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Isoetes is a famous living fossil that plays a significant role in the evolutionary 

studies of the plant kingdom. To explore the adaptive evolution of the 

ancient genus Isoetes from China, we  focused on Isoetes yunguiensis 

(Q.F. Wang and W.C. Taylor), I. shangrilaensis (X. Li, Y.Q. Huang, X.K. Dai & 

X. Liu), I. taiwanensis (DeVol), I. sinensis (T.C. Palmer), I. hypsophila_GHC 

(Handel-Mazzetti), and I. hypsophila_HZS in this study. We  sequenced, 

assembled, and annotated six individuals’ chloroplast genomes and 

transcriptomes, and performed a series of analyses to investigate their 

chloroplast genome structures, RNA editing events, and adaptive evolution. 

The six chloroplast genomes of Isoetes exhibited a typical quadripartite 

structure with conserved genome sequence and structure. Comparative 

analyses of Isoetes species demonstrated that the gene organization, 

genome size, and GC contents of the chloroplast genome are highly 

conserved across the genus. Besides, our positive selection analyses 

suggested that one positively selected gene was statistically supported 

in Isoetes chloroplast genomes using the likelihood ratio test (LRT) 

based on branch-site models. Moreover, we  detected positive selection 

signals using transcriptome data, suggesting that nuclear-encoded genes 

involved in the adaption of Isoetes species to the extreme environment 

of the Qinghai-Tibetan Plateau (QTP). In addition, we  identified 291–

579 RNA editing sites in the chloroplast genomes of six Isoetes based 

on transcriptome data, well above the average of angiosperms. RNA 

editing in protein-coding transcripts results from amino acid changes 

to increase their hydrophobicity and conservation in Isoetes, which may 

help proteins form functional three-dimensional structure. Overall, the 

results of this study provide comprehensive transcriptome and chloroplast 

genome resources and contribute to a better understanding of adaptive 

evolutionary and molecular biology in Isoetes.
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Introduction

Lycopsids, the sister of the remaining vascular plants and an 
important bridge between non-vascular bryophytes and vascular 
plants, is a key group in evolution (Pryer et  al., 2001), but it 
currently includes only three major lineages (Lycopodiaceae, 
Isoetaceae, and Selaginellaceae). These groups were widely 
distributed over the Carboniferous, being the dominant plants on 
earth (DiMichele et  al., 2001). It was not until the end of the 
Carboniferous that these groups began to diminish due to 
dramatic changes in climate and environment (Liu et al., 2005). 
Isoetes is an ancient heterosporous lycopsids that occupies a 
unique position in plant evolution and there are ~200 extant 
species (Pigg, 1992). Phylogenetic analyses show that this genus is 
one of the earliest basal vascular plants, which can date back to the 
Devonian (Pigg, 2001; Pryer et al., 2001). The modern distribution 
of Isoetes is influenced by geographic variation (Liu et al., 2004), 
and they grow in a variety of habitats, including seasonal pools, 
intermittent streams, and high-altitude wetlands (Pfeiffer, 1922; 
Taylor and Hickey, 1992). To date, six Isoetes species have been 
reported in China: I. yunguiensis (Qing-Feng et  al., 2002), 
I. hypsophila, I. shangrilaensis (Li et  al., 2019), I. taiwanensis 
(DeVol, 1972), I. sinensis (Palmer, 1927), and I. orientalis (Hong 
et al., 2005). Species of the genus Isoetes are widely distributed in 
China, about 100–4,300 m above the sea level. However, it does 
not fit the hypothesis that the distribution of polyploids is more 
likely at high altitudes (Liu et al., 2004). I. hypsophila (2n = 22) 
inhabits altitudes above 4,000 m on the QTP, which is the 
youngest, largest, and highest plateau in the world, while I. sinensis 
(4n = 44) inhabits low-altitude environments in the Middle and 
Lower Yangtze Plain (MYP; Xing et al., 2002; Liu et al., 2004).

The QTP is characterized by low temperature, low oxygen, 
and strong radiation, which offers a unique extreme environment 
for studying adaptive evolution (Qiao et al., 2016a,b). Although 
the adaptive evolution of QTP has been studied previously in 
animals (Hao et al., 2019) and plants (Zhang et al., 2019; Guo 
et al., 2020), these studies are far from sufficient because different 
organisms adapt to high altitudes through multiple genetic routes 
(Hao et al., 2019). Notably, hitherto, no study of adaptive evolution 
has been conducted on Isoetes based on combined transcriptome 
and chloroplast genome analysis.

