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Field pea is the most commonly grown temperate pulse crop, with close to 15 million

tons produced globally in 2020. Varieties improved through breeding are important to

ensure ongoing improvements in yield and disease resistance. Genomic selection (GS)

is a modern breeding approach that could substantially improve the rate of genetic gain

for grain yield, and its deployment depends on the prediction accuracy (PA) that can be

achieved. In our study, four yield trials representing breeding lines’ advancement stages

of the breeding program (S0, S1, S2, and S3) were assessed with grain yield, aerial high-

throughput phenotyping (normalized difference vegetation index, NDVI), and bacterial

blight disease scores (BBSC). Low-to-moderate broad-sense heritability (0.31–0.71) and

narrow-sense heritability (0.13–0.71) were observed, as the estimated additive and non-

additive genetic components for the three traits varied with the different models fitted.

The genetic correlations among the three traits were high, particularly in the S0–S2

stages. NDVI and BBSC were combined to investigate the PA for grain yield by univariate

and multivariate GS models, and multivariate models showed higher PA than univariate

models in both cross-validation and forward prediction methods. A 6–50% improvement

in PA was achieved when multivariate models were deployed. The highest PA was

indicated in the forward prediction scenario when the training population consisted of

early generation breeding stages with the multivariate models. Both NDVI and BBSC are

commonly used traits that could be measured in the early growth stage; however, our

study suggested that NDVI is a more useful trait to predict grain yield with high accuracy

in the field pea breeding program, especially in diseased trials, through its incorporation

into multivariate models.
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INTRODUCTION

Field pea or dry pea (Pisum sativum L.) is an annual pulse crop widely grown in all major
cropping regions, including North America, Russia, India, Australia, etc. (Zohary, 1999), with
global production of 15 million tons in FAOSTAT (2020). It is an important staple legume
with high nutritional value and high protein content, as well as being able to be harvested
as hay or used for forage in poor seasons (Burstin et al., 2011; Amarakoon et al., 2012).
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In low-input farming systems, field pea is grown as a significant
rotational crop, providing benefits of improved soil fertility,
a disease break, and giving better options for weed control
(Pritchard, 2015; Powers and Thavarajah, 2019). More recently,
field pea has been used as a protein source for meat substitution
products in the food manufacturing industry due to its low price
and lower allergenic nature (Bashi et al., 2019).

Field pea is a cool-season crop, and grain yield can
vary dramatically, from 0.5–1 to 4–5 t/ha depending on
environmental conditions (Smýkal et al., 2012). Conventional
breeding has improved the field pea grain yield by improving
desirable traits, such as early vigor, flowering time, and plant type,
and by deploying diverse genetic resources (Lejeune-Henaut
et al., 2008; Sadras et al., 2012; Singh and Srivastava, 2015; Coyne
et al., 2020). Molecular markers have been identified in gene or
QTLmapping and association studies for important agronomical
traits, although such studies are limited compared with cereal
crops (Cheng et al., 2015; Tayeh et al., 2015a; Kreplak et al., 2019).
Marker-assisted breeding approaches that have the potential to
improve productivity have been outlined (Tayeh et al., 2015b;
Pandey et al., 2021).

Diseases are the major constraint to yield in all crop species,
and breeding for resistance is a valuable aim. In field pea, grain
yield has been shown to be heavily impacted by biotic stresses,
such as rust and Ascochyta blight (Bretag et al., 2006; Rai et al.,
2011). In recent years, bacterial blight (Pseudomonas syringae pv.
pisi Sackett and Pseudomonas syringae pv. syringae van Hall ) has
become one of the most important diseases in Australia’s field pea
production (Hollaway et al., 2007). If initiated in the early growth
stages, it can cause up to 60% yield loss of susceptible varieties
under conducive conditions (Hollaway et al., 2007).

Field-based assessments of disease and yield in variety
trials are often challenging due to the subjective nature of
measurements. Remote sensing technologies have the potential
to objectively assess traits in the field. Sensors deployed in an
unmanned aerial system (UAS) have the capacity to become high-
throughput platforms (HTP) that can assess many thousands of
lines in a short period of time (Huang et al., 2020). Normalized
difference vegetation index (NDVI) generated from a high-
throughput phenotyping platform has been used to study its
association with disease resistance in chickpea (Zhang et al.,
2019), plant height in maize (Han et al., 2019), and phenology
in rice (Yang et al., 2017). In field pea, NDVI has been used in the
study of lodging (Quiros Vargas et al., 2019), and high correlation
of around 0.83 was observed between NDVI and yield (Zhang
et al., 2021).

