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Root rot has been a major problem for cultivated populations of Coptis chinensis var.
chinensis in recent years. C. chinensis var. brevisepala, the closest wild relative of
C. chinensis var. chinensis, has a scattered distribution across southwestern China and
is an important wild resource. Genetic diversity is associated with greater evolutionary
potential and resilience of species or populations and is important for the breeding
and conservation of species. Here, we conducted multiplexed massively parallel
sequencing of the plastomes of 227 accessions of wild and cultivated C. chinensis
using 111 marker pairs to study patterns of genetic diversity, population structure, and
phylogeography among wild and cultivated C. chinensis populations. Wild and cultivated
resources diverged approximately 2.83 Mya. The cultivated resources experienced
a severe genetic bottleneck and possess highly mixed germplasm. However, high
genetic diversity has been retained in the wild resources, and subpopulations in
different locations differed in genotype composition. The significant divergence in the
genetic diversity of wild and cultivated resources indicates that they require different
conservation strategies. Wild resources require in situ conservation strategies aiming
to expand population sizes while maintaining levels of genetic diversity; by contrast,
germplasm resource nurseries with genotypes of cultivated resources and planned
distribution measures are needed for the conservation of cultivated resources to
prevent cultivated populations from undergoing severe genetic bottlenecks. The results
of this study provide comprehensive insights into the genetic diversity, population
structure, and phylogeography of C. chinensis and will facilitate future breeding and
conservation efforts.

Keywords: Coptis chinensis, wild and cultivated, genetic diversity, phylogeography, population structure,
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INTRODUCTION

Deterministic or stochastic forces, such as natural selection
and genetic drift, increase genetic diversity at several levels
of biological organization (individuals, populations, and
species) (Sun et al., 2021). Higher genetic diversity generally
results in more adapted genotypes and is associated with
greater evolutionary potential and resilience of species or
populations (Falk and Holsinger, 1991). Low genetic diversity
can compromise the resistance of species to abiotic and
biotic stress (Varshney et al., 2019). An understanding
of genetic diversity is critically important for identifying
morphologically indistinguishable species, reconstructing the
phylogeographic history of lineages, and managing biodiversity
(Nevo, 2001). Phylogeographic studies can provide insight
into the demographic, evolutionary history, and structure
of populations or young lineages (populations or closely
related species) based on genetic and geographic data, and this
information has breeding and conservation implications (Avise,
2000; Hickerson et al., 2010).

Plastomes have been extensively used in population diversity
analyses and phylogeographic studies because of their small
size, low rate of recombination and molecular evolution, and
uniparental inheritance pattern (Dong et al., 2021a,b,c; Wang
et al., 2021). With the advent of next-generation sequencing
technologies, plastids can now be sequenced and assembled at
a relatively low cost. However, sequencing plastids efficiently
becomes impractical when sample sizes range from hundreds
to thousands of individuals. One approach for overcoming
this problem is whole plastid sequencing combined with
massively parallel sequencing (MPS). Inverted repeat regions
(IRa, IRb) of plastids are highly conserved, and most variable
sites are located in the small single-copy region (SSC) and
large single-copy region (LSC). At the population level, coding
regions are more conserved compared with spacer regions, and
nucleotide diversity varies among genes. Thus, the many regions
with few variable sites in plastids do not provide sufficient
data for conducting diversity and phylogeographic analyses at
the population level. Comparison of representative plastids,
identification of variable regions, and the development of primer
markers for MPS is a more efficient approach than direct
sequencing of individual plastids.

Coptis is a perennial herbaceous genus of the Ranunculaceae
family that has been used in traditional Chinese medicine for
its antibacterial and anti-inflammatory properties for thousands
of years (Liu et al., 2021a). In China, all members of the
genus have been designated as national second-class endangered
plants. Indigenes in China have utilized various Coptis species as
herbal medicines, and three of them, C. chinensis var. chinensis
“Weilian,” C. deltoidea “Yalian,” and C. teeta “Yunlian,” are
classified as official Huanglians in the Chinese Pharmacopeia.