Chloroplasts are photosynthetic organelles that play an 
irreplaceable role in plant growth and development (Liu et  al., 
2012). Most chloroplast genomes have a circular structure ranging 
from 110 to 190 kb in size and consist of a relatively conserved 
quadripartite structure, including two Inverted Repeat (IR) regions, 
a Small Single Copy (SSC), and a Large Single Copy (LSC) region 
(Palmer, 1985; Green, 2011; Yu et al., 2019). Despite the chloroplast 
genome being relatively conservative in gene content, structure, and 
gene order (Shahzadi et al., 2020; Yu et al., 2021), numerous early 
evolutionary modifying mutational events frequently occur in  
the chloroplast genome, including inversions, contractions, 
substitutions, gene loss, duplications, and pseudogenes (Raubeson 
and Jansen, 1992a,b; Henriquez et al., 2020; Shahzadi et al., 2020). 

As the chloroplast is the center of photosynthesis, the study of the 
chloroplast genome is important for discovering the mechanisms 
of plant photosynthesis.

RNA editing is a post-transcriptional modification that 
changes nucleotide sequences of RNA by nucleotide insertions/
deletions or transitions (Takenaka et al., 2013), this phenomenon 
occurs in different regions of the chloroplast genome such as 
protein-coding regions, introns, and tRNAs (Schallenberg-
Rüdinger and Knoop, 2016; Stefan, 2016). Although RNA editing 
is not limited to protein-coding regions, it may play a fundamental 
role in these regions, potentially affecting species phenotype and 
evolution by maintaining the basic functions of genes. In protein-
coding genes, it generally implies generating start/stop codons, 
restoring codons for amino acids, or removing internal stop 
codons (Schallenberg-Rüdinger and Knoop, 2016). In other 
regions, RNA editing performs different functions; for example, 
in tRNA, the processing of precursor RNA molecules may require 
editing, while in introns, editing events appear to be required for 
efficient splicing in some cases (Binder et al., 1994). RNA editing 
is considered to be  an indirect repair mechanism for the 
correction of DNA mutations on the RNA level by converting 
specific cytidine to uridine (C-to-U) or uridine to cytidine 
(U-to-C; Chateigner-Boutin and Small, 2011; Ichinose and 
Sugita, 2016). In plants, the most common type of RNA editing 
in the chloroplast genome is C-to-U editing. In contrast, U-to-C 
RNA editing is present abundantly in hornworts (Kugita et al., 
2003), and ferns (Wolf et al., 2004; Guo et al., 2015), but not in 
seed plants (Tillich et  al., 2006). The Selaginella chloroplast 
genome has a particularly high number of C-to-U editing events, 
but no U-to-C editing (Hecht et al., 2011; Oldenkott et al., 2014). 
As a close relative of Selaginella, the research on the chloroplast 
genome of Isoetes is still limited to the phylogenetic analysis 
(Schafran et al., 2018; Wood et al., 2020; Pereira et al., 2021b). In 
addition, the research on RNA editing sites is limited to 
prediction using the PREPACT tool (Oldenkott et al., 2014), and 
lacks transcriptome data for verification.

In this study, we sequenced and compared the transcriptomes 
and chloroplast genomes of the six individuals (five species) which 
are distributed at an altitude between 100 and 4,300 m above sea 
level in China. Based on the generated dataset, we analyzed a total 
of six individuals’ chloroplast genomes and transcriptomes of 
Isoetes with the aim of (i) evaluating the structural features of the 
chloroplast genome, (ii) identifying RNA editing sites in chloroplast 
genomes of six individuals based on RNA-Seq data, and (iii) 
studying the genetic mechanism of its adaptation to high altitude.

Materials and methods

Sampling, DNA/RNA extraction, and 
sequencing

Plants were harvested from type localities whenever 
possible in China (Supplementary Table S1). Then, 
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we  collected the leaves of I. yunguiensis, I. shangrilaensis, 
I. taiwanensis, I. sinensis, and I. hypsophila, washed them with 
distilled water, fixed them in RNAlater solution (Takara, 
Dalian, China) immediately, and stored them in a −80°C 
freezer for DNA and RNA extraction. DNA quality and DNA 
concentration were measured on a NanoDrop  2000 
(Supplementary Table S2).

We sequenced the transcriptomes and chloroplast 
genomes of the six individuals. Total genomic DNA was 
extracted using an extract Plant DNA kit (TIANGEN, China), 
while total RNA was isolated using the RNAiso Plus kit 
(TaKaRa, Dalian, China). Afterward, a paired-end library 
with an insert size of 350 bp was constructed using the Truseq 
Nano DNA HT Sample Prep Kit (Illumina, United States), 
and the RNA-sequencing library was generated using the 
VAHTS mRNA-seq v2 Library Prep Kit for Illumina® 
(Vazyme, NR601).

