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Drought stress is one of the main factors restricting hulless barley (Hordeum vulgare

L. var. nudum Hook. f.) yield. Genome-wide association study was performed using

269 lines of hulless barley to identify single-nucleotide polymorphism (SNP) markers

associated with drought-resistance traits. The plants were cultured under either normal

or drought conditions, and various quantitative traits including shoot fresh weight, shoot

dry weight, root fresh weight, root dry weight, leaf fresh weight, leaf saturated fresh

weight, leaf dry weight, ratio of root and shoot fresh weight, ratio of root and shoot dry

weight, shoot water loss rate, root water loss rate, leaf water content and leaf relative

water content, and field phenotypes including main spike length, grain number per plant,

grain weight per plant, thousand grain weight (TGW), main spike number, plant height,

and effective spike number of plants were collected. After genotyping the plants, a total

of 8,936,130 highly consistent population SNP markers were obtained with integrity >

0.5 and minor allele frequency > 0.05. Eight candidate genes potentially contributed

to the hulless barley drought resistance were obtained at loci near significant SNPs. For

example, EMB506, DCR, and APD2 genes for effective spike number of plants, ABCG11

gene for main spike number (MEN), CLPR2 gene for main spike length, YIP4B gene for

root and shoot dry weight (RSWD), and GLYK and BTS genes for TGW. The SNPs and

candidate genes identified in this study will be useful in hulless barley breeding under

drought resistance.

Keywords: hulless barley, GWAS, drought resistance, high throughput sequencing, quantitative traits, SNP

INTRODUCTION

Plants live in complex and changeable environmental conditions, often bring huge misfortune on
plant growth (Zhu, 2016). As the global climate becomes drier and warmer, more than 15% of the
world’s population faces severe water shortages (Schewe et al., 2014; Gong et al., 2020). Drylands
cover 40% of the global land surface and drought has caused losses in agriculture up to $30 billion
over the past decade (Dai, 2013; Gupta et al., 2020). Drought has brought a great strain on the
growth of plants, at the meantime, plants also have corresponding effective measures to prevent
water loss, maintain cell water content, and help plants to survive the difficult drought period.
Understanding drought resistance and water use efficiency of plants will provide guarantee for
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maintaining normal plant growth and improving agricultural
yield under drought (Gupta et al., 2020; Yu et al., 2021).

Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is
an important economic crop (He and Jia, 2008). As the only
crop growing at high altitude, the planting area of hulless barley
accounts for 43% of the grain crop area on the Qinghai Tibet
Plateau (Dai et al., 2012; Zhong et al., 2016). Hulless barley has
made great contribution as the main food, fuel, and livestock
feed of the Tibetan people, and also is the raw material for beer,
medicine, and health care products (Yang et al., 2013; Zhu et al.,
2015; Liu et al., 2018). Hulless barley is rich in β-glucan, phenolic
acid, and anthocyanins, which has high nutritional andmedicinal
value and is of great significance to human health (Bonoli et al.,
2004; Siebenhandl et al., 2007; Kohyama et al., 2008; Zhao et al.,
2015). The climate inside the Qinghai–Tibet Plateau is gradually
drying out, and some scientists predict that only plants that can
tolerate drought conditions will be able to settle on the plateau’s
platforms (Meng et al., 2017). Therefore, it is very important to
study the drought tolerance of hulless barley.

To predict the important agronomic traits such as drought
tolerance, it is necessary to understand the specific loci based
on phenotype and the genetic structure of the traits. Genome-
wide association study (GWAS) is just such a powerful tool
for connecting genotypes–phenotypes (Korte and Farlow, 2013).
Genome-wide association study refers to the association analysis
of traits through the sequence and the SNP marker information
on the whole genome so as to detect the loci significantly
associated with the target trait (Li, 2013; Tam et al., 2019).
Genome-wide association study provides higher resolution and
finer scale association, and has been widely used in the
identification of markers associated with desirable traits in crops
(Nordborg and Weigel, 2008; Xu et al., 2017).