The area of C. deltoidea and C. teeta cultivation is small;
however, C. chinensis var. chinensis is cultivated over a wide
area in the provinces Chongqing, Sichuan, Hubei, and Hunan
(0.32 million mus), and has been cultivated since the Yuan
era (ca. 700 years) (Wang et al., 2020). The historically
intensive harvesting of herbs, especially wild resources, which

was motivated by the belief that wild resources provided
superior benefits compared with cultivated resources, resulted
in the extinction of wild C. chinensis var. chinensis resources
in recent decades. Consequently, all C. chinensis var. chinensis
material used in this study was derived from cultivated
C. chinensis resources.

Coptis chinensis var. brevisepala, the closest wild relative of
C. chinensis var. chinensis, exhibits a scattered distribution across
southwestern China. It has long been cited as an excellent
Huanglian [e.g., in Ben-Cao-Tu-Jin (1061 A.D.) and Ben-Cao-
Gang-Mu-Shi-Yi (1765 A.D.)] (Peng et al., 2017). The area of
farmland in southwestern China has increased due to the rapid
growth of the human population in the last century, and this
resulted in a reduction in suitable C. chinensis var. brevisepala
habitat. The decline of wild populations and the slow growth
of wild plants, coupled with the high yield of cultivated, led
to a decline of wild C. chinensis var. brevisepala resources in
the traditional Chinese medicine market. Despite this decline in
the last century, its high utility and economic value still make
C. chinensis var. brevisepala a desirable wild C. chinensis resource.
Conservation measures thus need to be taken to prevent further
declines in C. chinensis var. brevisepala populations.

Root rot has been a major problem for cultivated C. chinensis
in recent years. Domestication of C. chinensis, as in many
cultivated plants, may result in genetic bottlenecks and decrease
variation in disease resistance within populations (Varshney et al.,
2019). Extrinsic factors include large-scale general agricultural
practices deleterious to the maintenance of ecological balance,
irregular planting practices such as over-fertilization, and the
excessive application of pesticides. Wild C. chinensis populations
that have not been subject to artificial selection and domestication
have high levels of genetic diversity by comparison. These wild
resources are important reservoirs of genetic diversity that should
be conserved, as stress-resistant individuals could be used to
improve C. chinensis germplasm. Characterizing patterns of
genetic diversity in cultivated and wild resources and clarifying
phylogeographic relationships among different populations are
essential for identifying valuable genotypes in selective breeding
programs and developing germplasm conservation strategies
(Zhou et al., 2015). However, robust evaluations of the genetic
diversity and structure of wild and cultivated resources require
large samples sizes and geographically thorough sampling.

Here, we used a representative set of plastids and MPS data
of members of the genus Coptis to (1) clarify evolutionary
relationships within Coptis distributed in China, (2) elucidate
the genetic diversity of wild and cultivated C. chinensis and
their phylogeographic relationships through the rapid and cost-
efficient MPS approach, and (3) propose germplasm conservation
strategies for wild and cultivated C. chinensis resources.

MATERIALS AND METHODS

Plant Material, DNA Extraction and
Sequencing
A total of 23 Coptis species were collected for plastid sequencing,
and the 227 accessions used for MPS were collected across
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the entire distribution of Coptis; four plastids were downloaded
from GenBank with accession numbers MT773635–MT773638
(Supplementary Tables 1, 3). Total genomic DNA was extracted
from fresh leaves of a single individual using a modified CTAB
method and purified using a Wizard DNA clean-up system
(Promega, Madison, WI, United States) (Li et al., 2013). All the
DNA and molecular material were deposited in the herbarium
of the Institute of Chinese Materia Medica (CMMI). PE150
sequencing was conducted to sequence plastids on an Illumina
HiSeq XTen platform at Novogene (Tianjin, China). A four-step
approach was used to construct the amplicon library for MPS.
First, primers were designed with 400-bp targeted regions by Se-
al software to cover nearly all variable regions of C. chinensis
plastids. Second, we amplified all the 227 accessions with 111
primer pairs using the LGC High-throughput workstation system
in the Maize Research Center, Beijing Academy of Agriculture
and Forestry Sciences. Third, labeled PCR was performed to
attach sample-specific oligo-tags to distinguish samples using
the products from the second step as the template. A paired-
end library with mixed labeled-products was constructed using
a NEBNext UltraTM DNA library prep kit and sequenced at
Novogene (Tianjin, China) on an Illumina HiSeq2500 platform
(PE 250 sequencing). Procedures for MPS library construction
followed the protocol of Liu et al. (2021c).