Chloroplast genome and transcriptome 
de novo assembly and annotation

Raw data were processed by removing linker sequences and 
removing low-quality reads at the Q20 cutoff, and subsequent 
analyses were based on these filtered high-quality sequences. 
The de novo assembly of the chloroplast genome was carried out 
using GetOrganelle with parameter settings as follows: ‘-R 15 -k 
21,45,65,85,105 -F embplant_pt’ (Jin et  al., 2020). Then, the 
wrong bases of the organelle genomes were corrected using 
BWA (Li and Durbin, 2010) and Pilon with default parameters. 
The chloroplast genome annotations were performed in GeSeq 
(Tillich et al., 2017). The tRNA genes were further verified using 
the tRNAscan-SE program (Schattner et al., 2005). We used 
Geneious (Kearse et  al., 2012) to validate the annotated six 
chloroplast genomes by comparison with reference chloroplast 
genomes of Isoetes nuttallii, and Isoetes cangae (NCBI accession 
numbers: NC_038073, MG019394). Finally, the resulting 
chloroplast genome maps were drawn with Chloroplot (Zheng 
et al., 2020).

We assembled the transcriptomes by de novo assembly of 
high-quality RNA-Seq data using Trinity (Grabherr et al., 2011), 
followed by splicing of Trinity-obtained contigs into transcripts, 
after which only the longest transcripts in each cluster were 
selected as unigenes for subsequent analysis.

Comparative genome analysis

Comparative genomics and visualization of six Isoetes 
chloroplast genomes were performed using mVISTA software 
(Frazer et  al., 2004) with annotations of I. taiwanensis as a 
reference. The genes on the IR, SSC, and LSC boundaries were 
visualized using the tool IRscope (Amiryousefi et al., 2018) based 
on the annotation information.

Identification of RNA editing sites

Geneious (Kearse et al., 2012) was used to map the RNA reads 
from each individual to their chloroplast genomes. Variants with 
<5× read depth and <2.5% of RNA reads mapped to a given 
fragment were excluded to address possible sequencing errors. 
RNA editing efficiency was calculated by dividing the edited reads 
by the total mapped reads.

Phylogenetic analysis

To determine the phylogenetic relationships between Isoetes 
species, the CDS of chloroplast genome sequences and the 
transcriptome data were used to construct trees. For the 
phylogenetic tree constructed from chloroplast genome sequences, 
72 protein-coding genes shared by 34 species were extracted. In 
addition, for the genes in the IR region, we only extracted one 
copy of them. The 28 completed chloroplast genome sequences 
were downloaded from the NCBI Organelle Genome Resource 
database. GenBank information for all of the chloroplast genomes 
used for the present phylogenetic analyses is found in 
Supplementary Table S3. For the phylogenetic tree constructed 
from transcriptome data, we  first aligned the amino acid 
sequences of each single-copy gene orthologous using muscle with 
default parameters (Edgar, 2004). The alignment file of each 
orthologous gene was then concatenated into a super gene 
alignment, which was further trimmed to remove poorly aligned 
regions using trimal (Capella-Gutiérrez et  al., 2009). Among 
them, the genome data of the two species Selaginella moellendorffii 
(Banks et al., 2011) and Isoetes taiwanensis (Wickell et al., 2021) 
have been published, so the genome protein file was used in the 
construction of the tree. Selaginella moellendorffii was set as 
the outgroup.

Maximum likelihood (ML) analysis was performed using the 
RAxML v 8.0.5 software package (Stamatakis, 2014) with 1,000 
non-parametric bootstrap replicates. Bayesian Inference (BI) 
phylogenies were inferred using MrBayes 3.2.6(Ronquist et al., 
2012) under JC + I + G model (2 parallel runs, 2,000,000 
generations), in which the initial 25% of sampled data are 
discarded as burn-in.

Orthologous gene identification and 
positive selection analysis

We used the branch-site model in the PAML (Yang, 2007) 
CODEML program to identify positively selected genes in the six 
Isoetes chloroplast genomes collected from China. The null model 
refers to the assumption that all branches evolve at the same rate, 
and the alternative model differs from the null model by allowing 
the foreground branches to evolve at different rates. In addition, 
the likelihood ratio test (LRT; Nielsen and Yang, 1998) was used 
to evaluate the statistical significance of each pair of nested 
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models. We set I. hypsophila collected from high altitudes as the 
foreground branch in the branch-site model and others as the 
background branch.