This study based on the identification results of hulless
barley drought tolerance traits in 269 lines, SNP markers
were developed by simplified genome sequencing (SLAF) to
genotype natural populations. Using linear mixed model (LMM)
and EmMax, the association between the quantitative traits of
drought tolerance and genotype was analyzed, and the SNP
loci and chromosome segments significantly associated with the
target traits were screened.

MATERIALS AND METHODS

Genetic Materials
The 269 hulless barley lines with different drought resistance
assessment were used as the GWAS panel in this study
(Supplementary Table 1). Phenotypic observation was
performed on each line, both in the laboratory and in the
field. The laboratory experiment was conducted in two growth
condition with three biological replicates. The normal culture
group was used as control, and the treatment group was applied
with PEG-6000 to simulate drought stress. The associated
phenotypes including shoot fresh weight SFW (g),shoot dry
weight SDW (g), root fresh weight RFW (g), root dry weight
RDW (g), leaf fresh weight LFW (g), leaf saturated fresh weight
SFW (g), leaf dry weight LDW (g), ratio of root and shoot fresh
weight RSFW (%), ratio of root and shoot dry weight RSWD

(%), shoot water loss rate SWLR (%), root water loss rate RWLR
(%), leaf water content WC (%), and leaf relative water content
RWC (%) were measured. Field planting data were collected in
2019–2020 from three different growing environments at two
sites, including drought treatment and natural irrigation at two
different habitats. The associated phenotypes of different habitats
consisted of main spike length MSL (cm), grain number per
plant GNPP, grain weight per plant GWPP (g), thousand grain
weight TGW(g), main spike number MEN(g), plant height (cm)
and effective spike number of plants ESNP.

Single-Nucleotide Polymorphism-Based
Genotyping for 269 Hulless Barley Lines
In 2021, 269 pieces of hulless barley lines were planted in
germinating boxes and cultured in greenhouse to two leaves
stage. Whole-genome DNA of each germplasm resource leaves
was extracted by CTAB method (Allen et al., 2006). The
DNA quality and concentration were detected by 0.1% agarose
gel electrophoresis, and whole-genome SNP genotyping was
produced by Biomarker technologies company. The SLAF tags
were developed by enzyme digestion (RsaI) of the genomic DNA,
followed by adaptor ligation, amplification and purification.
Then, the SLAF library were sequenced by Illumina Novaseq
6000. The sequencing reads were mapped to the reference
genome by BWA software (Li and Durbin, 2009). GATK
(McKenna et al., 2010) and samtools (Li et al., 2009) were used to
identify SNPs. The intersection of SNP markers obtained by the
two methods was used as the final reliable SNP marker dataset,
and a total of 5,949,446 SNPs were obtained. The genotypic
data obtained were screened as integrity > 0.8 and minor allele
frequency (MAF) > 0.05.

Structure of Hulless Barley Population
Based on the SNPs obtained from the above genotypes, 269
phylogenetic trees of hulless barley was constructed by neighbor-
joining (NJ) method (1,000 replicates) with Kimura 2-parameter
(K2-P) model using MEGA X software (Kumar et al., 2018).
The phylogenetic tree was colored based on the analysis results
of STRUCTURE.

Genome-Wide Association Study and
Candidate Gene Screening
Based on the developed high-density SNP molecular markers,
GEMMA, FaST-LMM, and EMMAX were used for association
analysis. Correlation analysis between phenotypic value of
drought-tolerant-resistant traits and genotypes was carried out to
obtain the p-value of each SNP. Screened with p < 5 × 10−6, the
genetic variation loci most likely to affect the trait was selected.
The quantile–quantile (Q–Q) scatter plot and Manhattan plot
were made by the qqman package in R software.

To screen the drought-tolerant-resistant genes near the
significant associative loci, the genetic information of specific
association regions was queried from barley genome in plant
whole-genome information database (http://plants.ensembl.org/
index.html). All genes with coding regions in the 100–500-kb
window were used for subsequent analysis.
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TABLE 1 | Distribution of SLAF markers on chromosomes.