Plastome Assembly and Annotation
The raw sequencing reads of the PE150 data were qualitatively
controlled by Trimmomatic v0.39 for filtering primer/adaptor
sequences and low-quality reads to obtain high-quality reads
(using settings: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:1:true
LEADING:20 TRAILING:20 SLIDINGWINDOW:4:15) (Bolger
et al., 2014). GetOrganelle v1.7.5 was used for the de novo
assembly of the high-quality reads with following settings: -F
embplant_pt, -R 15 and -K 105 (Jin et al., 2020). And Geneious
v8.1, a double-check process, was used to map all high-quality
reads to the assembled plastome sequence to verify the assembly
accuracy (He et al., 2014; Dong et al., 2022). Ambiguous regions
and four junctions between IRs and SCs in the plastid were
confirmed manually. Gene annotation was performed using the
online platform CPGAVAS2 using a build-in database with 2,544
plastids as reference (Shi et al., 2019). If necessary, the positions
of the start and stop codons and boundaries between introns
and exons were manually corrected in Sequin. The annotation
results were further checked using Geneious v8.1. The circle
plastid map was drawn using the online program Chloroplot
(Zheng et al., 2020).

Amplicon Data Quality Control and
Consensus Generation
Low-quality sequences and sequences shorter than 200 bp
were removed from the PE250 dataset using the NGS QC
toolkit v2.3.3 with default settings (Patel and Jain, 2012).
The clean data were demultiplexed with the FASTX-Toolkit
v0.0.131 using sample-specific oligo-tags and primers. Finally,
large consensus sequences of different primers and samples

1http://hannonlab.cshl.edu/fastx_toolkit/

were generated using Cotu-Generator.py (https://github.com/
YanleiLiu1989/Cotu-master). Procedures of the amplicon data
processing followed the protocols of Liu et al. (2021c).

Phylogeny and Divergence Time
Estimation
A total of 27 Coptis plastids were aligned using the MAFFT v7
online service with the “auto” strategy and manually adjusted
using MEGA X, which produced dataset-I (Kumar et al., 2018;
Katoh et al., 2019). The program ModelFinder was used to select
the best-fit model (TVM+F+R2) based on the BIC criterion
(Kalyaanamoorthy et al., 2017). The maximum likelihood tree
was inferred using IQ-TREE with the TVM+F+R2 model and
5,000 ultrafast bootstraps (Zhang et al., 2020); the phylogeny was
displayed in FigTree v1.3.1.

Divergence time was estimated using BEAST v2.6.6 with the
following parameter settings: Relaxed Log Normal clock model,
Yule speciation model, and GTR substitution model (Bouckaert
et al., 2019). The split times of C. quinquesecta (6.53 Mya) and
C. japonica (4.85 Mya) estimated by Xiang et al. (2018) were
used as secondary calibration points. The Markov chain Monte
Carlo chains (MCMC) were run for 500,000,000 generations and
sampled every 1,000 generations. The effective sample size (ESS)
was checked using Tracer v1.6 to ensure that all parameters
exceeded 200. The first 25% of runs were discarded as burn-in.
TreeAnnotator v2.6.6 was used to produce a maximum clade
credibility (MCC) tree. Divergence time with 95% HPD intervals
was displayed using FigTree v1.3.1 and modified in AI CS6.

Comparative Analysis of Plastomes
Data on genome size, GC content, the sizes of the four regions
of the plastid, and the number of genes were summarized in
Geneious. The variable sites, haplotypes, haplotype diversity
(Hd), indels, and Pi of 10 C. chinensis var. chinensis accessions
and 12 C. chinensis var. brevisepala accessions were calculated
using DnaSP v5.10 (Librado and Rozas, 2009). The indels were
counted with the gap option “Multiallelic;” the number of indels
was also manually counted in every 500-bp sliding window. Pi
of every 500-bp sliding window was also calculated using DnaSP
v5.10. Circos analysis was performed on the indel and Pi data
using OmicStudio tools at https://www.omicstudio.cn/tool/.