Genomic selection (GS) is a modern breeding method that
combines genotypes and phenotypes of a training population
to predict breeding values in genotyped but not phenotyped
individuals by using appropriate statistical models. The breeding
values can then be used for selection in the breeding process
(Meuwissen et al., 2001). It is assumed that causal variants
underlying a trait are in linkage disequilibrium (LD) with at least
one marker when using high-density genome-wide molecular
markers. Therefore, GS could account for all causal variants
and, theoretically, is expected to outperform pedigree or marker-
assisted selection (Goddard andHayes, 2007). GS has been widely

studied in cereal crops (Crossa et al., 2017; Robertsen et al.,
2019). It has been tested in a diverse pea collection, and high
prediction accuracy (PA) was achieved for thousand seed weights
(Burstin et al., 2015). Using the recombinant inbred line (RIL)
populations, PA for grain yield ranged from 0.19 to 0.30 for
cross-validation between populations and within populations
(Annicchiarico et al., 2019).

The univariate or single-trait genomic prediction model is the
most common method used in crop GS (de Los Campos et al.,
2013; Wang et al., 2018; Zhao et al., 2021). However, additional
information in genetically correlated traits can be exploited to
improve prediction accuracies via multivariate models. Such
approaches have been investigated in wheat, rice, and soybean
(Jia and Jannink, 2012; Bao et al., 2015; Wang et al., 2017; Gill
et al., 2021).

In Australia, the field pea breeding program started in the
1970s (Hawthorne et al., 2003), and its production currently
averages about 250,000 tons per year, equating to 10–15% of
the annual Australian pulse crops. The growing area of field
pea covers Victoria, South Australia, Western Australia, and
New South Wales (GRDC, 2018). As an important cash crop,
incorporating GS to improve grain yield in the future field
pea breeding program is critical. The aims of this study were
to (1) estimate variance components and heritability for yield,
NDVI, and bacterial blight scores (BBSC); (2) calculate the
genetic correlation among the three traits; and (3) assess the
genomic PA for grain yield by combining NDVI and BBSC
with the multivariate models under cross-validation and forward
independent prediction scenarios. This study was established to
evaluate the potential to predict grain yield for field pea using
phenotypic traits collected through HTP field phenotyping and
disease scores, and to facilitate the implementation of GS in the
field pea breeding program.

MATERIALS AND METHODS

Plant Material and Field Trials
In 2018, the field pea breeding program had four breeding
stages, represented as stages 0 (S0), 1 (S1), 2 (S2), and 3 (S3),
which had decreasing numbers of entries due to the artificial
selection conducted in the breeding cycle. Breeding lines in each
cycle were selected from the respective previous staged breeding
lines from 2017, i.e., S3 lines were selected from the 2017 S2
lines. The S0 stage consisted of 960 newly generated lines, with
S1, S2, and S3 trials having 420, 240, and 144 breeding lines,
respectively. Pedigree of all breeding lines are included in the
Supplementary Table 1.

All trials were sown in Horsham, Victoria (36◦43
′
58.79

′′
S,

142◦05
′
15.02

′′
E) in a completely randomized block design with

two replicates, apart from the S0 trial which was partially
replicated. The plots in all trials were arranged in 12 columns,
with each plot being 5m long and 1.25m wide with five rows
spaced at 0.25m each. Visual scores of BBSC were recorded
on a 1–10 scale from each plot when disease infection was at
its peak (pod filling stage). Briefly, score 1 represented a plot
that had 0–10% plants affected by the disease, 2 represented
a plot with 10–20% plants affected by the disease, and so
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on. Plots were machine-harvested, and grain weights were
recorded. The plot weights were converted to yield (tons/ha)
using a plot width of 1.75m. Weather data during the growing
season were obtained from a weather station installed at
the site (Supplementary Figure 1). Chemical applications were
according to local farmer practice.

Aerial Image Acquisition, Processing, and
Analysis
The aerial images were acquired when disease infection was at
maximum, at the early pod filling stage, using a multispectral
Parrot Sequoia camera (Parrot S. A., Paris, France) attached
to a UAS. The camera had four discrete channels, namely, red
(660 nm), green (550 nm), red-edge (735 nm), and near-infra-red
(790 nm), and an RGB sensor. The application “Tower” was used
to automate the flight mission with a front and side overlap of
75% each, at a speed of 5 m/s, and conducted at 40m above
ground level to estimate NDVI. These flight parameters delivered
high-resolution orthomosaics with a ground sampling distance of
2.69 cm. The acquired images were processed using the software
Pix4D mapper Pro (Pix4D, Lausanne, Switzerland) to generate
high-resolution orthomosaics and NDVI maps (Gebremedhin
et al., 2020). In brief, the images were imported into the Pix4D
software and radiometrically corrected using a known reflectance
source, the Airinov calibration plate (Airinov, Paris, France),
to generate orthomosaics and NDVI TIFF images. These TIFF
files were imported into ArcGIS Pro version 2.1 (https://www.
arcgis.com/) to estimate plot level NDVI values. The rectangular
polygons with a unique number (plot number) were created and
overlaid on the NDVI orthomosaics image to extract plot level
average NDVI values for each trial.