Chromosome ID Chromosome length SNP number SNP number Polymorphic SLAF

chr1H 558,535,432 914,610 103,229 55,541

chr2H 768,075,024 1,289,234 139,589 77,829

chr3H 699,711,114 1,532,190 130,401 75,513

chr4H 647,060,158 1,186,220 122,917 67,774

chr5H 670,030,160 1,451,138 117,223 66,198

chr6H 583,380,513 1,216,744 108,416 63,442

chr7H 657,224,000 1,345,994 118,728 68,117

chrUn 249,774,706 123,320 22,256 6,334

FIGURE 1 | Distribution of SNPs on chromosomes.

RESULTS

Genomic Library Construction and SNP
Markers Development
Themolecular markers of 269 hulless barley lines were developed
by Specific-Locus Amplified Fragment Sequencing (LAF-SEQ)
to obtain molecular markers in the whole genome. An average
of 311,695 SLAF tags were developed per sample for a total of
862,999, including 480,790 polymorphic SLAF tags and 5,532,468
SNP markers. The average sequencing depth of SLAF tags
was 10.43×, and 1,067.96Mb reads data were generated. These
markers were evenly distributed on the chromosomes of hulless
barley (Table 1, Figure 1). The average Q30 of sequences was
94.78%, and the average GC content was 44.23%. A total of
8,936,130 SNP markers with high consistency were obtained

from 269 hulless barley lines filtered by integrity > 0.5 and
MAF > 0.05. Chromosome 3 had the largest number of SNP
markers (1,532,190), with an average label distance of 456
bp. On the contrary, chromosome 1 had the lowest number
of SNP markers (914,610), with an average label distance of
610 bp.

Genetic Structure of Hulless Barley
Population
The 269 lines were divided into 6 groups according to the
geographic location information of the samples, and the group
information was used for linkage disequilibrium (LD) and
evolutionary tree analysis. The phylogenetic tree was colored by
the clustering result of STRUCTURE, basically, each cluster was
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FIGURE 2 | Genetic relatedness among the 269 hulless barley lines estimated by neighbor-joining method and represented as a polar tree diagram. The estimated

genetic relatedness is based on 5,949,446 SNPs identified by genotyping-by-sequencing and filtered for MAF of 0.05.

gathered into one block in the phylogenetic tree, especially Q5
and Q6 (Figure 2).

Using the SNP information mentioned above, the
principal component analysis (PCA) was conducted. The
top three principal components could explain 34.23%
of the genomic variations, and principal component 1
could explain 18.3%. Consistent with the phylogenetic
tree, Q5 and Q6 were separate from other populations
(Figure 3).

Plink2 software (Chen et al., 2019) was used to calculate the
linkage disequilibrium (LD) between two SNP pairs within a

certain distance (1,000 kb) on the same chromosome, and the
linkage disequilibrium intensity was represented by r2. The closer
r2 is to 1, the stronger the linkage disequilibrium intensity.
The distance between SNPs and r2 was fitted, and the curve
of r2 changes with distance was presented. Generally speaking,
the closer the distance between SNPs is, the larger r2 is and
vice versa. The LD decay (LDD) distance was used as the
distance traveled when the maximum r2 value dropped to half.
The longer LDD, the lower the probability of recombination
within the same physical distance. It should be noted that
some regions of Q5 and Q6 had very strong linkage, but the
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FIGURE 3 | The scatter plots of the first two principal components (PCs) showing the distribution of the 269 hulless barley lines in PC1 vs. PC2.

FIGURE 4 | Linkage disequilibrium decay based on six groups.

length of the strong linkage was short, indicating that these
two groups were subjected to some artificial selection pressure

and some loci were selected, leading to linkage in some regions
(Figure 4).
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TABLE 2 | SNP markers for each phenotype based on different GWAS analysis models.