Genetic Relationships, Differentiation,
and Structure of Subpopulations
We composed a supermatrix (dataset-II) using SequenceMatrix
v1.7.8 to concatenate 25,197 cpDNA fragments generated by
MPS (227 accessions, 111 primer pairs) (Vaidya et al., 2011).
For dataset-II, haplotype data were analyzed in DnaSP v5.10,
and haplotype frequencies in populations were calculated using
Arlequin v3.5.1.3 for subsequent network analysis (Excoffier and
Lischer, 2010). A TCS network was built using PopArt v1.7, and
four C. omeiensis accessions were used as outgroups (Clement
et al., 2000; Leigh and Bryant, 2015).

Dataset-III was generated by discarding four outgroups.
A submatrix containing 917 SNPs was generated in DnaSP v5.10,
and sites with alignment gaps were included if a polymorphism
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was present. The data were converted into a suitable format
using GenAlEx v6.5 and then used for STRUCTURE and PCA.
The R package “PCAtools” was used to conduct PCA and make
PCA plots. The STRUCTURE workflow was as follows: (1) the
optimal number of clusters was determined by running the
K-means clustering algorithm from K = 2 to K = 10 with ten
runs for each K-value, (2) the initial burn-in period was set to
10,000 with 10,000 MCMCs, (3) the most suitable clusters were
determined using the DeltaK method on Structure Harvester2

and aggregated by running the CLUMPP program (Jakobsson
and Rosenberg, 2007), and (4) plots were built using the R
package “ggplot2,” To quantify the degree of differentiation
among populations, AMOVA and pairwise Fst calculations were
conducted in Arlequin v3.5 using default settings.

RESULTS

Characteristics of the Plastid
We obtained 23 complete plastids by de novo assembly of 22
C. chinensis accessions [10 C. chinensis var. chinensis (Ccc)
accessions and 12 C. chinensis var. brevisepala (Ccb) accessions]
from different provinces in China and one C. deltoidei, as well
as four other related species from GenBank. All 27 plastids
had a typical quadripartite structure comprising two IR regions
(26,154–26,225 bp) separated by the LSC (84,240–85,168 bp)
and the SSC (17,232–17,550 bp), and the genome size ranged
from 154,156 bp (MT773638) to 154,985 bp (MT773635). Coptis
plastids were highly conserved in GC content and the number
of genes. The total GC content ranged from 38.1 to 38.2%. In
addition, all the sequences contained 80 protein-coding genes, 29
tRNA genes, and four rRNA genes (Figure 1 and Supplementary
Table 1). The 27 plastids yielded dataset-I (aligned size of
156,497 bp) and the nucleotide diversity (Pi) was 0.00282
(Supplementary Table 2).

Plastid Variation and Development of
Marker Pairs
The 22 aligned sequences were 155,489 bp in length. We
recovered 926 variable sites, 12 haplotypes, and 334 indels, and
the average Pi was 0.00197. The Ccc population had 107 variable
sites, and five haplotypes with a diversity (Hd) of 0.822. The
Ccb population had 596 variable sites, seven haplotypes, and 222
indels, and Hd was 0.924 (Table 1). Based on sliding window
analysis in DnaSP, Pi and indels were visualized in a Circos map
(Figure 2). The regions with higher Pi and high indel counts were
mostly located in the LSC and SSC, and only a small portion
was distributed in the junction of the IR regions. The variable
regions of Pi were consistent with those of indels, and the Pi
and indel counts were statistically higher in the Ccb population
(Supplementary Figure 1). Nine hot spots were observed in the
most outer circle, which were determined based on whether the
indel count was greater than seven and the Pi was higher than
0.006 (rpl32-trnLUAG, ccsA-ndhD, ycf1, trnH-psbA, trnKUUU -
rps16, psbM-trnDGUC, psbZ-trnGGCC, trnTUGU -trnLUAA, and

2http://taylor0.biology.ucla.edu/struct_harvest/

petA-psbJ). The region of petA-psbJ contained the greatest
number of indels and the highest value of Pi. Overall, the results
in the Circos map indicated that the Ccb population was diverse.
The marker pairs covered all the variable sites including SNPs
and indels were developed for MPS. After the validation step, 111
marker pairs were obtained and used for population analyses.

