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The ELO family is involved in synthesizing very-long-chain fatty acids (VLCFAs) and

VLCFAs play a crucial role in plant development, protein transport, and disease

resistance, but the physiological function of the plant ELO family is largely unknown.

Further, while nitric oxide synthase (NOS)-like activity acts in various plant environmental

responses by modulating nitric oxide (NO) accumulation, how the NOS-like activity

is regulated in such different stress responses remains misty. Here, we report that

the yeast mutant 1elo3 is defective in H2O2-triggered cell apoptosis with decreased

NOS-like activity and NO accumulation, while its Arabidopsis homologous gene ELO2

(ELO HOMOLOG 2) could complement such defects in 1elo3. The expression of

this gene is enhanced and required in plant osmotic stress response because the T-

DNA insertion mutant elo2 is more sensitive to the stress than wild-type plants, and

ELO2 expression could rescue the sensitivity phenotype of elo2. In addition, osmotic

stress-promoted NOS-like activity and NO accumulation are significantly repressed in

elo2, while exogenous application of NO donors can rescue this sensitivity of elo2 in terms

of germination rate, fresh weight, chlorophyll content, and ion leakage. Furthermore,

stress-responsive gene expression, proline accumulation, and catalase activity are also

repressed in elo2 compared with the wild type under osmotic stress. In conclusion, our

study identifies ELO2 as a pivotal factor involved in plant osmotic stress response and

reveals its role in regulating NOS-like activity and NO accumulation.

Keywords: osmotic stress, ELO2, NOS-like activity, NO accumulation, H2O2-hydrogen peroxide

INTRODUCTION

Water availability, as an important environment factor, is tightly associated with plants’ growth
and survival (Wang et al., 2021). Drought, high salinity, and low temperature cause osmotic stress
by limiting water availability to plants, and severely affect agricultural production through the
suppression of germination, flowering, or senescence (Lozano-Juste et al., 2020; Zhang et al., 2020a;
Fu et al., 2021; Yuan et al., 2021). According to recent data, about 90% of arable land worldwide is
suffering from different kinds of abiotic stresses, and up to 70% of plants are facing the risk of yield
decrease as a result of these environmental stresses (Fancy et al., 2017). Thus, novel insights into
plant osmotic stress responses are in growing demand when we are facing current challenges in
agriculture and food production.
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As sessile growing organisms, plants have evolved diverse
strategies to survive the threats to their existence caused by
osmotic stress in continually changing circumstances, including
morphological adaptations by inhibiting the growth of shoots
and accelerating the development of roots, as well as adjusting
the transport of ions like the elevation of cytosolic Ca2+ and
metabolites such as the accumulation of abscisic acid (ABA)
in cellular level responses, gene expression, and so on (Zhu
et al., 1997; Xiong and Zhu, 2002; Fujita et al., 2011; Zhao
et al., 2016). Besides, plants also release signaling molecules to
initiate stress response as one of the protection strategies. Nitric
oxide (NO), an important concentration-dependent gaseous
compound, is reported as a vitally important molecule in many
biological and physiological systems in living organisms (Liu
et al., 2015; Zhao et al., 2015; Begara-Morales et al., 2018;
Wong et al., 2020; Cui et al., 2021). Since 1992, when NO was
named “Molecular of the Year” by the journal Science, there
has been a plethora of research on the profound effects of
NO on plant physiological processes such as germination, floral
transition, and environmental responses (Guo et al., 2003; He
et al., 2004; Shen et al., 2013; Zhao et al., 2015; Zhang et al.,
2018a; Cui et al., 2021). For example, drought could promote
NO production in maize, wheat, and barley, and exogenous
application of NO donor SNP (sodium nitroprusside) could
enhance drought tolerance by reducing water stress and inducing
stomatal closure, while suppressing NO accumulation severely
reducing plant drought stress tolerance, illustrating that NO is
important to plant drought stress response (Gan et al., 2015;
Majeed et al., 2020). NO is also promoted to a high level in salt-
stressed plants (Uchida et al., 2002; Liu et al., 2015; Li et al., 2018).
While decreasing NO in wild-type plants by L-NAME (Nω-nitro-
L-arginine-methylester), a NO synthase (NOS) inhibitor, and in
the noa1 mutant by mutating Nitric Oxide Associated 1 displays
more sensitivity to high salinity, overexpressing rat neuronal
NOS to increase NO accumulation notably enhances plant salt
stress tolerance (Zhao et al., 2007; Shi et al., 2012a; Xie et al., 2013;
Cai et al., 2015). As for osmotic stress, the supplement of SNP
could alleviate over-accumulated ROS (reactive oxygen species)-
caused oxidative damage as well as decrease the inhibition of
root growth, chlorophyll content, and proline accumulation in
osmotic stressed noa1 plants (Zhang et al., 2010). However,
reducing NO accumulation by application of L-NAME leads to
enhanced osmotic stress (Xing et al., 2004; Cao et al., 2019; Mohd
Amnan et al., 2021). These findings show that NO can be induced
when plants are subjected to various types of environmental
stresses. In addition, the demonstration of the involvement of
NOS-mediated NO synthesis in plant abiotic and biotic stress
responses represents the growing attention attached to the roles
of NOS-like activity in plant stress responses (Romero-Puertas
et al., 2004; Tossi et al., 2009; Zhang et al., 2010; Kong et al., 2012;
Cai et al., 2015). Nevertheless, little is known about how NOS-
like activity is modulated in plants. NO synthesis in these plant
stress responses is still waiting for further exploration (Foresi
et al., 2010; Santolini et al., 2017; Astier et al., 2018). In mammals,
three main NOS isoforms converting L-arginine to L-citrulline
and NO have been well-described with different localizations
and functions (Mayer and Hemmens, 1997; Wendehenne et al.,