Genotyping
Eight seeds from each line of field pea were germinated, leaf
tissue samples of five seedlings were pooled, and total RNA was
extracted using RNeasy R© 96 Kit (Qiagen, Hilden, Germany).
RNA-Seq libraries were prepared using SureSelect stranded
RNA library preparation kit (Agilent Technologies, Santa Clara,
CA) following the manufacturer’s instructions (Malmberg et al.,
2018), and sequencing was performed on either the HiSeq 3000
or Novaseq system (Illumina Inc., San Diego, USA) to a depth
of 4–5 million paired reads per sample. The sequence reads
were filtered and aligned to the field pea reference genome,
Pisum_sativum_v1a.fa of cultivar Cameor (Kreplak et al., 2019).
Variant calling was performed using GATK (Van der Auwera
et al., 2013), and SNP filtering was performed with read depth
(DP≥ 5), missing rate (<60%), and base quality (Q30). Genotype
imputation was performed using the Beagle package (Browning
and Browning, 2007). A total of 1,453 lines with 47,352 SNPs
(40% heterozygosity) were used for genomic prediction.

The genomic relationship matrix (GRM) was calculated for all
lines according to VanRaden (2008). Each breeding population
GRM was extracted from the combined GRM. A heatmap sorted
by hierarchical clustering based on the GRM in each breeding
cycle was combined and plotted in R. The principal component
analysis (PCA) based on combined GRM was performed to
visualize cluster information across the breeding cycles.

Statistical Analysis
All statistical analyses were conducted in ASReml (Gilmour
et al., 2015), and variance components were estimated with
implemented restricted maximum likelihood (REML) method.

Univariate Models
The general form of the univariate linear mixed model was
as follows:

y = Xb + Zgg + Zrr + Zcc + ε (1)

where y is a vector of phenotypic values for each line, and b is a
vector of fixed effects, including the mean and replications. For
the basic best linear unbiased prediction (BLUP) model, g is a
vector of random genetic effects of lines ∼ N (0, Iσ 2

G), I is an
identity matrix, and σ 2

G is the genetic variance due to lines; for the
additive genetic model with pedigree information, g is a vector
of random additive genetic effects explained by pedigree, and I

is replaced with A, a numerator relationship matrix based on
pedigree, referred to as ABLUP; with G, a genomic relationship
matrix calculated from SNP markers, referred as GBLUP; with
fitting A and G simultaneously, referred as AGBLUP. σ 2

a is the
additive genetic variance captured by pedigree; σ 2

g is the additive
genetic variance explained by markers; r and c are the vectors
of random field design effects for row and column; ε includes
the independent measurement residual ∼ N (0, Iσ 2

e ), and the
spatial dependent residual, which includes the row and column
two-dimensional covariance, R =

∑

r (pr) ⊗
∑

c (pc). X, Zg, Zr ,
and Zc are the incidence matrices associating phenotypes with
fixed and random effects of b, g, r, and c, respectively. The non-
additive genetic component was also estimated by fitting line
effects in addition to pedigree and marker effects in model 1.
We assumed that the variance explained by pedigree and marker
effects were associated with additive effects, and the remaining
genetic variance explained by lines was due to non-additive
genetic effects.

Best linear unbiased estimates (BLUE) were calculated using a
univariate model similar to the BLUP model, but the breeding
lines were fitted as fixed effects. BLUEs were used as adjusted
phenotypic data to calculate the genomic PA in different models
(Supplementary Table 2).

Multivariate Models
The multivariate model with three traits, also referred to as the
BLUP multivariate model, was illustrated as follows:





y1
y2
y3



 =





X1 0 0
0 X2 0
0 0 X3









b1
b2
b3



 +





Zg1 0 0
0 Zg2 0
0 0 Zg3









g1
g2
g3



 +





Zr1 0 0
0 Zr2 0
0 0 Zr3









r1
r2
r3



 +





Zc1 0 0
0 Zc2 0
0 0 Zc3









c1
c2
c3



 +





ε1
ε2
ε3



 (2)

where the model terms for traits 1, 2, and 3 were similar to the

previously described univariate model. In this model,





g1
g2
g3



 ∼
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N (0, I ⊗ T) where T =







σ 2
g1 σg12 σg13

σg12 σ 2
g2 σg23

σg13 σg23 σ 2
g3






is the variance-

covariance matrix of three traits; and




ε1
ε2
ε3



 ∼ N(0, I ⊗ R) where R =





σ 2
e1 σe12 σe13

σe12 σ 2
e1 σe23

σe13 σe23 σ 2
e1



 is the

independent residual variance and covariance matrix for three
traits as described for the univariate model. I is the incidence
matrix. When I was replaced with G, the model was referred to
GBLUP multivariate model.