Phylogenetic Reconstruction and
Divergence Time Estimation
A phylogenetic analysis of dataset-I was conducted using IQ-
tree methods. The best-fit model was TVM+F+R2 according
to the Bayesian information criterion (BIC) (Supplementary
Table 4). Molecular clock analysis was performed to estimate
the divergence time of Coptis species in China. The relationships
among all taxa were well resolved and fully supported, suggesting
that the plastids provided increased resolution for phylogenetic
reconstruction (Figure 3 and Supplementary Figure 2).
Accessions of C. chinensis formed a monophyletic group with
100% bootstrap support that was sister to a clade containing
C. deltoidea and C. omeiensis. Two highly supported clades
within C. chinensis corresponding to Ccc and Ccb were clearly
separated. Ten accessions of Ccc generated two major subclades
that were not congruent with their geographic distributions.
However, 12 accessions of Ccb formed six subclades that were
congruent with their geographic distributions. Our divergence
time analysis revealed that the divergence of C. chinensis from its
closest relative occurred 3.85 Mya (95% HPD: 2.66–5.04 Mya).
Ccc and Ccb split apart from each other approximately 2.83
Mya (95% HPD: 1.91–3.74 Mya). In addition, diversification of
the branches representing different subpopulations within Ccb
mostly occurred over a short period ranging from 1.30 to 1.57
Mya; however, the HS and JY subpopulations split recently at
approximately 0.49 Mya.

Genetic Differentiation of Wild and
Cultivated Populations
Large consensus sequences of 227 accessions with 111 marker
pairs comprised dataset-II, which was 43,354 bp (aligned size)
and had a Pi of 0.00305. Dataset-III was a subset of dataset-II
without the four outgroups that was 43,283 bp (aligned size) and
had a Pi of 0.00293 (Supplementary Table 2). Pi was higher for
dataset-II and III, and the sequence sizes of these datasets were
shorter (by approximately 75%) than those in dataset-I.

In dataset-III, 223 accessions were arranged in 11
subpopulations (six Ccb and five of Ccc) that were congruent
with their geographic distributions (Figure 4A). The genetic
differentiation between wild and cultivated subpopulations was
estimated using Fst (Figure 5). The Fst heatmap revealed that
wild populations were markedly divergent from cultivated
populations (Fst > 0.83). The Fst values ranged from
−0.03 to 0.19 among cultivated subpopulations, and the
“SZ” subpopulation was the only cultivated subpopulation
that was divergent from the other cultivated subpopulations.
However, little differentiation was observed among the remaining
cultivated subpopulations. Fst values for the wild subpopulations
ranged from 0.59 to 0.93, indicating that the wild subpopulations
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FIGURE 1 | Gene maps of the plastids of C. chinensis and C. deltoidea. The genes are color-coded based on their functions. The dashed area indicates the GC
composition of the plastid.

TABLE 1 | Chloroplast genome diversity of C. chinensis populations.

Population Number of accessions Aligned length Variable sites Nucleotide diversity (Pi) Number of Hap Hap diversity Number of indels

Ccc 10 155,034 bp 107 0.00026 5 0.822 58

Ccb 12 155,198 bp 596 0.00137 7 0.924 222

Total 22 155,489 bp 926 0.00197 12 0.952 334

were highly differentiated. Analysis of molecular variance
(AMOVA) revealed significant genetic differentiation among
Ccb and Ccc populations, indicating that most of the genetic
diversity of Ccc existed within populations (95.05%, P < 0.01),
whereas most of the genetic diversity of Ccb existed among
populations (80.87%, P < 0.001) (Table 2).

Genetic Structure of Wild and Cultivated
Populations
To visualize the genetic structure of wild and cultivated
populations, principal component analysis (PCA) was performed