2001; Stuehr and Haque, 2019). However, the gene(s) involved in
coding for NOS protein has yet to be identified in higher plants
as well as yeast. Recently, two plant factors, Sorting Nexin 1 and
WD40-REPEAT 5a, have been shown to affect NOS-like activity
in plant responses to salt and heavy metal stresses (Li et al., 2018;
Zhang et al., 2020b). But, whether and how NOS-like activity is
regulated in plant osmotic stress response is still unknown.

VLCFAs, as hydrocarbon chains containing more than 20
carbon atoms, are the precursors of different kinds of lipids
such as phospholipids and sphingolipids, and function in various
physiological processes (Bach et al., 2011; Wang et al., 2018;
Zhukov, 2018; Kim et al., 2021). Elo1, Elo2, and Elo3 are three
fatty acid elongases in yeast. While Elo1 participates in the
elongation of LCFAs (long-chain fatty acids), Elo2 and Elo3
take part in the elongation of LCFAs to VLCFAs (Toke and
Martin, 1996; Oh et al., 1997). The loss of function in ELO1
(1elo1) does not result in differences in fatty acid composition,
but the double mutant 1elo2 1elo3 is not viable in yeast,
indicating the essential roles of these elongase-mediated VLCFAs
in cell growth. In addition, Elo2 and Elo3 have crucial roles in
yeast lipotoxicity, heat stress, and salt stress responses (Tvrdik
et al., 2000; Randez-Gil et al., 2020; Zhu et al., 2020). In
mammals, seven fatty acid elongase genes (ELOVL1-7) have been
characterized and reported to be involved in several diseases such
as ichthyosis, stargardt syndrome, and hepatic steatosis (Kihara,
2012, 2016; Agbaga, 2016; Nie et al., 2021; Tanno et al., 2021). In
plants, four ELOs (ELO1-4) in Arabidopsis, homologs of yeast
Elo2, have been biochemically identified for VLCFA synthesis
(Nagano et al., 2019), but their physiological roles have not
been elucidated.

In this study, we find that Elo3 is a putative mediator
of NOS by screening yeast deletion mutants with changed
NOS-like activity under H2O2 treatment. We also show that
Arabidopsis ELO2 (ELOHOMOLOG 2), as the homolog of yeast
Elo3, functions in the modulation of osmotic stress-promoted
NO accumulation via plant NOS-like activity. While T-DNA
insertion mutant elo2 shows decreased osmotic stress tolerance
than the wild type, and ELO2 expression could rescue this
sensitivity phenotype of the mutant. Furthermore, elo2 exhibits
increased H2O2 accumulation and repressed stress-responsive
gene expression compared with the wild type under osmotic
stress. Taken together, ELO2, as a newly discovered factor,
functions in modulating NO accumulation through NOS-like
activity in osmotically stressed plants.