Heritability and Genetic Correlation
Broad-sense heritability (H2) for each trait was calculated as the
proportion of phenotypic variance explained by genetic variance
(σ 2

G), which was estimated with univariate models; where σ 2
G

is the genetic variance of lines, σ 2
e is the random independent

residual error variance, and rep is the trial replicates number
(Holland et al., 2002).

H2 = σ 2
G/( σ 2

G + σ 2
e /rep)

Narrow-sense heritability (h2) was represented as ha
2, narrow-

sense heritability captured by pedigree; hg
2, narrow-sense

heritability captured by markers; ha+g
2 , narrow-sense

heritability captured by pedigree and markers, and they
were estimated as follows:

h2a = σ 2
a /(σ 2

a + σ 2
e /rep),

h2g = σ 2
g /(σ 2

g + σ 2
e /rep),

h2(a + g) = (σ 2
a + σ 2

g )/(σ
2
a + σ 2

g + σ 2
e /rep),

where σ 2
a is the additive genetic variance explained by pedigree

(A), and σ 2
g is the additive genetic variance explained by makers

(G). When non-additive genetic effects were decomposed,
narrow-sense heritability could be estimated the same way
but the variance of line effects was added to the total
phenotypic variance.

Genetic correlation (rG) between traits was calculated using
the variance components estimated from BLUP multivariate
models in four breeding populations, where σ 2

Gi and σ 2
Gj are the

total genetic variance of traits i and j, and σ 2
Gij is the total genetic

covariance between traits i and j.

rG =
σGi,j

√

σ 2
Giσ

2
Gj

In GBLUP multivariate model, the additive genetic correlation
(rg) between traits was calculated in the same way but with
additive genetic variance, and covariance of traits was based onG.

Genomic Prediction and Validation
The genomic prediction was evaluated for grain yield with
the GBLUP univariate model and GBLUP multivariate models,
including fitting both the NDVI and yield together as a bivariate
model and fitting NDVI, BBSC, and yield as amultivariate model.
The PA was defined as Pearson’s correlation coefficient between
genomic estimated breeding values (GEBVs) and BLUEs. In the
cross-validationmethod, all lines within each breeding cycle were
randomly divided into five equal subsets. Each subset was, in
turn, chosen as the validation set and was subsequently predicted
by using the other four subsets as the training set. The cross-
validation process was repeated five times, and mean PA and

FIGURE 1 | Box plots of grain yield, NDVI, and BBSC across the breeding

stages (S0–S3).
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standard deviation (SD) were calculated across all 25 validation
sets. In the forward prediction method, the training set consisted
of one or multiple breeding stages previous to the validation
breeding stage. A total of six scenarios were tested using GBLUP
models, including using traits in the S0 to independently predict
S1, S2, and S3; combining S0 and S1 to predict S2 and S3; and
combining S0, S1, and S2 to predict S3.

RESULTS

Summary Statistics of the Traits
Summary statistics of grain yield, NDVI, and BBSC for the four
breeding stages are shown in Figure 1. The average grain yield
varied across the stages. S2 had the lowest average grain yield,
while the other three stages had average grain yields of≈2.5 t/ha.
The average NDVI was consistent, and S3 showed the lowest
NDVI. The average BBSC varied dramatically across stages. S1
and S3 showed lower BBSC than S0 and S2.

Population Structure
In total, 1,453 breeding lines with 47,352 SNPs were used to
calculate the GRM. With all stages combined, three groups
could be observed according to the dendrogram with different
levels of relatedness among lines within and between the
groups (Supplementary Figure 2). When the GRM was ordered
according to breeding stages, highly related lines across stages
were observed (Figure 2). S0 was the largest breeding stage
and had 738 lines with genotypic data. Two main subgroups
of closely related individuals within S0 had close relatives
in S1, S2, and S3 (Figure 2, Supplementary Figure 3). There
were 356 genotyped lines in S1, and some of them had close
relationships with each other. One of the highly related S1

subgroups had close relatives in S2 and S3 but not in S0 (Figure 2,
Supplementary Figure 3). In S2 and S3, 223 and 136 lines were
genotyped, respectively. The heatmaps for the subset of the GRM
for each stage clearly showed more highly related lines within
S3 than S1 (Supplementary Figure 3). According to PCA based
on the GRM, the first three PCs explained nearly 70% of the
total variance, and the plots for 1st, 2nd, and 3rd PCs further
showed that all stages of the breeding lines generally overlapped
(Supplementary Figure 4).

