and R feature combination is the lowest, with a test accuracy 
of 77.0%. In terms of the combination of three or four features, 
when the kernel function parameter is C = 213 and σ = 2–8, the 
SVM performance is optimal. Moreover, the RAT_I_L, Rod, 
R, and B/A feature vector combined has the highest accuracy 
of 95.9%, and some cabbage and weeds are incorrectly classified. 
A target-oriented plant identification accuracy of more than 
95% is widely accepted in most cases (Li et  al., 2019).

The following reasons for sample identification errors are 
found through analysis. First, during the growth period of 
cabbage, natural disasters, such as hail, can cause serious 
damage to the leaves of some cabbage plants (Figure  11A), 
which can result in the gravity centre coordinate extracted 
from the images not being the centre of the plant, thus leading 
to an extraction error of sample shape features and a classification 
error. In addition, some cabbage samples have local reflections 
(Figure  11B), and some areas are not correctly segmented, 
thus leading to identification errors. Moreover, some samples 
of D. sophia overlapped with Shepherd’s purse samples and 
were wrongly identified as P. oleracea, which resulted in 
identification errors (Figure  11C). The running time is the 
main performance index of the target pesticide spray control 
system. By comprehensively considering the correct classification 
rate and test running time of samples, in this paper, a RAT_I_L, 
B/A and R feature vector combination was selected as the 
feature vector combination, with an average test time of 35 ms.

Comparison and Analysis of Classification 
and Recognition Results by Different 
Models
Table  4 shows the average identification accuracy of the 
cabbage and weed BPNN model, RF model and support 
vector machine model, as well as the average precision, recall, 
and elapsed time of the different methods. The accuracy of 
BPNN model for cabbage and weeds is low (82.76%), which 
leads to serious misidentification, making the number of 
cabbage recognition as weed in the classification results was 
high, so the average accuracy rate was low (81.88%), and 
the average recall was high (86.74%); while the RF method 
misclassified too many weeds as cabbage, and its average 
identification accuracy (90.23%) was higher, while the average 
recall (54.33%) was lower; the average recognition accuracy, 
precision, and recall of the support vector machine were the 
highest among the three methods, 95.7, 93.72, and 92.35%, 
respectively.

The average time of support vector machine algorithm is 
0.038 s, which is 0.005 s more than the shortest BPNN 
segmentation method (0.033 s), but its accuracy, precision and 
recall rate are much higher than the other two methods, and 
the processing speed is at the millisecond level, which can 
better meet the requirements of real-time processing. In terms 
of segmentation performance and running time, this method 
can identify cabbage and different kinds of weeds from the 
complex natural environment, with strong robustness and high 
segmentation accuracy. Therefore, this paper selects the 
classification and recognition method of support vector machine.

Field Target Spray Test
Accuracy of Target Identification
The SVM identification results of cabbage and weeds in an 
active light source environment are shown in Figure  12. In 
the figure, a partial cabbage sample in the boundary position 
of the field of view is not correctly identified in the case of 
local shooting, whereas the cabbage samples in nonboundary 
positions and weeds are wholly correctly identified.

TABLE 3 | Identification results of cabbage and weed samples.

Recognition 
methods

Average 
precision/%

Precision% Recall/%
Time 

consuming/s

BPNN 81.88 82.76 86.74 0.033
RF 90.23 88.67 54.33 0.056
SVM 95.7 93.72 92.35 0.038
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Table  5 shows the statistical spray results of cabbage and 
weeds, of which the identification accuracy of cabbage samples 
was 95.0%. Figure  13A shows the target spraying effect of 
cabbage plants of different sizes, from which it can be  seen 
that the target control system can adjust the spraying distance 
according to the different sizes of the targets, indicating that 
the cabbage samples were correctly identified. Figure 13B shows 
the pesticide spraying of cabbage at different speeds, in which 
correct pesticide spraying is realized at both 0.52 and 0.93 m/s, 
indicating that the target is accurately identified at 0.52–0.93 m/s. 
However, the target offset at 0.93 m/s is larger than that at 
0.52 m/s. Figures  13C–F shows the presence of weeds among 
the plants; all of the weeds were correctly identified and 
accurately sprayed. In addition, there is a certain difference 
in identification accuracy among different weeds; for example, 
D. sophia has the highest identification accuracy, and G. parviflora 
has the lowest identification accuracy, with an identification 
accuracy range of 92.2–96.2% and an average identification 
accuracy of 93.5%.