The Reciprocal best hit (RBH) algorithm is the most 
commonly used algorithm based on the Basic Local Alignment 
Search Tool (BLAST; Altschul et  al., 1997), which defines 
orthologous genes as sequences of a pair of genes from two 
genomes that are the best hits to each other (Moreno-Hagelsieb 
and Latimer, 2008). Next, we identified positively selected genes 
in the six transcriptomes based on orthologous genes by using the 
CODEML program’s branch-site model, where the foreground 
branch was set identically to the chloroplast genome. Only 
orthologous genes with p < 0.05 were considered positively 
selected genes; otherwise, orthologous genes were considered 
non-positively selected genes. KEGG enrichment analysis was 
performed using the OmicShare tools. These genes were annotated 
using eggNOG-mapper (Huerta-Cepas et  al., 2017) in the 
eggNOG database.

Results

Transcriptome features and orthologous 
genes

Illumina pair-end sequencing produced 613,197,232 raw 
reads for six individuals, and 608,937,022 clean reads were 
obtained after removing low-quality reads and ambiguous 
nucleotides (Supplementary Table S4). Q30 and Q20 of clean 
reads were above 93% and 97%, respectively, which indicated that 
these data could be used in subsequent analysis. Based on Trinity 
assembly, extraction of the longest transcript yielded a total of 
457,357 unigenes, and 2,798 single-copy orthologous genes were 
identified using RBH.

Chloroplast genome features

The complete chloroplast genomes of the six Isoetes species 
ranged from 145,479 bp (I. shangrilaensis) to 146,380 bp 
(I. hypsophila_GHC), with 38%–38.1% GC content, which were 
composed of four regions, including LSC (91,740–91,880 bp) 
and SSC (27,218–27,272 bp) region separated by two IRs 
(13,207–13,691 bp; Figure 1; Table 1). A total of 135 genes were 
annotated from Isoetes chloroplast genome: 84 protein-coding 
genes, 8 rRNA genes, 36 tRNA genes, and 7 pseudogenes 
(Table  2). Among these genes, 24 were duplicated in the IR 
regions: 6 protein-coding genes, 10 tRNA, and 8 rRNA genes. 
There were 18 genes with introns, of which 16 had one intron, 
and two genes (clpP, ycf3) had two introns. Internal stop codons 
were observed in the CDS of 16 genes in Isoetes, except for 
I. hypsophila which rps3 without internal stop codons. In 
addition, except for rpoC1 and rpoC2, all genes contained a 
single internal stop codon. The rpoC2 gene revealed three 

internal stop codons and observed two premature stop codons 
in rpoC1.

Comparative genome analysis

To investigate the extent of divergence in the sequences of 
the chloroplast genomes of the genus Isoetes, the six Isoetes 
chloroplast genome sequences were aligned by using the 
mVISTA, with the I. taiwanensis annotation as a reference. 
The results of sequence alignment revealed intragenus 
sequence differences in the chloroplast genome, and the 
results showed that the highly differentiated regions were 
mainly located in intergenic regions, such as trnR-trnN, and 
there were also variant regions in the coding regions such as 
rpoC2, rpoB, ycf1, and ycf2 (Figure 2). Overall, the high degree 
of gene order conservation was detected in the six chloroplast 
genomes, indicating evolutionary conservation at the 
genome scale.

A comprehensive comparison of the IR-SSC and IR-LSC 
boundaries of the chloroplast genomes of the six Isoetes individuals 
is presented in Figure 3. The genes ndhB, rps7, ycf2, and rpl23 are 
located at the junction of the LSC/IRa, IRa/SSC, SSC/Irb, and IRb/
LSC borders, respectively. The ycf2 gene is located at the junction 
of the IRb/SSC and the border has moved toward the SSC region 
because there are 30 bp sequences situated at SSC region and the 
trnI gene is located in the LSC, 37–60 bp from the IRa/LSC 
boundary. Overall, the chloroplast genomic structure of the six 
Isoetes individual is concordant, while differences in the lengths of 
four regions lead to six genome sizes ranging from 145,479 to 
146,380 bp.

RNA editing analysis

To identify RNA editing sites, all the transcriptome reads 
were mapped to the chloroplast genomes using Geneious 
software. The type, position, and editing efficiency of the 
editing sites are presented in Supplementary Table S5. The RNA 
editing analyses revealed the presence of 291 
(I. hypsophila_GHC) to 579 (I. taiwanensis) RNA editing sites 
in six individuals. All editing types appearing in internal stop 
codons are U-to-C editing, which results in codon changes 
from stop codons (UAA, UGA) to glutamine (CAA) or 
arginine (CGA).