Variance Components and Heritability
Estimating variance components from different breeding stages
will help us understand the breeding population, especially
when selection is conducted at each breeding cycle. The genetic
parameters estimated for each trait would help us to observe
the traits’ genetic architecture. Overall, the non-additive genetic
variance was observed for all three traits, but its proportion
varied with models fitted and varied across breeding stages.
The estimated h2 was reduced in most cases for all traits when
including non-additive genetic components while the estimated
error variances were not reduced. The proportion of total genetic
variation explained by additive genetic effects, represented as the
estimated hg

2 (by marker), was comparable to ha
2 (by pedigree)

when the non-additive genetic variance was not included.
When combining all breeding stages together, the estimated

broad-sense heritability (H2) was 0.58, 0.47, and 0.38 for grain
yield, NDVI, and BBSC, respectively (Table 1). The estimated
narrow-sense heritability (h2, represented as ha

2, hg
2, and

h(a+g)
2) was lower than H2 for combined stages and each

breeding stage except for NDVI. The estimated h2 for grain yield
ranged from 0.33 to 0.52, and the estimates were reduced and
ranged from 0.25 to 0.46 when line effects were included in

FIGURE 2 | Heatmap of the genomic relationship matrix (GRM) for field pea breeding stages represented with differed colors (S0_pink, S1_red, S2_orange, and

S3_yellow). The colors within the GRM indicate the degree of relatedness between breeding lines (high relationships are shown in green, and low relationships are

shown in blue).
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TABLE 1 | Total genetic variance (σ 2
G
), additive genetic variance (σ 2

a or σ 2
g ), and non-additive genetic variance (σ 2

Gl
) of grain yield, NDVI, and BBSC at each breeding stage, and broad (H2) and narrow-sense heritability

(h2) and their standard error (SE) from model 1—univariate models.

Grain yield NDVI BBSC

S0–3 S0 S1 S2 S3 S0–3 S0 S1 S2 S3 S0–3 S0 S1 S2 S3

Line σG 0.088 0.11 0.06 0.045 0.06 0.0009 0.0014 0.0003 0.0004 0.001 0.44 0.54 0.28 0.41 0.32

σe 0.13 0.16 0.1 0.07 0.05 0.002 0.002 0.0008 0.0008 0.002 1.46 0.71 0.88 0.80 1.4

H2
G 0.58 0.51 0.55 0.56 0.71 0.47 0.51 0.43 0.5 0.5 0.38 0.53 0.39 0.51 0.31

SE 0.02 0.04 0.04 0.05 0.06 0.02 0.04 0.03 0.05 0.06 0.02 0.05 0.03 0.05 0.05

Pedigree σa 0.061 0.07 0.04 0.03 0.04 0.0006 0.0007 0.0003 0.0003 0.0007 0.28 0.29 0.19 0.31 0.20

σe 0.13 0.16 0.09 0.07 0.05 0.002 0.002 0.0008 0.0008 0.002 1.35 0.68 0.84 0.81 1.46

ha
2 0.48 0.4 0.47 0.46 0.62 0.38 0.34 0.43 0.43 0.41 0.29 0.39 0.31 0.43 0.22

SE 0.02 0.04 0.03 0.05 0.06 0.02 0.04 0.03 0.04 0.05 0.02 0.04 0.03 0.04 0.04

Pedigree + line σa 0.04 0.06 0.04 0.03 0.022 0.0005 0.0006 0.0001 0.0003 0.0007 0.26 0.29 0.19 0.31 0.13

σGl 0.02 0.016 0 0 0.023 0.0002 0.0002 0.0002 0 0 0.03 0 0 0 0.14

σe 0.13 0.16 0.09 0.07 0.05 0.002 0.002 0.0008 0.0008 0.002 1.35 0.68 0.84 0.81 1.42

ha
2 0.32 0.33 0.47 0.46 0.31 0.29 0.28 0.14 0.43 0.41 0.27 0.39 0.31 0.43 0.13

SE 0.04 0.05 0.03 0.05 0.12 0.03 0.05 0.05 0.04 0.12 0.02 0.04 0.03 0.04 0.04

Marker σg 0.076 0.06 0.04 0.03 0.06 0.0009 0.0009 0.0002 0.0004 0.001 0.39 0.32 0.16 0.31 0.31

σe 0.14 0.18 0.1 0.08 0.05 0.002 0.002 0.0008 0.0008 0.002 1.37 0.76 0.85 0.81 1.42

hg
2 0.52 0.33 0.44 0.43 0.71 0.47 0.4 0.33 0.5 0.5 0.36 0.39 0.27 0.43 0.3

SE 0.03 0.04 0.04 0.06 0.07 0.03 0.04 0.04 0.05 0.06 0.02 0.04 0.03 0.05 0.05

Marker + line σg 0.047 0.05 0.03 0.02 0.02 0.0006 0.0008 0.0001 0.0004 0.0008 0.27 0.3 0.16 0.25 0.2