MATERIALS AND METHODS

Strains and H2O2 Treatment
The yeast Saccharomyces cerevisiae strains used in this article
including wild type strain BY4741 (MATα, his311, leu210,
met10, and ura310) and deletion mutant strain 1elo3
(YLR372W::kanMX4) were purchased from UROSCARF
(Frankfurt, Germany). The yeast was cultured in YPD medium
containing glucose (2%, m/v), yeast extract (1%, m/v), and
peptone (2%, m/v), pH 5.8. The cells were treated with 4mM
H2O2 for 30min at 28◦C for H2O2 treatment.
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Plants, Growth Conditions, and
Germination Rate Analysis
The Arabidopsis thaliana line elo2 (SALK_080633C, Col-0)
was obtained from Arashare (https://www.arashare.cn/index/)
and confirmed by PCR. The sterilized and washed seeds were
placed at 4◦C for 3 d. For germination rate analysis, about 100
seeds were planted on 1/2MS (Murashige and Skoog) medium
supplemented with 0, 200, 250, and 300mM mannitol at 23◦C
and 100mol m−2 s−1 illumination under 16 h light/8 h dark
conditions for 5 days, and those that penetrated the seed coat
were regarded as germinated seeds as described (Zhao et al.,
2020). The primers are listed in Supplementary Table 1.

Plasmid Construction and Transformation
For yeast pGAL::ELO2 1elo3 lines, the full-length ELO2
(AT3G06470) CDS was amplified and cloned into the pYES260
vector, then pYES260-AtELO2 was introduced into yeast mutant
1elo3. For Arabidopsis ELO2::ELO2 elo2 lines, the 2.6-kb
genomic sequence of ELO2, including 1 kb upstream of the start
codon, was amplified and cloned into the pCambia 1300 vector.
The construct was transformed into an elo2 mutant using the
floral-dip method (Clough and Bent, 1998). The primers are
listed in Supplementary Table 1.

Detection of NO and NOS-Like Activity
NO content was detected with the NO-specific fluorescent probe
DAF-FM DA (Beyotime, Haimen, China) as in our previous
report (Shi et al., 2012b; Cai et al., 2015). NOS-like activity
was assayed using a NOS assay kit based on DAF-FM DA
(Beyotime, Haimen, China). To detect the NOS-like activity of
plants, seedlings were frozen and groundwith liquid nitrogen and
resuspended in 1ml of prepared extraction buffer (50mM Tris–
HCl, pH 7.4, 1mM EDTA, 1mM dithiothreitol, 1mM leupeptin,
1mM pepstatin, and 1mM phenylmethylsulfonyl fluoride). After
centrifuging at 12,000 g for 15min at 4◦C, the supernatant was
used as the enzyme extract NOS-like activity was analyzed using
the NOS assay kit mentioned before.

Determination of L-Arginine Content in
Plants
L-arginine was extracted with cooled trichloroacetic acid (5%,
w/v) and analyzed based on the method described in the previous
report (Shi et al., 2013).

RT-qPCR Analysis
RNA extraction, first-strand cDNA synthesis, and RT-qPCR
were carried out according to our previous report (Fu
et al., 2021). ACTIN2 (AT3G18780) and UBQ10 (AT4G05320)
were used as internal controls. The primers are listed in
Supplementary Table 1.

Total Chlorophyll Content Assays
Total chlorophyll was extracted with 80% acetone (v/v). The
absorbance at light wavelengths of 603, 645, and 663 nm was
measured and total chlorophyll content was calculated with the
formula as previously reported (Zhang et al., 2020a).