using the 917 SNPs from dataset-III. PCA revealed marked
separation between the wild and cultivated subpopulations
(Figure 4B). Cultivated subpopulations were clustered into
a single group, whereas wild subpopulations were clustered
into three groups: HS/JY, JGS/JN, and LS/RY. STRUCTURE
analysis was conducted to characterize the genetic structure
among subpopulations (Figure 4C). The largest delta K value
was observed for K = 2, followed by K = 3 and K = 4
(Supplementary Figure 3), which indicated that the division of
the 223 accessions into two populations received the strongest
support. According to the STRUCTURE results, the distinction
between wild and cultivated subpopulations could be observed
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FIGURE 2 | Circos plot showing the indel and nucleotide diversity of wild and cultivated C. chinensis. The concentric circles from outer to inner indicate the following:
quadripartite structure of the plastid represented by different colors; the indels of Ccb; the indels of Ccc; the nucleotide diversity of Ccb; and the nucleotide diversity
of Ccc. All statistics were computed for windows of 500 bp. In the Ccb population, Pi varied from 0 to 0.01442, and the average Pi was 0.00137. In the Ccc
population, Pi ranged from 0 to 0.00569, and the average Pi was extremely low (approximately 0.00026).

regardless of whether K was 2, 3, or 4, indicating that little
gene flow has occurred between wild and cultivated groups.
In the cultivated group, patterns of genetic structure inferred
by the STRUCTURE analysis were not congruent with the
geographic distribution of subpopulations, indicating germplasm
mixture. In the wild group, patterns were congruent with the
geographic distribution of subpopulations; although there was
some gene flow between subpopulations, germplasm diversity
was high among subpopulations but low within subpopulations.
Based on the patterns of diversity among subpopulations,
HS was more genetically similar to JY and so as JGS
to JN, LS to RY.

A TCS network based on 116 haplotypes (H115 and H116
of C. omeiensis were used as the outgroup) indicated that
wild and cultivated populations formed distinct groups; the

clustering of wild accessions was congruent with their geographic
distributions; and cultivated populations were highly admixed
(Figure 6). Overall, the phylogeographic structure of the
subpopulations was consistent with the Fst calculations and
the AMOVA results.

DISCUSSION

Applicability and Economy of the
Massively Parallel Sequencing Approach
Sequencing can be cost-prohibitive, and whole-genome
sequencing is often not necessary. Samples sizes are
typically medium to large in population, phylogenetic, and
phylogeographic research, and variable regions are more
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FIGURE 3 | Divergence time estimation based on the plastids of Coptis. Numbers above and under the branches indicate the mean divergence times and 95%
confidence interval of each node, respectively. Green bars indicate the 95% highest posterior density intervals. Divergence time and the timeline are indicated in
million years ago (Mya).

important than genome structure, gene order, and genetic
composition. MPS can be used to acquire information on
the variable regions from accessions. Using a specific library
preparation, we can sequence multiple regions and hundreds of
accessions in a MPS run (Parks et al., 2009). The applications of
MPS extend beyond phylogenetic and phylogeographic studies,
as MPS has also been used in forensics, genetic medicine, and
environmental studies (Tucker et al., 2009; Lopes et al., 2017;
Bruijns et al., 2018; Liu et al., 2021b,c). This is the first study
to apply MPS to evaluate the genetic diversity, population
structure, and phylogeography of medicinal plant resources. One
of the major advances in MPS is the rapidity with which target
sequences can be sequenced, as hundreds to thousands of target
sequences can be generated over a reasonable timeframe to meet
the needs of researchers. In this study, 25,197 target fragments
(227 accessions× 111 primer pairs) were generated over 15 days.
The cost of MPS is only one-tenth that of Sanger sequencing.
In addition, MPS datasets (e.g., dataset-II and III) can have
comparable or even higher Pi than datasets of entire plastids
(e.g., dataset-I), which means that MPS has high economy.

Overall, MPS is an effective approach for studying the genetic
diversity, population structure, and phylogeography of medicinal
plant resources.

Phylogeny and Divergence Times of
Coptis
Coptis is one of the most pharmaceutically important genera
worldwide; it is a small genus with only 15 species that are
disjunctly distributed from Eastern Asia to North America, and
half of the species are distributed in China (Xiang et al., 2018).
Clarification of its phylogenetic relationships and divergence
time in China is important given that China is one of the
centers of its distribution, as well as a region where the
medicinal use of Coptis is widespread. Previous phylogenetic
studies of Coptis have been performed using several DNA
markers, such as trnL-F, trnD-T, trnHpsbA, rpoB, accD, and
rbcL (He et al., 2014; Xiang et al., 2016, 2018). Phylogenetic
analysis based on the plastids of Coptis revealed similar patterns
overall, but the relationships established in our study have
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FIGURE 4 | Population structure of C. chinensis populations. (A) Geographic distribution of the sampling locations. The map plot was generated using an R
package (https://github.com/linhesun/bilibiliRlearning/tree/master/2021_r21_china_map). (B) PCA of wild and cultivated populations; the proportion of the variance
explained was 15.34% for PC1 and 4.81% for PC2. (C) STRUCTURE analysis for K = 2–4. Colors indicate different clusters. The x-axis shows the subpopulations,
and the y-axis indicates the probability of inferred ancestral lineages.