We found that the majority (nearly 78%) of edits in coding 
regions resulted in non-synonymous amino acid changes in six 
Isoetes individuals, and <5% of edits were synonymous rather 
than coding regions (UTRs and introns) and tRNAs have also 
found some RNA editing sites (Figure  4A). In addition, 
we investigated the effect of RNA editing on the hydrophobicity 
of the encoded amino acid, with the vast majority of 
non-synonymous RNA editing converting codons for hydrophilic 
amino acids to codons for hydrophobicity (Figure 4B).
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Phylogenetic relationships and positive 
selection analysis

In order to reconstruct a phylogeny for further selection 
analyses, two phylogenetic trees were constructed using 
transcriptome data and the CDS from the chloroplast 
genomes, respectively. Although the long evolutionary 
history of Isoetes, with its split from the closest extant 
relatives in the Devonian, is a confounding factor in 
establishing phylogenetic relationships in this genus, our 
chloroplast-based phylogeny analysis may contribute to 

understanding the diversification of Isoetes and provide a 
highly robust framework for investigating the evolutionary 
history of the genus. The backbone of the phylogenetic 
reconstruction and most of the clades agree with previous 
studies by Larsén and Rydin (2016) and Pereira et al. (2017). 
For species from China, we  found all phylogenetic trees 
exhibited similar clustering, which showed two different 
evolutionary branches. The resulting phylogenetic trees 
demonstrated that alpine species I. hypsophila were located 
on one branch, whereas other species were located on another 
branch (Figure 5).

FIGURE 1

Chloroplast genome maps of Isoetes species. Genes belonging to different functional groups are color-coded. The darker grey in the inner circle 
shows the GC content, while the lighter grey shows the AT content.
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TABLE 2 Gene annotation of the Isoetes chloroplast genomes.

Category Group Genes

Photosynthesis related genes Rubisco rbcL

Photosystem I psaA, psaB, psaC, psaI, psaJ, psaM

Photosystem II psbA, psbB, psbT, psbK, psbI, psbH, psbM, psbN, psbD, psbC, psbZ, psbJ, psbL, psbE, psbF

ATP synthase atpA, atpB, atpE, atpFa, atpH, atpIe

Cytochrome b/f complex petA, petBa, petDa, petN, petL, petGe

Cytochrome csynthesis ccsAe

Complex I of chloroplasts

Chlorophyll biosynthesis

ndhAa, ndhBa,d (×2), ndhC, ndhDe, ndhE, ndhFe, ndhHe, ndhG, ndhJe, ndhK, ndhI

chlB, chlL, chlN

Transcription and translation related 

genes

Transcription rpoAe, rpoBe, rpoC2e, rpoC1a,e

Ribosomal proteins rps2, rps3e, rps4, rps7c (×2), rps8, rps11, rps12a,c (×2), rps14, rps15, rps16d, rps18, rps19, 

rpl2a,d, rpl14e, rpl16a, rpl20, rpl21e, rpl22, rpl23, rpl32, rpl33, rpl36

Translation initiation factor infAd

RNA genes Ribosomal RNA rrn16Sc (×2), rrn23Sc (×2), rrn4.5c (×2), rrn5c (×2)

Transfer RNA trnH-GUG, trnK-UUUa, trnQ-UUG, trnS-GCU, trnS-UGA, trnS-GGA, trnG-GCC, trnG-

UCCa, trnR-UCU, trnR-ACGc (×2), trnR-CCG, trnC-GCA, trnD-GUC, trnY-GUA, trnE-

UUC, trnT-UGU, trnT-GGU, trnfM-CAU, trnL-CAA, trnL-UAAa, trnL-UAG, trnF-GAA, 

trnV-GACc (×2), trnV-UACa, trnM-CAU, trnW-CCA, trnP-UGG, trnP-GGG, trnI-CAU, 

trnI-GAUa,c (×2), trnA-UGCa,c (×2), trnN-GUUc (×2)

Other genes RNA processing matKe

Carbon metabolism cemA

Fatty acid synthesis accDd

Proteolysis

Elongation factor Tu

clpPb

tufAd

Conserved ORFs ycf1, ycf2c,d,e (×2), ycf3b, ycf4, ycf12, ycf66a

aGenes with one intron. 
bGenes with two introns. 
cTwo gene copies in IRs. 
dPseudogene. 
eGenes with internal stop codon.