σGl 0.031 0.04 0.009 0.01 0.04 0.0003 0.0004 0.0002 0 0.0001 0.1 0.05 0.01 0.09 0.12

σe 0.12 0.16 0.1 0.07 0.05 0.0015 0.002 0.0008 0.0008 0.002 1.32 0.73 0.84 0.79 1.4

hg
2 0.34 0.25 0.34 0.31 0.24 0.36 0.32 0.14 0.5 0.42 0.26 0.36 0.27 0.34 0.2

SE 0.03 0.04 0.05 0.07 0.08 0.03 0.04 0.04 0.05 0.1 0.02 0.04 0.04 0.05 0.07

Pedigree + marker σa 0.027 0.028 0.014 0.018 0.036 0.0003 0.0003 0.0001 0.0001 0.0002 0.09 0.1 0.005 0.1 0.08

σg 0.04 0.043 0.025 0.016 0.004 0.0005 0.0006 0.0001 0.0002 0.0006 0.24 0.23 0.16 0.22 0.2

σe 0.13 0.16 0.1 0.07 0.05 0.002 0.002 0.0008 0.0008 0.002 1.3 0.69 0.85 0.8 1.41

ha+g
2 0.51 0.4 0.44 0.49 0.62 0.44 0.4 0.33 0.43 0.44 0.34 0.42 0.28 0.44 0.28

SE 0.03 0.04 0.04 0.05 0.06 0.03 0.04 0.04 0.05 0.06 0.02 0.04 0.03 0.05 0.05

Pedigree + marker + line σa 0.013 0.02 0.014 0.016 0.02 0.0003 0.0003 0.00004 0.0001 0.0002 0.076 0.1 0.002 0.083 0.062

σg 0.038 0.04 0.025 0.016 0.003 0.0005 0.0001 0.0001 0.0002 0.0006 0.24 0.23 0.15 0.21 0.18

σGl 0.02 0.02 0 0.002 0.02 0.00006 0.0001 0.0001 0 0 0.025 0 0.008 0.015 0.05

σe 0.12 0.16 0.1 0.07 0.05 0.0015 0.002 0.0008 0.0008 0.002 1.3 0.69 0.84 0.79 1.4

ha+g
2 0.39 0.32 0.44 0.46 0.34 0.5 0.22 0.22 0.43 0.44 0.32 0.42 0.26 0.42 0.24

SE 0.03 0.05 0.04 0.1 0.11 0.04 0.05 0.05 0.05 0.06 0.02 0.04 0.04 0.07 0.08
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TABLE 2 | The genetic correlation and the standard error (SE) between traits estimated with BLUP and GBLUP models within each breeding stage.

Yield to NDVI Yield to BBSC NDVI to BBSC

Stage rG SE rG SE rG SE

BLUP S0 0.80 0.057 −0.76 0.07 −0.84 0.07

S1 0.75 0.10 −0.72 0.135 −0.94 0.15

S2 0.89 0.10 −0.75 0.096 −0.86 0.11

S3 0.83 0.17 −0.35 0.18 −0.13 0.25

GBLUP S0 0.78 0.058 −0.78 0.065 −0.88 0.042

S1 0.79 0.06 −0.70 0.078 −0.76 0.072

S2 0.85 0.07 −0.78 0.076 −0.86 0.07

S3 0.14 0.19 −0.44 0.23 −0.19 0.27

TABLE 3 | The mean and standard deviation (sd) of PA for grain yield within each breeding stage in the cross-validation method with the univariate, bivariate, and

multivariate models.

Univariate model Bivariate model Multivariate model

Lines Mean SD Mean SD Mean SD

S0 738 0.41 0.07 0.60 0.05 0.61 0.04

S1 356 0.50 0.08 0.53 0.07 0.53 0.09

S2 223 0.39 0.14 0.49 0.13 0.54 0.13

S3 136 0.28 0.11 0.26 0.15 0.23 0.15

the model for stages 0–2. Stage 3 showed higher estimated h2

when line effects were not included. The estimated h2 value for
NDVI wasmoderate, ranging from 0.33 to 0.50 without including
line effects. Including line effects in the model reduced the h2

dramatically in S1. S3 showed the highest estimated h2 compared
with other stages. The estimated h2 for BBSC was not reduced
much when including and excluding line effects for S0 to S2,
ranging from 0.26 to 0.4; however, the h2 estimated for S3 was
lower than that in other stages.