stronger support compared with those in previous studies.
These data provided us with an opportunity to clarify the
relationships within species. C. quinquesecta and C. japonica
were used as outgroups. Species in mainland China formed a
monophyletic group and split from C. japonica approximately
5.32 Mya (95% HPD: 3.70–6.97). Within this monophyletic
clade, C. teeta was in the basal position, and a clade formed
by C. deltoidea and C. omeiensis was sister to the clade
containing C. chinensis var. chinensis and C. chinensis var.
brevisepala.

Two variants of C. chinensis diverged approximately 2.83 Mya.
The subpopulations of C. chinensis var. brevisepala showed high
diversity, and diversification occurred rapidly from 1.30 to 1.57
Mya, which coincides with the period of increased diversification
rates of all members of the Ranunculaceae family approximately 2
Mya (Xiang, 2020). Thus, C. chinensis var. chinensis was expected
to show similar levels of diversity among subpopulations, but they

were much less diverse. This might stem from founder effects
associated with artificial selection.

Genetic Diversity and Phylogeography of
Wild and Cultivated Populations
In breeding, genetic diversity is essential for increasing yields,
the adaptation of populations to the environment, and the
resistance of populations to pests and diseases. Domestication
is an artificial selection process wherein individual plants with
desirable properties are bred to develop varieties that can better
meet human needs. The action of selection, coupled with the
inability to sample all possible variations in the progenitor
population, resulted in a decrease in genetic diversity, and this
is known as the founder effect. Several studies of crops and
horticultural plants have shown that cultivated plants that have
diverged from their wild progenitors or relatives in response
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FIGURE 5 | Pairwise Fst values among 11 subpopulations of C. chinensis. The letters on the diagonal represent 11 subpopulations of C. chinensis. Below the
diagonal, the number in the box is the pairwise Fst value between a vertical subpopulation and a horizontal subpopulation. Above the diagonal, pairwise Fst value is
reflected by area and color of the square. The higher the Fst value is, the larger the colored area is. The color referring to the Fst value range is indicated in the
column chart on the far right. The P-value is the probability calculated via significance test. ** indicates P < 0.01, *** indicates P < 0.001.

to human selection show decreased diversity consistent with
genetic bottleneck effects (Liu et al., 2020). This apparent
loss of genetic diversity likely stems from the occurrence of
population bottlenecks during domestication, which has been
widely observed in crop species (Mandel et al., 2011; Zhou et al.,
2015; Mastretta Yanes et al., 2018).

Medicinal plants might also undergo bottlenecks when
subjected to artificial selection. In this study, we showed that a
traditional herbal plant that has been cultivated for 700 years
(Ccc) has experienced a severe genetic bottleneck and shows
extremely low diversity. Compared with Ccb, the Pi of Ccc
(0.00032) was only a quarter of that of Ccb (0.00138). The
genetic differentiation (Fst) of wild and cultivated populations
also indicated that the cultivated population experienced a
genetic bottleneck. Previous studies have indicated that Angelica

sinensis, a medicinal plant that has been cultivated for 2,000 years,
has experienced a severe genetic bottleneck (Wang, 2020).
By contrast, Scutellaria baicalensis, which has only been
cultivated for approximately six to seven decades, has not
undergone a genetic bottleneck (Yuan et al., 2010). Thus,

TABLE 2 | Analyses of molecular variance (AMOVA) of Ccc and Ccb.