Although most cabbage and weeds can be correctly identified 
during operation, there are still some cases where weeds are 
mistakenly identified as cabbage due to their own growth 
characteristics or because they partially overlap with crops 

(Figure  14A), which results in the destruction of the original 
features and incorrect identification. Furthermore, some cabbage 
samples are mistakenly identified and are not sprayed due to 
partial uneven or local reflections, which result in the destruction 
of the original features and incorrect identification, as shown 
in Figure  14B.

Relationship Between the Operation Speed and 
Effective Spraying
The corresponding statistical results of invalid spraying, missed 
spraying and effective spraying at the three speeds are shown 
in Table  6.

At the three operating speeds, the highest invalid spraying 
rate, missed spraying rate, and effective spraying rate were 4.0, 
5.6 and 94.3%, respectively, with an average invalid spraying 
rate, missed spraying rate and effective spraying rate of 2.4, 4.7, 
and 92.9%, respectively. When the operation speed increased 
from 0.52 to 0.93 m/s, the ineffective spraying rate continued to 
increase, indicating that the speed affects the effectiveness of 
spraying, which may be  due to the speed affecting the accuracy 
of the opening or closing of the solenoid valve relative to the 
target position. Invalid spraying primarily occurred when the 
cabbage was partially recognized due to the influence of imaging 

TABLE 4 | Comparison of classification results by different methods.

Name Number
Number of correctly 
identified samples

Number of incorrectly 
identified samples

Identification accuracy/%

Cabbage 941 874 67 95.0
Portulaca oleracea 182 168 14 92.3
Descurainia sophia 266 256 10 96.2
Galinsoga parviflora 154 142 12 92.2

FIGURE 12 | SVM identification results of cabbage in an active light source environment.

TABLE 5 | Statistics of target spraying results at different speeds.

Speed /m·s−1 Number of 
targets

Number of 
ineffective 

sprays

Invalid spraying 
rate/%

Number of 
leakage targets

leakage rate/%
Number of 
effective 

spraying targets

Effective spraying 
rate/%

0.52 304 4 1.3 14 4.6 286 94.1
0.69 313 6 1.9 12 3.8 295 94.3
0.93 324 13 4.0 18 5.6 293 90.4
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FIGURE 13 | Correct identification of cabbage and various weed samples. (A) Targets of different sizes. (B) Effect of different speeds on the target. (C) Correct 
identification of Descurainia sophia. (D) Correct identification of Portulaca oleracea. (E) Correct identification of Galinsoga parviflora. (F) Correct identification of G. parviflora.

A B

FIGURE 14 | Actual target spraying effect in the field. (A) Weeds mistakenly identified as cabbage due to overlapping with crops. (B) Cabbage mistakenly identified 
as a weed.

factors in the real-time identification process or when the spraying 
position was obviously misaligned with the actual position of 
the target due to the influence of instantaneous skidding in the 

advancing process of the ground wheels. The missed spraying 
rate did not increase with increasing speed, indicating that there 
is no clear correlation between the missed spraying rate and the 
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speed. As missed spraying means that there was no spraying 
action on the target, it can be  believed that the solenoid valve 
did not open because the system did not identify the target or 
the identified target was too small. The reasons why a target 
was not recognized mainly include uneven, overlapping and 
occluded samples, as mentioned in Section “Image Acquisition.” 
When a target is identified as too small, it may be  because the 
cabbage itself is small or that only parts of the cabbage are 
recognized due to local reflection or uneven light. To further 
analyse the relationship between cabbage size and the missed 
spray rate, the sizes of targets that were not sprayed were calculated, 
as shown in Figure  15.

According to the figure, it can be  seen that the average size 
of the cabbage samples was 16.1 cm, and the average canopy 
size of 44 missed targets was 10.1 cm, among which the sizes 
of 43 missed targets were below 12.8 cm. The canopy size of 
1 missed target was larger than the average value of 16.1 cm, 
indicating that the missed targets were mainly those with smaller 
canopy sizes, and the size of a target may affect the accuracy 
of identification; namely, the smaller the cabbage is, the lower 
the identification accuracy and the higher the missing spray rate.

Influence of the Operating Speed on the Target 
Offset
Absolute values were taken for the open distance, close distance 
and spray length of effectively sprayed targets at three speeds, 
and the average values were taken as the means. The statistical 
results are shown in Table  7.