Genetic Correlation
The BLUP and GBLUP multivariate models showed nearly
identical correlation patterns between traits (Table 2). In S0, S1,
and S2, grain yield showed a strong positive correlation with
NDVI both in the BLUP (0.75–0.89) and GBLUP (0.78–0.85),
and a strong negative correlation with BBSC in the BLUP (−0.72
to −0.76) and in the GBLUP (−0.70 to −0.78). The correlation
between NDVI and BBSC was also strong, ranging from −0.84
to −0.94 in the BLUP model and −0.76 to −0.88 in the GBLUP
model. In S3, the correlation among traits was lower except for
the strong correlation between yield and NDVI in the BLUP
model (0.83). The standard errors associated with the estimated
correlations were much higher in S3 compared with other stages.

Genomic Prediction Accuracy
Apart from the S3, the PA for grain yield with the cross-validation
method was higher in the bivariate model, which combined
yield and NDVI compared with univariate models (Table 3).
The difference in PA was more dramatic between univariate
and bivariate models compared with bivariate and multivariate
models, which combined yield, NDVI, and BBSC. Using the

bivariate model, in S0, the PA improved from 0.41 to 0.60, a
nearly 50% increase, while in S2, the accuracy improved from
0.39 to 0.49, about a 25% increase. In S1, the PA increased from
0.5 to 0.53, about a 6% increase with the bivariate model. The PA
was low in S3, and the highest PA of 0.28 was achieved with the
univariate model.

The PA was generally lower in the forward validation method
compared with cross-validation except for S3 when S0–S2 were
used as a training set (Figure 3). Using S0 as a training population
to predict the yield in S1, S2, or S3, the bivariate model
dramatically increased the PA, about 60% improvement was
observed to predict S2. When combining breeding populations,
using S0 and S1 to predict S2 or S3, PA was increased in bivariate
and multivariate models. When S0, S1, and S2 were combined
and used to predict S3, all models showed PA above 0.3, whereas
the multivariate model had the highest PA (0.33).

DISCUSSION

Increasing the grain yield in field pea could increase the crop’s
economic return and attract farmers to grow the crop. GS is a
modern breeding approach that could substantially improve the
rate of genetic gain for grain yield. Its deployment depends on the
PA that can be achieved. Traits that are correlated with grain yield
have the potential to improve PA through the incorporation into
the GS models. In this study, we investigate combining NDVI
and BBSC in multivariate models to improve PA of grain yield
in field pea.

The univariate models have been applied in pea GS studies,
and PA for seed yield within the population reached 0.3 with
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FIGURE 3 | The PA for forward prediction scenarios where one or multiple breeding stages were used as the training set to predict the grain yield in the next breeding

stage with different models (uni, univariate; bi, bivariate; multi, multivariate).

the Bayesian Lasso model and 0.42 with the Reproducing kernel
Hilbert space model (Annicchiarico et al., 2019; Bari et al., 2021).
Using the GBLUP multivariate model, we achieved higher PA,
around 0.5 within the population and above 0.4 when using the
forward prediction method for grain yield, supporting that the
multivariate model could improve PA in pea genome prediction.
We observed close to a 50% PA increase when using bivariate
models to predict grain yield, while a study in wheat reported
about 70% increase in PA with the multivariate models (Rutkoski
et al., 2016). In our study, NDVI and BBSC are both highly
correlated with yield in S0–S2 stages. However, the correlation
among traits in S3 was low. The reason was not very clear, but
the small population size, close relationship between lines, and
high inbreeding could impact the correlation pattern. Within
S3, the PA of yield was lower in the multivariate model than
the univariate model, suggesting that correlations between traits
were important in multivariate models to improve PA. Similar
conclusions were also observed with the multivariate studies
in barley and wheat (Hayes et al., 2017; Bhatta et al., 2020).
However, a sorghum GS study showed that high heritability with
low correlations could also improve the PA when combined with
multivariate models (Velazco et al., 2019). We observed that

when we added the third highly correlated trait, BBSC, into the
model, PA improvement was limited compared with the bivariate
model. This is likely due to the high correlation between NDVI
and BBSC and the low heritability of BBSC, resulting in less
additional information to further improve the predictions.

