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Subcellular trafficking and 
post-translational modification 
regulate PIN polarity in plants
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Auxin regulates plant growth and tropism responses. As a phytohormone, 

auxin is transported between its synthesis sites and action sites. Most natural 

auxin moves between cells via a polar transport system that is mediated by 

PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually 

determine the directionality of intercellular auxin flow. Different internal cues 

and external stimuli modulate PIN polar distribution and activity at multiple 

levels, including transcription, protein stability, subcellular trafficking, and post-

translational modification, and thereby regulate auxin-distribution-dependent 

development. Thus, the different regulation levels of PIN polarity constitute a 

complex network. For example, the post-translational modification of PINs can 

affect the subcellular trafficking of PINs. In this review, we focus on subcellular 

trafficking and post-translational modification of PINs to summarize recent 

progress in understanding PIN polarity.
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Introduction

Auxin, the first plant hormone to be  discovered, participates in many plant 
developmental processes. Its synthesis, distribution, and degradation respond to a variety 
of signals, mainly light and gravity; for this reason, auxin function, synthesis, distribution, 
and degradation have been major focuses of research in plant biology. Auxin is usually 
synthesized in young cells, such as shoots, leaf primordia, and root tips, and then is 
redistributed to exert its function. There are two general modes for transporting auxin: 
long-distance transport and short-distance transport (Michniewicz et al., 2007a). Although 
auxin can be  transported via phloem vessels over long distances, it is short-distance 
transport, which refers to polar transport, that changes the auxin concentration in tissues 
and enables auxin to affect plant development (Adamowski and Friml, 2015). This polar 
transport is not powered by gravity, but instead involves active transport between cells. 
According to the chemiosmotic model, transport over short distances is controlled by auxin 
transporters (Goldsmith and Goldsmith, 1977). The auxin carriers discovered to date are 
AUXIN-INSENSITIVE1/LIKE AUX1 (AUX/LAX), NITRATE TRANSPORTER 1.1 
(NRT1.1), B SUBFAMILY OF ATP-BINDING CASSETTE (ABCB) family, PIN-FORMED 
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(PIN) family, PIN-LIKE TRANSPORTERS (PILS), and WALLS 
ARE THIN 1 (WAT1; Zhou and Luo, 2018). Given that the polar 
localization (asymmetric distribution) of PIN proteins in plants 
correlates well with the direction of auxin movement, PINs are 
considered to be  the major transporters responsible for 
asymmetric auxin distributions (Benkova et al., 2003; Swarup and 
Bennett, 2003; Zhou and Luo, 2018). Noticeably, although the 
distribution of PINs may determine the auxin flux, the auxin flux 
or the auxin concentration may influence the polarity of PINs in 
return (Jonsson et al., 2006; Grigolon et al., 2015).

The PIN family has been identified in at least 30 plant species, 
and comprises eight genes in Arabidopsis thaliana (Zhou and Luo, 
2018). In other plant species, most PINs have been studied at the 
genomic and transcriptional level, and only a small number of 
PINs have been studied at the gene level (Figure 1; Table 1; Wang 
et al., 2009, 2015; Miyashita et al., 2010; Forestan et al., 2012; 
Zhang et al., 2012; Xie et al., 2017; Inahashi et al., 2018; Sun et al., 
2018; Li et al., 2019; Gao et al., 2021; Gho et al., 2021; Hou et al., 
2021; Kumar et al., 2021; Liu et al., 2022). In A. thaliana, PIN 
proteins are involved in many plant developmental processes and 
are localized differently in different tissues (Tables 1, 2). During 
embryogenesis, PIN1, 3, 4, and 7 contribute to the establishment 
of apical-basal polarity (Friml et al., 2003). These four PINs induce 
the formation of primordia for aerial and underground organs. 
Notably, whereas PIN1 plays a major role among these four PINs 
in aerial organ growth, PIN2 is mainly expressed in roots, where 