Group Source of variation Percentage of variation (%)

Ccc Among populations 4.94*

Within populations 95.05*

Ccb Among populations 80.87**

Within populations 19.13**

*P < 0.01 and **P < 0.001.
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FIGURE 6 | TCS network for all 227 accessions based on 25,197 cpDNA fragments. Circle size is proportional to haplotype frequency. Different colors indicate
different subpopulations from different distributions, and missing haplotypes are indicated by black dots. Mutational steps are indicated by hatchures (if the number
of steps is less than 20) and number (if the number of steps is greater than 20).

medicinal plants might undergo bottlenecks following several
rounds of artificial selection. Aside from artificial selection and
founder effects, admixture has also played an important role
in shaping patterns of genetic diversity. Longer periods of
cultivation provide greater opportunity for admixture among
genetically similar, selected subpopulations, which exacerbates
the bottleneck effect.

Phylogeographic analysis demonstrated that the wild and
cultivated populations were distinct, which is consistent with
the results of the network analysis, PCA, and STRUCTURE
analysis. The highly mixed germplasm of Ccc with little
population differentiation could be roughly divided into two or
three genotypes that were not congruent with their geographic
distributions. By comparison, the differences in the genotype
composition of the Ccb subpopulations were congruent with
geographic differences among Ccb subpopulations, and some
gene flow occurred among neighboring populations. This
medicinal species provides an ideal model for evaluating the
genetic and phylogeographic consequences of domestication on
wild and cultivated populations. The lack of genetic diversity
in cultivated C. chinensis potentially stems from a series of
bottlenecks that occurred during its domestication, and this
is thought to increase its susceptibility to diseases. Ccc is
cultivated over large areas (0.32 million mus) in China, and
it is an important resource for many industries and a large
segment of the human population. The problems posed by
root rot require urgent attention, and the solution to this

problem might lie in the effective use of the genetic reservoirs of
wild populations.

Identification and Conservation of
Cultivated and Wild C. chinensis
Breeding disease-resistant individuals from wild populations is
a long process that requires several steps. First, measures to
protect wild resources need to be implemented. Ccc and Ccb
are difficult to distinguish morphologically in the non-flowering
period, especially in the seedling stage; thus, efficient approaches
for distinguishing between wild and cultivated C. chinensis need
to be developed. DNA barcoding could be used to facilitate
species identification. Most hot spots were identified through
comparisons of various sequences in this study, such as ycf1,
trnHpsbA, trnK-rps16, and rpl32, which have been widely used
as barcodes for discriminating between species or reconstructing
phylogenies (Kress and Erickson, 2007; Dong et al., 2014, 2015).
These sequences could also be used to develop markers for
the identification of wild and cultivated C. chinensis. Among
the 111 marker pairs generated for MPS, 38 pairs show
population-specific variation (SNPs or indels) that could be used
for discrimination (Supplementary Table 5).

Genetic diversity is closely associated with the adaptive
evolutionary potential and reproductive fitness of populations.
The maintenance of genetic diversity is a primary focus of
the management of wild populations, especially for endangered
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species. The genetic diversity of Ccb was high, and the
phylogeography of subpopulations was congruent with their
geographic distributions. Thus, in situ conservation strategies
are needed for Ccb. Smaller populations and endangered species
often exhibit lower genetic diversity levels (Frankham et al.,
2002); however, the diversity of Ccb was high. Habitat destruction
and the harvesting of these herbs by humans in recent decades
are responsible for its endangered status. When population
sizes are low, genetic drift plays a critical role in shaping the
genetic structure of populations. The diversity of endangered
wild resources may decrease over time, which makes them more
susceptible to environmental changes such as changes in climate.
Aside from in situ conservation and preservation of wild habitat,
the population size of wild populations needs to be increased
while maintaining their high levels of genetic diversity.

Ccc has experienced a severe genetic bottleneck due to its
cultivation. Several measures need to be taken to revert this trend.
Seed exchange should be more carefully controlled, and wild
genotypes should be utilized in the cultivation process. Thus,
we suggest that a government-established germplasm resource
nursery with several genotypes be initiated to minimize the
inbreeding of Ccc. The decrease in diversity could be mitigated
if the government or research institutes played greater roles in
regulating the distribution of seedlings rather than the private
sector. Overall, the information on the plastids and the hotspot
regions obtained in this study are important for protecting wild
resources and guiding the establishment of cultivated germplasm
resource nurseries.
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