According to the statistical results, at the three speeds, the 
mean spraying length was 216.8 mm, with a 1.6% error compared 
to the preset spraying length, the mean effective spraying length 
was 63.5%, and the theoretical pesticide saving rate was 45.9%. 
With increasing speed, the centre of the mass offset of the targets 
increased and reached a maximum value of 28.6 mm at 0.93 m/s. 
At speeds of 0.52 m/s and 0.69 m/s, the opening distance and 
closing distance were basically equal; that is, the better the target 
effect was, the smaller the centre of mass offset of the spray. At 
a speed of 0.93 m/s, the open distance increased and the close 
distance decreased, indicating that there was some skid in the 
advancing process of the wheels, and there was a certain offset 
between the encoder range and the theoretical target position; 
that is, the higher the speed was, the greater the skid rate of the 
ground wheels, and the larger the centre of mass offset of the 
spray. Similarly, the skid rate also affected the spraying length. 
When the distance calculated by the control system according to 
the encoder signal was larger than the actual operating distance, 
the spraying length was 210.5 mm at a speed of 0.93 m/s, which 
was significantly shorter than the spraying lengths at speeds of 
0.52 m/s and 0.69 m/s. According to the speeds, it can be  seen 
that with an increase in the vehicle speed, the standard deviation 
and the variance in the open distance and close distance increased 
gradually, indicating that an increase in speed results in a decrease 
in the matching accuracy between the crop spacing perceived by 
the nozzle controlled in real time and the actual spacing. Moreover, 
the uneven surface of the soil in the field also affected the position 
of the camera, which increased the difficulty in positioning crops 
and reduced the real-time matching accuracy between the crop 
coordinates and the spraying coordinates. As the advancing speed 
increased, under the condition that the response frequency of the 
relay and solenoid valve is certain, the spraying control error 
increased, resulting in a decrease in the proportion of the effective 
spraying length. If the preset open distance or close distance is 
increased, the proportion of the effective spraying length would 
also increase accordingly (Loghavi and Mackvandi, 2008). However, 
according to the theoretical definition of the pesticide saving rate, 
it can also be  seen that the pesticide saving rate would decrease, 
that is, the longer the spraying length is, the lower the pesticide 
saving rate.

With the centre of a cabbage sample as the origin, the opening 
distance and closing distance of the nozzle relative to the centre 
of the cabbage sample were drawn, as shown in Figure 16A. At 
0.52 m/s, the nozzle was delayed in opening and closing while 
spraying the 22nd cabbage, which may be due to the identification 
error caused by local reflection; thus, the first part of cabbage 
was not correctly identified, and only the second part of cabbage 

TABLE 6 | Statistical results of targeted spraying at different speeds.

Operating  
speed/m·s−1

Number of 
targets

Number of 
invalid sprays

Invalid spraying 
rate/%

Number of 
missed 

sprays/个

Missed spraying 
rate/%

Number of 
effective sprayed 

targets/个

Effective spraying 
rate/%

0.52 304 4 1.3 14 4.6 286 94.1
0.69 313 6 1.9 12 3.8 295 94.3
0.93 324 13 4.0 18 5.6 293 90.4

FIGURE 15 | Size statistics of the missed targets.
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TABLE 7 | Results of the effective spraying of targets.

Speed/m·s−1

Effective spraying of targets

Mean of the 
spray length/

mm

Proportional 
mean of the 

spray length/%

Deviation of 
the centre of 

mass/mm

Theoretical 
pesticide 

saving rate/%

D_open/mm D_close/mm

Mean
Standard 
deviation

Mean
Standard 
deviation

0.52 40.1 12.2 38.2 11.4 220.5 65.1 14.1 45.4
0.69 42.0 20.7 35.4 20.3 219.4 64.7 16.4 44.9
0.93 64.1 28.5 11.1 31.0 210.5 60.6 28.6 47.4

A

B

C

FIGURE 16 | Statistical results of the continuous spraying of 58 cabbages at 
different speeds. (A) 0.52 m/s. (B) 0.69 m/s. (C) 0.93 m/s.

was sprayed. At 0.69 m/s, similar to the 15th cabbage, the latter 
part of the cabbage was not sprayed, as shown in 
Figure  16B. Furthermore, the size of the effectively identified 
sample limits the opening time of the solenoid valve. When 
the opening time is less than the response time of the solenoid 
valve, pesticide spraying may not be  carried out by the system; 
that is, the missed spraying is not identified, such as for the 
40th cabbage shown in Figure  16A, the 34th cabbage and 43rd 
cabbage and shown in Figure  16B, and the ninth cabbage and 
18th cabbage shown in Figure  16C. At a speed of 0.93 m/s, the 
fluctuation in the spraying distance increased significantly, and 
the number of cabbage samples partially sprayed or not sprayed 
significantly increased as well, as shown in Figure  16C.