it associates with the aforementioned four PINs to form a local 
“reflux loop” of auxin to enable the formation of the root meristem 
(Galweiler et al., 1998; Benkova et al., 2003; Friml et al., 2003; 
Blilou et al., 2005). In this loop, all PINs can be detected at the 
basal plasma membrane (PM), but the localization differs in some 
cells. PIN2 localizes at the apical PM in the root epidermis and 
lateral root cap, and PIN3 and PIN7 are detectable in the lateral 
columella (Friml et al., 2003). Given that the role of PIN2 in the 
“reflux loop” is to transport auxin from the root tip to the root 
elongation zone and that roots usually bend in the root elongation 
region, PIN2 is the major carrier involved in root gravitropism 
(Luschnig et al., 1998; Han et al., 2021). Among PIN3, 4, and 7, 
which all contribute to auxin lateral flow processes, such as shoot 
phototropism and gravitropism, as well as lateral root formation, 
PIN3 is indicated to be the main transporter (Ding et al., 2011; 
Rakusova et al., 2011; Rosquete et al., 2013). The functions of 
PIN5, 6, and 8 are less studied (Ding et al., 2012; Lee et al., 2020). 
In addition, whereas PIN1-4 and PIN7 localize to PM, PIN5, 6, 
and 8 are in the endoplasmic reticulum (ER), of which PIN6 can 
be detected at the ER and PM depending on the phosphorylation 
(Mravec et al., 2009; Ditengou et al., 2018; Sisi and Ruzicka, 2020). 
The PIN5, 6, and 8 proteins are short PINs, but PM-located PIN 
proteins are long PINs containing a long hydrophilic loop with 
some phosphorylation sites that can be phosphorylated by kinases 
to influence the polarity of the PIN (Bennett et al., 2014; Zhou and 
Luo, 2018). The polarity of PIN proteins may be influenced by the 
physical mechanics and can be regulated at least at two levels, 
namely post-translational modification including 
phosphorylation, and subcellular trafficking (Heisler et al., 2010; 
Zhou and Luo, 2018; Ramos et  al., 2021). This review mainly 
focuses on these different regulatory mechanisms.

Subcellular trafficking of PINs

To date, it has not been determined whether newly synthesized 
PINs are initially secreted in an apolar or polar manner. Therefore, 
this review focuses on the post-secretion regulation of PIN. To 
maintain or change the polarity in developmental processes or after 
sensing signal changes, such as a change in gravity, PINs can 
be endocytosed, recycled to the trans-Golgi network (TGN)/early 
endosome (EE), and then transported to the PM by exocytosis or to 
the vacuole for degradation by multivesicular bodies (Dhonukshe 
et  al., 2007; Kleine-Vehn et  al., 2010; Kitakura et  al., 2011; 
Rodriguez-Furlan et al., 2019). During these processes, many factors 
affect trafficking by influencing endocytosis, vesicular transport, 
and membrane fusion, and thus affect PIN polarity (Table 3).

Endocytosis

To recycle or degrade PINs, the first trafficking step is 
endocytosis (Figure 2). Clathrin-coated vesicles are carriers for 
membrane vesicular transport, in which the clathrin unit is a 

FIGURE 1

Phylogenetic relationships of the PIN proteins from Arabidopsis 
thaliana, Oryza sativa, Zea mays, Glycine max, Nicotiana 
tabacum, and Triticum aestivum. The protein sequences were 
downloaded from the NCBI databases, and from recently 
published data (Wang et al., 2009, 2015; Forestan et al., 2012; Xie 
et al., 2017; Kumar et al., 2021). The sequences were aligned with 
ClustalW, and the phylogenetic tree constructed with the 
neighbor-joining method implemented MEGA version 11  
(Tamura et al., 2021).
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TABLE 1 Characteristics of PINs in six plant species.