The training population size is critical in achieving sound
PA, and this can be an issue in smaller breeding programs that
are not well resourced. Including the previous generation in the
training population is an effective way to increase the PA, and
this has been shown in several studies (Auinger et al., 2016;
Gill et al., 2021). In the current pea breeding program, the
breeding materials were descendants of more than 100 founder
lines (Supplementary Table 1). The recycling of highly adapted
parents in the crossing program induced the inbred nature of
the current breeding population, although Burstin et al. (2015)
highlighted the existence of large genetic diversity within the
Pisum sativum genepool. All the breeding lines in different
breeding stages have gone through different selection cycles. For
example, breeding lines in advanced trials such as S2 and S3 were
selected based on yield data and phenology, disease resistance,
and abiotic stress tolerance from multi-location environment
trials. In contrast, breeding lines in early-stage trials such as S0
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and S1 were selected based on limited data and came through
fewer cycles of selection. When combining early breeding stages
to increase the reference population size, the relatedness between
lines and diverse selection environments could be beneficial for
predicting the later breeding cycle. We observed a higher PA
in all the forward prediction scenarios, especially in S3, and
was higher than the PA that cross-validation achieved when all
the previous stages were combined and used as the training
population. This supports the work of Bari et al. (2021), which
showed that an increase in the size of the reference population
could increase PA and reported similar PA (0.27–0.48) for
pea yield.

The heritability of traits is important in GS and could affect
the PA as genomic prediction depends on the precisely estimated
SNP effects and the proportion of the variance explained by
the SNPs (Daetwyler et al., 2008; Goddard, 2009). Narrow sense
heritability (h2) can be estimated using the pedigree information,
the proportion of variance explained by numerator A matrix
(Oakey et al., 2006), or using the molecular marker information,
the proportion of variance explained by G matrix (Goddard
et al., 2011). Our study estimated variance components and h2

with ABLUP, GBLUP, and AGBLUPmodels. The additive genetic
variance explained bymarkers was comparable with the pedigree,
indicating that SNPs used in our study could reflect the similarity
between lines. However, a proportion of the genetic variance
could not be captured by G when comparing the GBLUP model
with the AGBLUP model. This could be due to some causal
mutations segregated within families or lines, which were not
captured by the markers (Khansefid et al., 2014). In our study,
we also fitted the non-additive genetic effects in the model, and
we observed a reduction in the estimated h2. In contrast, the
estimated error variance was not reduced with or without the
line effects. This indicated that a proportion of variance explained
by line could be absorbed as additive genetic variance in the
ABLUP and GBLUP models, thereby inflating the estimation of
h2. Early studies supported those observations (Kumar et al.,
2015; Piaskowski et al., 2018). The impact of the non-additive
genetic effects on PA needs to be further studied.

Pea grain yield has been associated with rainfalls (annual
and growing season rainfall), minimum temperatures early in
the season, and maximum temperatures during seed filling.
In Australia, ≈70% of the field pea crop is grown in low
rainfall (<230mm) environments (Leonforte et al., 2013). In
2018, the season was relatively dry, receiving only 157mm
of rainfall during the entire growing season. Maximum and
minimum temperatures were cooler early in the season, and a
substantial number of frost hours (hours below freezing point)
were recorded throughout the season (Supplementary Figure 1),
encouraging the early season bacterial blight outbreak. Further,
the lack of follow-up rains meant that crops did not recover, and
substantial bacterial blight losses were observed in the farmer’s
field. High correlations between yield and BBSC within the
breeding population reflected the impact of bacteria blight on
grain yield in 2018. This severe bacterial blight epidemic was
not seen in other breeding program trials. Although it is a
limitation of this study with only 1 year of data in one location,
the use of four trials with different population sizes allowed the

investigation of traits’ correlation and the development of useful
prediction equations. Currently, phenotyping of yield and disease
traits in the breeding program can be a challenging task due
to the time and resource demands and the subjective nature
of measurements. As an important auxiliary trait in predicting
grain yield, NDVI has been used to predict yield in wheat (Sun
et al., 2017; Hassan et al., 2019). Our study revealed a high
correlation between NDVI and grain yield, consistent with the
recent study in pea observing a similarly high correlation, 0.85,
without biotic stresses (Zhang et al., 2021). High correlations
between NDVI and BBSC further support the effectiveness of
using NDVI in predicting pea grain yield. Our study indicated
that at an early stage, the prediction of grain yield with HTP in
field pea is feasible.

In conclusion, this study estimated the heritability for grain
yield, NDVI, and BBSC in a field pea breeding program, and it
also evaluated the genomic PA for grain yield with univariate
and multivariate models. The results showed that heritability
for all traits was low to moderate. However, strong genetic
correlations were observed among traits apart from S3. In both
cross-validation and forward prediction methods, we found that
the multivariate model outperformed the univariate models by
substantially improving PA. We also confirmed that with a
larger training set, a higher PA could be achieved when different
breeding stages were included in the training population. Field
phenotyping is costly and labor-intensive for large breeding trials.
Both NDVI and BBSC are commonly used traits in breeding
programs that could be measured in the early growth stage.
Our study has shown the potential of adopting NDVI with
multivariate models to improve grain yield PA. GS is becoming
popular among crop breeders to predict phenotypes, especially
yield. We showed that GS holds great potential for improving
grain yield in field pea breeding.
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