Measurement of Proline, MDA, and Ion
Leakage Rate
The proline content was determined as reported (Zhang et al.,
2020a). In short, the proline was extracted in sulfosalicylic acids
(3%, m/v), then added to acetic acid and ninhydrin mixture
(1:1). After boiling for 30min, the absorbance of the supernatant
was measured at 520 nm. The MDA was assessed as reported
(Cai et al., 2015). The analysis of the ion leakage rate was
performed based on the amounts of electrolytes released from
plants before and after boiling in the de-ionized water. The
seedlings were placed in de-ionized water and shaken for 30min,
the electrolyte leakage 1 (I1) was measured. After a water
bath at 100◦C for 30min, then shaking for another 30min,
electrolyte leakage 2 (I2) was obtained. The ion leakage rate was
calculated as I1/I2× 100%.

DAB Staining and Detection of Catalase
Activity
The solution used for DAB staining was freshly prepared
with 1 mg/ml DAB and 0.1% Tween 20 in 10mM Na2HPO4.
Five-d-old plants were incubated in the solution for 8 h. To
eliminate the chlorophyll, 70% ethanol was used to rinse
the plants. The intensity of DAB staining was measured
using Photoshop CS5 (Adobe). Catalase activity was assessed
as described (Wang et al., 2021).

RESULTS

Yeast Elo3 and Arabidopsis ELO2
Conservatively Act on H2O2-Induced NO
Accumulation by Regulating NOS-Like
Activity in Yeast
NO synthesis plays a crucial role in living organisms’ adaptation
to adverse conditions. However, the factor(s) modulating NOS-
like activity to change NO levels in plants and yeast remain
largely unknown. It is reported that H2O2 can induce NO
synthesis and cause cell apoptosis in yeast, and this process is
associated with the changes in NOS-like activity (Almeida et al.,
2007). Thus, we searched for the player(s) regulating NOS-like
activity in yeast, first, by treating the yeast deletion mutants
with 4mM H2O2 and assaying cell apoptosis, NO accumulation
and NOS-like activity. Under the treatment of H2O2, 1elo3
exhibited significantly repressed cell apoptosis compared with the
wild type (Supplementary Figure 1A), suggesting that H2O2-
promoted NO accumulation was defective in the mutant yeast
cell. Indeed, the NO accumulation of 1elo3 was much lower
than that in the wild type using the staining assay of NO-specific
fluorescence by DAF-FM DA when subjected to H2O2 treatment
(Supplementary Figures 1B,C). Consistently, the mutant of
ELO3 in yeast resulted in the repression of H2O2-induced NOS-
like activity (Supplementary Figure 1D).

Then, we found that Arabidopsis ELO2 (ELO
HOMOLOG 2) shares a 29.13% identity with yeast Elo3
(Supplementary Figure 2) and speculated that ELO2 may have a
conservative role with yeast Elo3 in regulating NO accumulation.
Thus, we constructed the plasmid pYES260-ELO2 to drive ELO2
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expression under the control of the galactose-induced yeast
GAL1 promoter, transformed it into 1elo3, and measured cell
apoptosis, NO accumulation, and NOS-like activity. Our results
demonstrated that upon H2O2 treatment, the expression of
ELO2 in pGAL1::ELO2 1elo3 induced by galactose completely
rescued the cell apoptosis as well as NO content in 1elo3
(Supplementary Figures 3A–C). In addition, the NOS-like
activity was also restored under the treatment of H2O2 by the
induced expression of ELO2 in pGAL1::ELO2 1elo3 via galactose
(Supplementary Figure 3D), demonstrating that Arabidopsis
ELO2 and yeast Elo3 conservatively function in H2O2-induced
NO accumulation.