Species PINs Highly expressed tissues Function References

Arabidopsis thaliana AtPIN1 Embryo, roots meristem and 

elongation zone, stems, leaves, and 

flowers

Embryo development, root growth, and 

flower formation

Galweiler et al., 1998; Friml et al., 

2003

AtPIN2 Roots meristem, elongation and 

differentiation zone

Root gravitropism Luschnig et al., 1998; Friml et al., 

2003; Blilou et al., 2005

AtPIN3 Embryo, roots meristem and 

elongation zone, and stems

Embryo development, root growth, 

hypocotyl gravitropism and 

phototropism, and lateral root growth

Luschnig et al., 1998; Friml et al., 

2003; Ding et al., 2011; Rakusova 

et al., 2011; Rosquete et al., 2013

AtPIN4 Embryo, roots meristem zone, and 

stems

Embryo development, root growth, 

hypocotyl gravitropism and 

phototropism, and lateral root growth

Luschnig et al., 1998; Friml et al., 

2003; Ding et al., 2011; Rakusova 

et al., 2011; Rosquete et al., 2013

AtPIN5 Hypocotyl, and cotyledon vasculature Root growth, lateral root growth, and 

hypocotyl growth

Mravec et al., 2009

AtPIN6 Shoot apical meristem, hypocotyl, and 

inflorescence stems

Inhibit inflorescence, and stem 

elongation

Ditengou et al., 2018

AtPIN7 Embryo, roots meristem and 

elongation zone

Embryo development, root growth, 

hypocotyl gravitropism and 

phototropism, and lateral root growth

Luschnig et al., 1998; Friml et al., 

2003; Ding et al., 2011; Rakusova 

et al., 2011; Rosquete et al., 2013

AtPIN8 Roots and pollen Lateral root growth, and flower growth Ding et al., 2012; Lee et al., 2020

Oryza sativa OsPIN1a, b, c Roots, young panicles and base of 

stems

Root growth, young panicles, and low 

nitrogen and phosphate response

Sun et al., 2018; Gho et al., 2021; 

Liu et al., 2022

OsPIN2 Roots and base of stems Root growth, lateral root formation and 

tiller growth

Inahashi et al., 2018

OsPIN3a, b Stems, leaves, and young panicles Root growth Miyashita et al., 2010; Zhang 

et al., 2012

OsPIN5a, b, c Leaves, shoot apex, and panicles Wang et al., 2009

OsPIN8 Wang et al., 2009

OsPIN9 Base of stems Tiller growth and ammonium response Wang et al., 2009; Hou et al., 

2021

Zea mays ZmPIN1a, b, c, d Roots, shoots and endosperm Root growth and stress response Forestan et al., 2012; Li et al., 

2019

ZmPIN2 Root tips and male and female 

inflorescences

Forestan et al., 2012

ZmPIN5a, b, c Elongation/mature zone of the 

primary roots, nodes and young seeds

Forestan et al., 2012

ZmPIN8 Except roots Forestan et al., 2012

ZmPIN9 Roots and nodes Forestan et al., 2012

ZmPIN10a, b Male and female inflorescences Forestan et al., 2012

Glycine max GmPIN1a, b, c, d, e Root tips, stems and shoot apical 

meristems

Root growth and nodule formation Wang et al., 2015; Gao et al., 

2021

GmPIN2a, b Roots Wang et al., 2015

GmPIN3a, b, c, d Leaves and flowers Wang et al., 2015

GmPIN5a Leaves, flowers, and nodule Wang et al., 2015

GmPIN6a, b Roots, shoot apical meristems and 

green pods

Wang et al., 2015

GmPIN8a b Leaves and flowers Wang et al., 2015

GmPIN9d Roots, seeds and flowers Root growth and nodule formation Wang et al., 2015; Gao et al., 

2021

Nicotiana tabacum NtPIN4 Stems and axillary buds Branching Xie et al., 2017

Triticum aestivum Unclear Unclear Root growth, drought and heat stress 

response

Kumar et al., 2021
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TABLE 3 Factors associated with subcellular-trafficking of PINs.