Phenotype Year Station Conditions LMM EMMAX FASTLMM Shared SNP markers

The field data

ESN 2019 Menyuan Field 18 6 10 6

2019 Xining Field 84 22 54 21

2019 Xining Greenhouse 10 3 7 3

2020 Menyuan Field 44 10 18 10

2020 Xining Field 117 6 74 6

2020 Xining Greenhouse 5 1 2 1

GW 2019 Menyuan Field 10 3 11 3

2019 Xining Field 11 0 14 0

2019 Xining Greenhouse 6 1 6 1

2020 Menyuan Field 4 1 1 1

2020 Xining Field 11 1 6 1

2020 Xining Greenhouse 0 0 0 0

MSL 2019 Menyuan Field 2 0 2 0

2019 Xining Field 7 2 5 2

2019 Xining Greenhouse 1 0 1 0

2020 Menyuan Field 191 1 41 1

2020 Xining Field 6 0 1 0

2020 Xining Greenhouse 1 0 2 0

PH 2019 Menyuan Field 10 2 39 2

2019 Xining Field 7 1 6 1

2019 Xining Greenhouse 28 10 23 8

2020 Menyuan Field 14 2 6 2

2020 Xining Field 2 0 3 0

2020 Xining Greenhouse 0 0 0 0

SN 2019 Menyuan Field 37 2 108 1

2019 Xining Field 32 26 34 23

2019 Xining Greenhouse 2 1 2 1

2020 Menyuan Field 24 6 79 6

2020 Xining Field 3 3 3 3

2020 Xining Greenhouse 5 3 5 3

SPP 2019 Menyuan Field 0 0 0 0

2019 Xining Field 28 0 13 0

2019 Xining Greenhouse 12 1 7 1

2020 Menyuan Field 0 0 4 0

2020 Xining Field 7 0 3 0

2020 Xining Greenhouse 1 1 1 1

TGW 2019 Menyuan Field 16 17 24 16

2019 Xining Field 14 2 8 2

2019 Xining Greenhouse 15 1 2 1

2020 Menyuan Field 47 33 55 31

2020 Xining Field 25 1 19 1

2020 Xining Greenhouse 4 0 4 0

Laboratory data

SFW Control 3 3 3 3

PEG 2 0 1 0

LDMC Control 0 0 0 0

PEG-6000 0 0 0 0

LDW Control 4 0 5 0

PEG-6000 5 1 1 1

(Continued)
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TABLE 2 | Continued

Phenotype Year Station Conditions LMM EMMAX FASTLMM Shared SNP markers

LFW Control 3 0 0 0

PEG-6000 2 0 2 0

RDW Control 1 0 0 0

PEG-6000 2 1 2 1

RFW Control 0 0 0 0

PEG-6000 13 3 10 3

RSDW Control 3 0 3 0

PEG-6000 3 4 5 2

RSFW Control 0 0 0 0

PEG-6000 3 2 2 2

RWC Control 1 1 1 1

PEG-6000 23 1 48 1

RWLR Control 3 3 4 2

PEG-6000 1 2 2 1

SDW Control 5 0 5 0

PEG-6000 2 1 2 1

SWLR Control 1,148 0 696 0

PEG-6000 1 2 2 1

WC Control 1 1 1 1

PEG-6000 10 11 14 7

Genome-Wide Association Study Analysis
of Traits in Hulless Barley
This analysis was based on SNP data from mutation detection,
filtered by secondary allele frequency (MAF > 0.05) and
locus integrity (integrity > 0.8) to obtain highly consistent
SNP loci for GWAS analysis. Genome-wide association
analysis was performed using LMM, EMMAX, and FaST-LMM
models, respectively. The following table showed the number
of significant SNP markers obtained for each phenotype
corresponding to each mode and the number of common SNP
markers in each model (Table 2).

Association Analysis
In the following part, we made a detailed explanation of
some phenotypes which have shared SNP markers in the three
relational models. The Manhattan plots showed significant
correlation between SNP markers on multiple chromosomes and
traits, while the Q–Q plots showed the relationship between
observed p-values and expected p-values for each SNP marker
(Figure 5, Supplementary Table 2).