Arabidopsis ELO2 Acts in the Plant
Osmotic Stress Response
Arabidopsis ELO2 belongs to the ELO family, which functions in
VLCFAs’ elongation (Nagano et al., 2019), but its physiological
function is misty. To explore the participation of ELO2 in plant
stress response, we obtained an ELO2 T-DNA insertion mutant
SALK_080633 with dramatically reduced ELO2 expression and
named it elo2 (Supplementary Figure 4). We then examined
the sensitivity of elo2 to osmotic stress by adding different
concentrations of mannitol in a 1/2MSmedium.While both elo2
and the wild type had comparable growth phenotypes in terms
of seed germination, chlorophyll content, fresh weight, and ion
leakage rate under normal growth conditions (Figures 1A–E),
osmotic stress severely inhibited the seed germination of elo2
in comparison to the wild type when grown under different
concentrations of mannitol (Figures 1A,B). After growing for
5 days on a medium containing 250mM mannitol, over
80% of wild-type seeds but only 28% of elo2 germinated
(Figures 1A,B). In addition, elo2 exhibited reduced fresh weight,
lower chlorophyll content, and a higher ion leakage rate
compared with wild type (Figures 1C–E). To confirm that such
osmotic stress sensitivity of elo2 was due to decreased ELO2
gene expression, we generated the ELO2::ELO2 elo2 transgenic
complement lines (Supplementary Figure 4C) and assayed its
sensitivity to osmotic stress. Our results showed that ELO2::ELO2
elo2 displayed comparable phenotypes to wild-type plants based
on our assays of seed germination, chlorophyll content, fresh
weight, and ion leakage rate under both normal and stress
conditions, respectively (Figures 1A–E). We also analyzed ELO2
expression by RT-qPCR and found that the transcription of ELO2
was up-regulated by osmotic stress (Figure 1F). Collectively,
these results demonstrate that ELO2 is required in the plant’s
response to osmotic stress.

ELO2 Affects NOS-Like Activity to
Modulate Osmotic Stress-Induced NO
Accumulation
As per our above data, galactose-induced expression of
Arabidopsis ELO2 in yeast 1elo3 could rescue its reduced NOS-
like activity under H2O2 treatment (Supplementary Figure 3D).
Whether ELO2 also participates in plant osmotic stress response
by regulating NO levels needs further exploration. Therefore,
first, we detected NO content in mannitol-treated and untreated

the wild type and elo2 plants, we found that osmotic stress
promoted NO content in wild-type seedlings as reported (Cao
et al., 2019), but this promotion was significantly repressed in
elo2 (Figures 2A,B). Then, we analyzed whether the decreased
NO content in elo2 resulted from the change of NOS-like activity
or the lack of its substrate by examining NOS-like activity and
the content of L-arginine in wild type and elo2. It is shown in
our results that there was no noticeable difference in L-arginine
content between wild-type and elo2 plants treated with mannitol
(Figure 2C). However, the osmotic stress-promoted NOS-like
activity in the wild type was largely repressed in elo2 (Figure 2D).

Based on our above results, we speculated that the sensitivity
of elo2 to osmotic stress was due to decreased NOS-like activity
and thus reduced NO content. If this was the case, it is expected
that an exogenously applied NO donor could rescue this stress
sensitivity of elo2. Therefore, we assayed the seed germination
of mannitol-treated wild type and elo2 with the application of
GSNO or SNP, two widely-used NO donors (Cai et al., 2015),
and we found that GSNO could decrease the sensitivity of elo2
to osmotic stress in terms of the enhanced seed germination of
elo2 from 28 to 62% compared with wide-type plants from 82 to
91% (Figures 2E,F). Likewise, fresh weight, chlorophyll content,
and ion leakage of elo2were also partially restored by the addition
of GSNO compared with untreated control (Figures 2G–I).
Consistently, the application of exogenous SNP brought the
similar results (Figure 3). To further confirm our speculation,
we also conducted the experiments with the treatments of
NOS inhibitor L-NAME andNO scavenger 2-(4-carboxyphenyl)-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) under
osmotic stress and observed the germination phenotypes of
treated plants. Our results showed that both L-NAME and cPTIO
can further inhibit the germination of mannitol-treated elo2
mutant and the wild type, but the further inhibition was alleviated
in elo2 from about 28 to 25% compared with the wild type from
80 to 58% because the NO content is lower in elo2 than the
wild type (Supplementary Figure 5). Taken together, our results
reveal that Arabidopsis ELO2 participates in osmotic stress
response by modulating NOS-like activity to change NO content.