For the chloroplast genome, a total number of 86 common 
genes were involved in the positive selection analysis, of which 16 
genes with internal stop codons were corrected back to normal 
coding sequences before analysis (Supplementary Table S6). The 

branch-site model detected only one gene (rps3) containing sites 
that had been subject to positive selection (Table 3). In addition, 
a total of 2,798 single-copy orthologs were identified in 
transcriptome data among the six individuals. Of these genes, 46 

TABLE 1 The basic characteristics of the chloroplast genomes of six Isoetes individuals.

Features I. sinensis I. taiwanensis I. yunguiensis I. shangrilaensis I. hypsophila_HZS I. hypsophila_GHC

Genome size (bp) 145,506 145,512 145,510 145,479 146,359 146,380

LSC length (bp) 91,866 91,880 91,881 91,830 91,740 91,798

IR length (bp) 13,207 13,207 13,207 13,209 13,691 13,655

SSC length (bp) 27,226 27,218 27,215 27,231 27,237 27,272

Number of genes 135 135 135 135 135 135

Protein-coding genes 84 84 84 84 84 84

tRNA genes 36 36 36 36 36 36

rRNA genes 8 8 8 8 8 8

Pseudogene 7 7 7 7 7 7

Total GC content (%) 38.0 38.0 38.0 38.0 38.1 38.1

LSC 36.5 36.5 36.5 36.5 36.6 36.5

IR 48.0 48.0 48.0 48.0 47.8 47.8

SSC 33.4 33.4 33.4 33.3 33.5 33.5
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positively selected genes (PSGs) were annotated and enriched on 
the KEGG pathway (Supplementary Table S7). The top 20 clusters 
of the KEGG functional analyses with their representative 
enriched pathway are shown in Figure 6. The pathway “carbon 
fixation in photosynthetic organisms” was enriched, in which 
three PSGs encode fructose-1,6-bisphosphatase (FBP), ribulose-
phosphate 3-epimerase (RPE), and malate dehydrogenase (MDH).

Discussion

Chloroplast genome features

The whole chloroplast genome sequences newly obtained 
herein for six individuals are not only very similar in size 
(145,479–146,380 bp; Table 1), but also in overall structure, 
gene order, and content (Figure 2). These findings are consistent 
with a previous study on Isoetes, which showed that the 
chloroplast sequences and gene arrangements were conserved 
(Pereira et al., 2021a), Although the sequence is conserved, 

there are still some features worth discussing. Both large-scale 
studies (Shaw et al., 2014) and specific case studies (Ye et al., 
2018; Alwadani et  al., 2019) have demonstrated higher 
differences in non-coding regions, some of the non-coding 
sequences we  detected had hypervariable regions, such as 
psbB-clpP, psbJ-petA, trnK-rps16, rpoB-trnC, and rps12-
trnV. Furthermore, we found greater differences in chloroplast 
genome sequences between the high-altitude species 
I. hypsophila and other Isoetes species, such as rpoC2 and rpoB, 
suggesting that altitude may drive genetic differentiation, as 
evidenced by other studies (Liu et  al., 2020). These newly 
discovered regions can be  used for subsequent species 
identification and provide additional phylogenetic information.

In terms of the GC content of the six Isoetes, the total GC 
content of the complete chloroplast genome is ~38%, similar to 
the previously published (Pereira et al., 2021a). In general, the 
effect of GC content on chloroplast genome stability is more 
pronounced because GC base pairs and AT base pairs are 
thermodynamically different in stability (Yang et  al., 2021). 
Among the LSC, SSC, and IR regions, the IR regions have the 

FIGURE 2

Comparison of the borders of LSC, SSC, and IR regions among six Isoetes chloroplast genomes.
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FIGURE 3

Global alignment of chloroplast genomes of six Isoetes, with the I. taiwanensis genome as the reference. Gray arrows indicate the direction of 
gene transcription. Red blocks indicate conserved non-coding sequences (CNS), and blue blocks indicate conserved genes. The y-axis represents 
the percent identity within 50%–100%.

highest GC content, followed by the LSC and SSC regions. The IR 
region has the highest GC content among the four regions, 
probably because of the high G/C content of rRNAs in this region.