Figure 5 showed the association between SNP markers
and effective spike number of plants (ESNP) phenotype with
Manhattan map and corresponding Q–Q plot. For plants
cultured in greenhouse in Xining city during 2019, two SNP
markers chr7H_102929775 and chr7H_102929728 with known
functions were obtained. Both of them locate on the gene
Ankyrin repeat domain-containing protein (EMB506). Gene
EMB506 is expressed at flowering and heading stage and
closely associated with the character (spike number) (Despres
et al., 2001), so it is likely to be the effector gene. There

were another two SNP markers detected in plants cultured in
filed in Menyuan city during 2019. One was chr1H_12690373,
located on the Protein Dicer (DCR) gene, which is required
for cutin polyester formation (Panikashvili et al., 2009). The
other was chr1H_512690373, located on APD2 gene involved
in male gametophyte development (Luo et al., 2012). For
main spike number (MEN) phenotype, 23 SNP markers were
detected on chromosomes 1H, 2H, and 7H in plants which were
cultured in filed in Xining city during 2019. On chromosome
2H, 18 SNP markers were found, including one aldehyde
reductase gene Neuroplastin (SDR1), one gene interrelated with
chloroplast development and plant growth named Probable GTP-
binding protein (OBGC1), and three bacterial infection related
genes Peroxidase 2 (PRX112), Probable acyl-CoA dehydrogenase
(IBR3) and Ethylene-responsive transcription factor (RAP2-3).
The ABC transporter G family member 11 (ABCG11) gene
located on chromosome 2H was highly expressed in flowers
and young seeds and was closely related to spike number
(Panikashvili et al., 2010) so that ABCG11 was likely to be the
effector gene of the trait. Our results showed that two SNP
markers (chr3H_152206655 and chr5H_250095923) connected
with main spike length (MSL) phenotype. Thereinto, ATP-
dependent Clp protease proteolytic subunit-related protein
1 (CLPR) is considered to regulate chloroplast and plant
development. Deletion of CLPR alleles resulted in embryonic
development delay and leaf albinism (Kim et al., 2009). Root
and shoot dry weight (RSWD) phenotype was represented by
chr1H_64014764 on Ypt Interacting Protein 4b (YIP4B) gene.
The YIP4B regulates cell wall composition and participate in root
and hypocotyl elongation (Gendre et al., 2013). As for thousand
grain weight (TGW) phenotype, the first SNP peak was found
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FIGURE 5 | Manhattan maps and Q–Q plots representing the SNP markers associated with drought resistant in multiple trials of GWAS associated with spike

development. (A,B) ESNP, (C) MEN, (D) MSL, (E) RSWD, and (F) TGW.

at chr3H_482958549, and mapped to photosynthesis related
gene D-glycerate 3-kinase, chloroplastic (GLYK). The second
SNP peak was found at chr3H_489630701, and mapped to iron
accumulation associated gene Geranylgeranyl pyrophosphate
synthase (BTS).

DISCUSSION

Hulless barley is rich in nutrients and is the main food source
for Tibetan people (Bonoli et al., 2004; Siebenhandl et al., 2007;
Kohyama et al., 2008; Zhao et al., 2015). It grows on the

Qinghai–Tibet Plateau and is the only crop that can grow at
high altitude of 4,200–4,500m (Dai et al., 2012; Zhong et al.,
2016). However, at present, with the aggravation of drought on
the Qinghai–Tibet Plateau (Meng et al., 2017), the selection of
drought-tolerant hulless barley strains has become an urgent
affair. However, the genetic resource that could be used to
assist hulless barley molecular breeding was scarce. In this
study, GWAS was used to map SNP markers related to drought
tolerance in hulless barley. The SNP markers identified in this
study will be used to analyze drought tolerance of hulless barley
and facilitate the selection of drought-tolerant strains.
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In this study, 269 lines of hulless barley were selected
for drought treatment under laboratory and field conditions.
Significant phenotypic variation in effective spike number of
plants (ESNP), main spike number (MEN), main spike length
(MSL), root and shoot dry weight (RSWD), and thousand grain
weight (TGW) have been identified under drought conditions.
These results indicated that the selected lines could play an
important role in exploring the drought-tolerance genes of
hulless barley. Hulless barley has great plasticity in adapting to
drought stress, which will provide reference for the breeding
process of superior hulless barley strains and improve the
drought tolerance of hulless barley.