ELO2 Is Involved in the Expression of
Stress-Responsive Genes and Proline
Synthesis in Plant Osmotic Stress
Response
It has been reported in our previous study that expressing
rat neuronal NOS to promote NO synthesis in rice enhanced
abiotic stress tolerance by elevating stress-responsive gene
transcription and proline accumulation (Cai et al., 2015). The
low NO content in elo2 may repress the transcription of
stress-responsive genes and the proline accumulation for its
decreased tolerance to osmotic stress. Thus, we assessed the
transcript levels of some stress-responsive genes in mannitol
treated or untreated elo2 seedlings, and the data showed that
the expression of COR15A, COR47, KIN2, and RD22 in wild-
type plants was significantly elevated under osmotic stress, but
this promotion was repressed in mannitol-treated elo2 seedlings
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FIGURE 1 | Arabidopsis ELO2 acts in plant osmotic stress response. (A,B) Phenotypes (A) and germination rate (B) of WT, elo2, and ELO2::ELO2 elo2 plants under

the treatment of 200, 250, or 300mM mannitol for 5 days Scale bars = 0.5 cm. (C) Fresh weight of WT, elo2, and ELO2::ELO2 elo2 plants under the treatment of

250mM mannitol for 5 days. (D,E) Total chlorophyll content (D) and ion leakage rate (E) of 5-day-old WT, elo2, and ELO2::ELO2 elo2 seedlings under the treatment of

250mM mannitol for 12 h. FW: fresh weight. (F) Relative normalized expression of ELO2 in 5-day-old WT, elo2, and ELO2::ELO2 elo2 seedlings under the treatment of

250mM mannitol for 0, 6, and 12 h. The data obtained for ELO2::ELO2 elo2 #1 are shown. Data shown are means ± SD of three independent biological replicates.

Asterisks indicate significant differences from the wild type (Student’s t-test): *P < 0.05; **P < 0.01. Different letters indicate significantly different values

(P < 0.05 by Tukey’s test).

(Figures 4A–D). We also detected the proline content in wild-
type and elo2 and found that proline accumulation was severely
repressed in stressed elo2 compared with the stressed wild
type (Figure 4E), prompting us to further explore whether the
reduced proline content was caused by the decreased expression

of proline biosynthetic genes. Indeed, the transcript levels of
P5CR, P5CS1, and P5CS2, three important genes that function in
proline biosynthesis, were much lower in elo2 than in the wild
type when treated with mannitol (Figures 4F–H). These data
suggest that ELO2 participates in plant osmotic stress response by
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FIGURE 2 | ELO2 affects NOS-like activity to modulate osmotic stress-induced NO accumulation. (A,B) Representative images (A) and fluorescence (B) of DAF-FM

DA staining in 5-day-old WT, elo2, and ELO2::ELO2 elo2 plants under the treatment of 250mM mannitol for 12 h. Scale bars = 200µm. (C,D) L-Arg content (C) and

NOS-like activity (D) of 5-day-old WT, elo2, and ELO2::ELO2 elo2 seedlings under the treatment of 250mM mannitol for 12 h. FW: fresh weight. (E–G) Phenotypes

(E), germination rate (F), and fresh weight (G) of wild-type, elo2, and ELO2::ELO2 elo2 plants under the treatment of 50µM GSNO, 250mM mannitol, and 250mM

mannitol plus 50µM GSNO for 5 days Scale bars = 0.5 cm. (H,I) Total chlorophyll content (H) and ion leakage rate (I) of 5-day-old WT, elo2, and ELO2::ELO2 elo2

seedlings treated with or without 50µM GSNO, 250mM mannitol, and 250mM mannitol plus 50µM GSNO for 12 h. FW: fresh weight. A.U. indicates the pixel

intensity arbitrary units of DAF-FM DA fluorescence. Data shown are means ± SD of three independent biological replicates. Different letters indicate significantly

different values (P< 0.05 by Tukey’s test).

altering the transcription of stress-responsive genes and proline
biosynthetic genes.

ELO2 Modulates Catalase Activity and
Thus H2O2 Accumulation in Plant Osmotic
Stress Response
It is reported that higher mannitol causes osmotic stress and
hurts plant cells partially by enhancing ROS accumulation
(Zhang et al., 2021). Thus, we also assayed whether elo2 with
decreased NO accumulation has higher ROS accumulation
under the treatment of mannitol using 3,3-diaminobenzidine
(DAB) staining. The data revealed that both wild-type and elo2
plants had increased H2O2 accumulation after the treatment of
mannitol (Figures 5A,B), however, the H2O2 content in the elo2
was much higher than that in the wide-type challenged with
osmotic stress (Figures 5A,B). Consistently, MDA content, as the
indicator for lipid peroxidation, was also higher in elo2 than the
wild type stressed with mannitol (Figure 5C).