RNA editing sites

In plants, RNA editing plays an irreplaceable role in growth 
and development. RNA editing has been observed in the 
chloroplasts of extant descendants of early land plants other 
than liverworts and mosses. In angiosperm chloroplasts, RNA 
editing is mostly restricted to a C-to-U conversion, and the 
conversion occurs at about 30 different positions (Yu et  al., 
2020), whereas the range of variation in RNA-editing sites is 
even more remarkable in hornworts and fern chloroplasts. It is 
rare in the moss Physcomitrella patens, which holds only 11 
C-to-U edit sites (Rüdinger et  al., 2009), and is completely 
absent from the liverwort Marchantia polymorpha (Rüdinger 
et al., 2008), whereas it is most abundant in hornworts and fern, 
with over 300 different positions (Stern et  al., 2010). The 
reduced number of PPR genes and absence of RNA editing in 
marchantiid liverworts are most probably secondary losses, as 
the organellar RNA editing and plant-specific extensions of PPR 
genes were also found in jungermanniid liverworts (Rüdinger 
et al., 2008; Zhang et al., 2020). Our analyses revealed obvious 
differences in the number of RNA editing sites in the chloroplast 
genomes of the genus Isoetes, that is, the range of number from 
291  in I. hypsophila_GHC to 579  in I. taiwanensis 
(Supplementary Table S5). Interestingly, we found that there 

were large differences in the number of RNA editing sites of the 
same species in different populations, including 291 RNA 
editing sites in I. hypsophila_GHC, and 354 RNA editing sites 
in I. hypsophila_HZS. This difference also exists in the RNA 
editing of the mitochondria of the three ecotypes of Arabidopsis 
thaliana (Zehrmann et al., 2008). This situation may suggest 
that the environment has a greater influence on the RNA editing 
site, and subsequent studies can focus on this aspect. The 
pentatricopeptide repeat (PPR) is a family of RNA binding 
proteins involved in specific RNA processing events such as 
RNA editing, translation initiation, and transcript processing 
(Ichinose and Sugita, 2018). Previous studies have shown that 
chloroplast RNA editing abundance is positively correlated with 
the PPR gene family (Rudinger et al., 2012; Xu et al., 2018). 
Taken together, these species with a large number of RNA 
editing sites are early landing plants. Through RNA editing, PPR 
proteins can act as “repair” factors, alleviating DNA damage 
caused by increased UV exposure during adaptive landing 
(Zhang et al., 2020).

A pseudogene is rendered non-functional through the 
introduction of stop codons predominantly in the chloroplast 
genome. Conversely, in mosses and ferns, genes that contain 
internal stop codons can still make proteins function properly 
because U-to-C RNA editing can convert translation internal 
stop codons (such as the UAA termination signal) into CAA 
triplet encoding the amino acid glycine. In addition, there are 
some special cases, such as in Selaginellaceae, because the 
absence of U-to-C RNA editing cannot eliminate the internal 
stop codons, so some genes become nonfunctional pseudogenes 

https://doi.org/10.3389/fpls.2022.924559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2022.924559

Frontiers in Plant Science 09 frontiersin.org

(Gerke et  al., 2020). However, Isoetes, which is the closest 
relative of Selaginellaceae, can convert internal stop codons to 
functional amino acids. This indicates that these two species 
that diverged from a common Lycopsida ancestor may evolve 
different mechanisms to achieve the same ends.

For each species, roughly 78% of the RNA-editing events did 
not involve a non-synonymous amino acid change in start or 
stop codons (Figure  4A). Furthermore, we  found that the 
proportion of Isoetes RNA editing sites in non-coding regions 
and tRNAs are similar (Figure 4A), while we observed that RNA 
editing greatly increased the proportion of hydrophobic amino 
acids (Figure  4B), and the hydrophobicity has long been 
considered as one of the primary drivers of protein folding and 

protein function (Moelbert et al., 2004; Li et al., 2016). Therefore, 
we speculate that the increase in the hydrophobicity due to a 
large number of RNA editing may facilitate the translation of 
mRNA into polypeptides with folded structures at the 
appropriate locations, which are often necessary for proteins to 
form functional three-dimensional (3D) structures (Yura and 
Go, 2008).