Dosage Analysis of Targeted Pesticide Spraying
Table  8 shows the statistical results of the dosage of the targeted 
pesticide spraying and continuous spraying under the conditions 
of natural seeding deficiency and continuous growth. Under the 
condition of natural seeding deficiency, 941 cabbage samples in 
8 ridges were tested, while under the condition of continuous 
growth, 320 cabbage samples over 124 m were tested. In addition, 
in the case of natural seeding deficiency in the field, the dosage 
and its standard deviation between each row of continuous spraying 
were 28.7 L and 0.09 L, while those of targeted spraying were 
13.4 L and 0.2 L, indicating that the standard deviation of targeted 
spraying was significantly greater than that of continuous spraying, 
which mainly may be  due to the inconsistent seedling deficiency 
in each row. Therefore, relatively large dosage differences among 
the targets occurred. Furthermore, compared with continuous 
spraying, under the condition of natural seeding deficiency, the 
targeted spraying dosage decreased by 15.3 L, with a savings rate 
of 53.3%, and under the condition of continuous growth, the 
targeted spraying dosage decreased by 2.4 L, with a savings rate 
of 33.8%. Additionally, there is a direct relationship between the 
pesticide saving rate and the canopy proportion (Berenstein and 
Edan, 2018). If the canopy proportion reaches a certain value, 
there would be no difference between target spraying and continuous 
spraying, and the effect of pesticide savings would not be achieved.

The targeted spray control system controls the opening and 
closing of multiple nozzles in real time according to the speed 
and the size of the targets and stabilizes the pressure by controlling 
the pressure fluctuation caused by the instantaneous opening 
and closing of nozzles to maintain the pressure fluctuations 
within a certain range. However, spraying flow is regulated by 
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the pressure, the actual supply pressure of each solenoid valve 
of targeted pesticide spraying is different, and the flow change 
depends more on the distribution of the nozzles (Han et  al., 
2001). In the future, on the basis of the targeted pesticide 
spraying model proposed in this study, further research on the 
pressure in the pesticide supply system as well as the distribution 
of the flow will be carried out to improve the dosage of targeted 
pesticide spraying and achieve better effects while saving pesticides.

CONCLUSION

A targeted pesticide spraying control system based on an active 
light source and a targeted spraying delay model are designed 
to prevent the influence of real-time changes in natural lighting 
on target identification. A communication protocol for the 
targeted spraying control system is developed, in which target 
identification and positioning are carried out by video stream, 
and the positioning distance is calculated by encoder ranging 
to realize the precise control of targeted spraying. Real-time 
cabbage target identification is realized based on an SVM, and 
a concept of taking the skeleton point-to-line ratio and ring 
structure characteristics as the classification and identification 
characteristics of the SVM is proposed to classify and test the 
different characteristic combinations of the SVM. From this, 
the characteristic vector comprised of the point-to-line ratio, 
maximum inscribed circle radius, and fitted curve coefficient 
has the highest identification rate of up to 95.7%, and its test 
time is 33 ms, which meets the needs of actual production. 
Field tests are carried out to verify the identification accuracy 
and control accuracy of the target spraying machine, in which 
the identification accuracy of cabbage samples is 95.0%, the 
range of the identification accuracy of various weeds is 92.2–
96.2%, and the average identification accuracy is 93.5%. In 
addition, under three operation speeds, the average invalid 
spraying rate, average missed spraying rate, and average effective 
spraying rate are 2.4, 4.7, and 92.9%, respectively. With increasing 
speed, the offset of the centre of the mass of the target increases 
and reaches a maximum value of 28.6 mm when the speed is 

0.93 m/s. Under natural seeding deficiency conditions, the void 
rate and pesticide saving rate were 65 and 33.8%, respectively, 
while they were 76.6 and 53.3%, respectively, under continuous 
growth conditions.
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