Catalase (CAT) is the key H2O2-scavenging enzyme that
contributes to maintaining ROS homeostasis by catalyzing the
degradation of H2O2 in plant cells. To figure out the relationship
between over-accumulated H2O2 and CAT in elo2, we first
determined catalase activity and found that the catalase activity
in elo2 was significantly inhibited compared with wild-type
plants under the treatment of mannitol (Figure 5D). Then, the
expression of genes encoding CATs (CAT1, CAT2, and CAT3)
was measured. Consistent with repressed catalase activity in elo2,
the transcription of CATs was largely compromised in mannitol-
treated elo2 (Figures 5E–G). These results indicate that ELO2
affects catalase activity and thus H2O2 accumulation in plant
osmotic stress response.

DISCUSSION

Over the past 20 years, NO has been known as a crucial molecule
in plants. Since the 1990s, there have emerged numerous studies
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FIGURE 3 | SNP alleviates the sensitivity of elo2 to osmotic stress. (A–C) Phenotypes (A), germination rate (B), and fresh weight (C) of WT, elo2, and ELO2::ELO2

elo2 plants under the treatment of 5µM SNP, 250mM mannitol, and 250mM mannitol plus 5µM SNP for 5 days. (D,E) Total chlorophyll content (D) and ion leakage

rate (E) of 5-day-old WT, elo2, and ELO2::ELO2 elo2 seedlings treated with or without 5µM SNP, 250mM mannitol, and 250mM mannitol plus 5µM SNP for 12 h.

FW: fresh weight. Scale bars = 0.5 cm. Data shown are means ± SD of three independent biological replicates. Different letters indicate significantly different values

(P< 0.05 by Tukey’s test).

with regard to NO-mediated biotic/abiotic stress response (Shi
et al., 2012a; Liu et al., 2015; Castillo et al., 2018; Khan et al.,
2019; Hasanuzzaman et al., 2021; Jedelska et al., 2021). Although
many advances in comprehending the functions of NO have
been made, there still exist a large number of mysteries that
need further exploration, among them, the most attractive one
revolves around NO synthesis in plants.

In mammals, NO is generated dominantly by NOSs
with L-arginine as substrate (Mayer and Hemmens, 1997;

Wendehenne et al., 2001; Stuehr and Haque, 2019). However, in
plants, nitrite reduction has been identified as the most explicit
synthesis route because the gene(s) coding for NOS in higher
plants have yet to be discovered, although a NOS from green
algae,Ostreococcus tauri, was found to be similar to human NOSs
(Foresi et al., 2010). Further, while the role of NOS-dependent
NO synthesis has been implied in diverse plant stress responses,
the mediators of NOS activity are still waiting for further
exploration (Cai et al., 2015; Liu et al., 2015; Li et al., 2018).
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FIGURE 4 | ELO2 is involved in the expression of stress-responsive genes and proline synthesis in plant osmotic stress response. (A–D) Relative normalized

expression of COR15A (A), COR47 (B), KIN2 (C), and RD22 (D) in 5-day-old WT, elo2, and ELO2::ELO2 elo2 seedlings under 250mM mannitol treatment for 12 h or

not. (E–H) Proline content (E) and relative normalized expression of proline biosynthetic genes, P5CR (F), P5CS1 (G), P5CS2 (H) in mannitol-treated and untreated

elo2, and ELO2::ELO2 elo2. Data shown are means ± SD of three independent biological replicates. Asterisks indicate significant differences from the osmotic

stressed wild-type plant (Student’s t-test): *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 5 | ELO2 modulates catalase activity and thus H2O2 accumulation in plant osmotic stress response. (A,B) Representative images (A) and intensity of DAB

staining (B–G) MDA content (C), catalase activity (D), and relative normalized expression of CAT1 (E), CAT2 (F), CAT3 (G) in 5-day-old WT, elo2, and ELO2::ELO2

(Continued)
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FIGURE 5 | elo2 seedlings under the treatment of 250mM mannitol for 12 h or not. Scale bars = 1mm. Data shown are means ± SD of three independent biological

replicates. Different letters indicate significantly different values (P< 0.05 by Tukey’s test). Asterisks indicate significant differences from the osmotic stressed wild-type

plant (Student’s t-test): *P < 0.05; **P < 0.01; ***P < 0.001.