Adaptive evolution

With the recent development of genome technology, the 
investigation of genome-wide molecular mechanisms of 

A

B

FIGURE 4

(A) Percentage of specific sequence modifications produced by RNA editing in sampled individuals. Histograms represent 100% of RNA edits 
detected. (B) Comparison of edit sites that lead to a change in hydrophobicity/hydrophilicity of the resulting amino acid via non-synonymous RNA 
editing.
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A
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FIGURE 5

(A) Phylogenetic tree constructed using protein-coding regions of the chloroplast genomes. (B) Phylogenetic tree constructed using 
transcriptome data.

high-altitude adaptation has attracted great attention in the 
last few years (Chen et  al., 2019; Hao et  al., 2019; Zhang 
et al., 2021). Even though whole nuclear genome sequencing 
allows investigation of the impact of selection events at the 
genome-wide level, it is expensive and not easily available. 
On the contrary, transcriptome sequencing has been 
described as a powerful method for genome-wide analysis of 
high-altitude adaptation and is cheaper and easier available 

than the nuclear genome. Additionally, QTP is the highest 
plateau in the world, with an extreme environment of 
hypoxia, low temperature, and strong solar radiation (Mao 
et al., 2021). Solar radiation is one of the main stresses faced 
by alpine plants, and chloroplasts, as the site for 
photosynthesis, may have acquired adaptive strategies to 
strong solar radiation (Yoshida et  al., 2019). Thus, both 
transcriptome and chloroplast genomes represent a great 
system to study the footprint of alpine plants in adaptation 
to QTP. Nevertheless, previous studies have either focused 
on transcriptome or chloroplast genome to study altitude 
adaptation, while the feasibility of integrating transcriptome 
and chloroplast genome to uncover the adaptive mechanisms 
to QTP remains less explored. Thus, in this study, 
we integrated the chloroplast genome and transcriptome data 

TABLE 3 Positively selected genes and sites detected in the 
chloroplast genomes of Isoetes species.

Gene name Positive sites p-value

rps3 96S;123Y 0.001423015
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to explore the molecular mechanism of the adaptation of 
alpine plants to the high altitude of QTP, and we expect our 
research can provide a reference for future genome-wide 
studies on the adaptive evolution of alpine plants on the QTP.

Alpine species on the QTP have to evolve to have a high 
ability to adapt to extremely harsh environments (Thompson 
et al., 2000; Norsang et al., 2011). Intense UV radiation is a 
major environmental stressors for plants, and recent studies 
have revealed candidate genes for plateau adaptability, mainly 
associated with UV radiation in a variety of plants (Mao et al., 
2021). We  anticipated that some genes in the chloroplast 
genome of I. hypsophila might have undergone adaptive 
evolution to adapt to the alpine environment, although overall 
genome size, structure, and gene number have changed 
slightly. Using I. hypsophila as the foreground, the branch-site 
model detected rps3 as the possible positively selected gene 
(PSG). The rps3 (Ribosomal protein S3) gene encodes 
ribosomal small subunit protein 3, which belongs to the 
ribosomal protein S3P family and is a part of the ribosomal 
40s subunit (Korovesi et al., 2018), and plays important roles 
in repairing damaged DNA and apoptosis (Dong et al., 2017; 
Kim et  al., 2018). The branch-site model detected two 
positively selected sites (96S,123Y) of rps3 in I. hypsophila, 
which were probably involved in the protection of I. hypsophila 
from strong UV radiation, drought, and other stressful 
environments in higher altitudes.

In addition, our study revealed many nuclear-encoded 
genes involved in high-altitude adaption and the genes may 
play an important role in the adaption to the high-altitude 
environment of QTP. Through the positive selection analysis 
of transcriptome data, a total of 46 positive selection genes 
were enriched in the KEGG pathway, and the “carbon fixation 

in photosynthetic organisms” pathway was significantly 
enriched (Figure 6), of which all three detected PSGs encode 
proteins with functions related to photosynthesis (NADP-
MDH, RPE, and FBP). In plants, the NADP-MDH is the key 
enzyme controlling the malate valve, which plays a role in the 
export of reducing equivalents in photosynthesizing 
chloroplasts (Vaseghi et al., 2018). The RPE is an enzyme in 
the chloroplast-localized oxidized pentose phosphate pathway 
that is essential for both the Calvin cycle and the reverse 
pentose phosphate pathway (Liu et al., 2015). The FBPase is a 
rate-limiting enzyme in the carbohydrate metabolism and the 
Calvin cycle, which plays a pivotal role in carbohydrate 
biosynthesis (Lee et al., 2008). A previous study reported that 
the increased cell growth rate and enhanced photosynthetic 
activity could be  achieved by increasing the levels of FBP 
aldolase in Anabaena (Ma et  al., 2007). Given that high 
elevations are characterized by high levels of UV radiation, 
which pose a serious challenge to plant photosynthesis and 
may lead to positive selection of the related genes (Li et al., 
2020; Moutinho et al., 2020), it is possible that these three 
PSGs were driven by natural selection in high elevation 
environments and may contribute to high-altitude adaptation 
in Isoetes species.
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