Using the hulless barley GWAS panel, 29 SNPs loci and five
candidate genes connected with all spike traits (including ESNP
MEN andMSL) were identified. As for ENSP, markers distributed
on chromosomes 7H and chromosomes 1H were correlated, a
total of 4 SNPs loci on three genes (EMB506, DCR, and APD2)
were identified. ABCG11 and CLPR2 are two effector genes for
MEN and MSL traits, respectively. Among the genes related
to spike traits, DCR and ABCG11 plays a key role in cuticle
formation (Panikashvili et al., 2010; Rani et al., 2010). As the
contact zone between the plant and the environment, cuticle has
been well-characterized for its multiple roles in the regulation of
gas exchange, epidermal permeability, and non-stomatal water
loss (Sieber et al., 2000). So, it is not surprising that dcr mutants
show increased water loss and increased sensitivity to drought
conditions (Panikashvili et al., 2009). Besides, EMB506 and
CLPR2 genes are associated with chloroplast and plant growth
(Despres et al., 2001; Rudella et al., 2006). The lack of CLPR2
gene causes leaf albinism and undoubtedly affects photosynthetic
efficiency and crop yield (Kim et al., 2009). For RSWD at
the dehydrated growth condition, YIP4B gene represented by
chr1H_64014764 SNP was identified. In Arabidopsis thaliana,
YIP4B affects root and hypocotyl growth through elongation
rather than cell division (Gendre et al., 2013). Two genes located
on Chr3H were identified for TGW trait. Among them, GLYK
catalyzes the termination of the C2 cycle in photosynthesis, which
is an indispensable auxiliary metabolic pathway for the C3 cycle
of photosynthesis. The presence of this gene ensures the normal
growth of terrestrial plants in an oxygen-containing atmosphere
and avoids photoinhibition (Boldt et al., 2005). As iron sensors,
BTS gene plays a vital role in modulating iron homeostasis
(Zhang et al., 2015).

The mutation of these loci under drought conditions and
the resulting phenotypic changes undisputedly gives us huge
inspiration. Further development of these SNPs and genes will
provide new insights into improving crop phenotypic traits
and make plants develop in an environment-adapted direction.
For instance, drought-tolerant, higher-yielding plants could be
created by genetically modifying these loci. These findings will
simplify the tedious process of hybridization and culture, and
turn to use molecular methods for seedling breeding, which will
reduce our experimental time greatly. What is more exciting is
that it also provides direction for drought-tolerance selection of
other economic crops besides hulless barley.

In summary, we used 5,532,468 SNPmarkers from 269 hulless
barley lines to analyze the association between phenotypic values
and genotypes of drought-tolerance traits in this study. The
SNP markers association with spike traits (chr7H_102929775,
chr7H_102929728, chr1H_512690373, and chr1H_512690373,
chr1H_349621827, chr1H_349622062, chr2H_39562071,
chr2H_47246481, chr2H_47623192, chr2H_47623303,
chr2H_48148956, chr2H_48534579, chr2H_48534763,
chr2H_48796138, chr2H_496935399, chr2H_496935424,
chr2H_54436239, chr2H_54436346, chr2H_55411310,
chr2H_55768675, chr2H_57397060, chr2H_57539586,
chr2H_62893696, chr2H_64170225, chr7H_149587366,
chr7H_158720411, chr7H_621337028, chr3H_152206655, and
chr5H_250095923), RSWD trait (chr1H_64014764), and TGW
trait (chr3H_482958549, chr3H_489630701) were identified.
Under drought conditions, the mutation of these SNPs loci
possibly lead to phenotypic changes and improve the adaptation
of hulless barley to drought environment. In conclusion, the
SNPs identified in this study can be used in drought-tolerance
gene analysis, and can provide valuable information for further
improvement of crop yield, quality, and adaptability.
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