FIGURE 6 | Model for the role of ELO2 in response to osmotic stress in Arabidopsis.

To find out the factors implicated in regulating the NOS
activity in plants, we screened the yeast mutants and found that
H2O2-induced yeast cell apoptosis was significantly repressed
in 1elo3. Its homologous gene ELO2 in Arabidopsis could
complement such defects in 1elo3 (Supplementary Figure 2).
It’s reported that NO synthesis participates in various stress
responses (Shi et al., 2012a; Liu et al., 2015), we showed
that osmotic stress-promoted NOS-like activity and NO

accumulation in the wild type are significantly repressed in elo2.
Furthermore, treatment of NO donors with GSNO/SNP can
rescue this sensitivity of the mutant. In brief, ELO2 could serve as
the mediator of NOS-like in plants to regulate NO content under
osmotic stress.

However, the mechanism by which ELO2 modulates NOS-
like activity remains mysterious. Recently, WD40-REPEAT 5a
and Sorting Nexin 1 have been reported to regulate NOS-like
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activity in heavy metal and salt-stressed plants, respectively with
unknown mechanisms (Li et al., 2018; Zhang et al., 2020b). We
speculate that ELO2 may impact NOS-like activity by directly
interacting with NOS, which hasn’t been identified yet in higher
plants. Thus, searching for ELO2 interacting proteins containing
cofactor-binding sites for flavin adenine dinucleotide (FAD),
flavin mononucleotide (FMN), 6R-tetra-hydrobiopterin (BH4),
and calmodulin (CaM) as well as L-arginine and NADPH-
binding sites, like NOSs in mammals, could be an interesting
direction (Zemojtel et al., 2006; Santolini et al., 2017; Astier
et al., 2018; Hancock and Neill, 2019; Stuehr and Haque, 2019).
Alternatively, ELO2 may modulate NOS activity indirectly by
interacting with NOS regulator(s).

Proline is associated with plants’ viability under stress
conditions (Xiong and Zhu, 2002; Zhao et al., 2016; Wu et al.,
2020). Many reports indicate the participation of NO in proline
accumulation by exogenously increasing or decreasing NO
content under abiotic stresses (Shi et al., 2007; Arasimowicz-
Jelonek et al., 2009; Naser Alavi et al., 2014). It is shown in our
results that proline content and proline biosynthetic genes were
prominently prompted by osmotic stress in the wild type, but the
induction was inhibited in elo2 seedlings (Figure 4), revealing
that ELO2 participates in regulating the proline biosynthetic
gene expression and thus proline content in plant osmotic
stress response.

NO is also thought to play a role in changes in oxidative
compound accumulation in plants (Xiong et al., 2010; Shivaraj
et al., 2020; Mohd Amnan et al., 2021). For instance,
exogenous SNP alleviates stress-caused damage to plants along
with a decrease in H2O2 (Shi et al., 2012a; Liu et al.,
2015; Zhang et al., 2018b; Mohd Amnan et al., 2021).
Our previous report also indicated that the rat neuronal
NOS-overexpressing rice with higher NO accumulated less
H2O2 under stress conditions (Cai et al., 2015). Our results
showed that when challenged with osmotic stress, elo2 with
decreased NO accumulation has higher H2O2, possibly by
repressing CAT expression and thus decreasing catalase activity
(Figure 5).

Moreover, it is well-known that the ELO family is involved
in synthesizing VLCFAs, which are essential for plant growth
and disease resistance (Nagano et al., 2019; Batsale et al.,
2021). However, the physiological function of the ELO family
in plants is rarely known. Here, we report that ELO2,
a member of the ELO family, functions in plant osmotic
stress response.

Taken together, our study identifies ELO2 as a
novel factor involved in plant osmotic stress response
by modulating NOS-like activity and thus NO
accumulation (Figure 6).
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