Factor Upstream Function Study focuses in 
PINs

Signal Result References

CLC2 and CLC3 Endocytosis PIN3 Blue light Hook opening and hypocotyl 

phototropism

Zhang et al., 2017; Hu 

et al., 2021

Low red light / 

far-red light

Hypocotyl elongation Hu et al., 2021

CPI1 Sterol synthesis PIN2 Root gravitropism Men et al., 2008

PIP5K1 and PIPIK2 PI(4,5)P2 synthesis PIN1 and PIN2 Root gravitropism Ischebeck et al., 2013

PAX and BRX Recruit PIP5K PIN1 Marhava et al., 2020

ROP6/RIC1 LP, PG, TMK1 CME PIN1 and PIN2 Root gravitropism Chen et al., 2012; Han 

et al., 2018; Platre et al., 

2019; Pan et al., 2020

14-3-3 Endocytosis PIN1 and PIN2 Maybe light Hypocotyl phototropism Keicher et al., 2017; Reuter 

et al., 2021

GNOM Recycling PIN1 Geldner et al., 2003

GNOM and GNL1 Recycling PIN2 Teh and Moore, 2007

Secretory PIN1 Doyle et al., 2015

SNX1 and VPS29 Recycling PIN2 Root gravitropism Jaillais et al., 2006, 2007

CLASP MT-associated protein 

and interact with SNX1

PIN2 Ambrose et al., 2013

BEN3/BIG2 Recycling PIN1 Root gravitropism Kitakura et al., 2017

BEN1/BIG5 H2O2 Recycling PIN2 ROS Stress-induced growth of roots Zwiewka et al., 2019

ALA3 Interact with GNOM 

and BIG2

PIN2 Root gravitropism Zhang et al., 2020

BEX5 Recycling PIN1 Zhang et al., 2020

RGTB1 Rab-related recycling PIN1 and PIN3 Communication between the 

sporophyte and the developing 

female gametophyte

Rojek et al., 2021a,b

SEC6, SEC8 and 

EXO70A1

Membrane fusion PIN1 and PIN2 Root gravitropism Drdova et al., 2013; Tan 

et al., 2016

VAMP714, VAMP721 

and VAMP722

Membrane fusion PIN1 and PIN2 Root gravitropism Gu et al., 2021; Zhang 

et al., 2021

TABLE 2 Polar localization of long PINs in different tissues.

Long-PINs Shoot primordium Hypocotyl Root References

Outer cells Inner future 
vascular cells

Outer cells Inner cells

PIN1 Localize apically 

toward tips

Localize basally Localize basally, but change 

to lateral induced by blue 

light

Localize basally toward 

tips

Benkova et al., 2003; 

Blakeslee et al., 2004; 

Blilou et al., 2005

PIN2 Localize apically Localize basally 

toward tips

Blilou et al., 2005

PIN3 Localize basally, but change 

to lateral induced by blue 

light and high ratio of 

far-red light

Localize laterally Localize basally 

toward tips

Friml et al., 2002; 

Blilou et al., 2005; 

Keuskamp et al., 2010

PIN4 Localize basally 

toward tips

Blilou et al., 2005

PIN7 Localize laterally Localize basally 

toward tips

Blilou et al., 2005
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triskelion-like structure, comprising heavy and light chains 
[CLATHRIN HEAVY CHAIN (CHC) and CLATHRIN LIGHT 
CHAIN (CLC) proteins] with three arms that assist the clathrin to 
assemble into different size structures (Kirchhausen and Harrison, 
1981; Ungewickell and Branton, 1981; Fotin et al., 2004). PIN 
recycling depends on clathrin-mediated endocytosis (CME). 
Clathrin heavy chain or light chain mutants may exhibit severe 
defects in PIN trafficking and polar localization, thereby affecting 
auxin distribution and auxin-related phenotypes, such as hook 
opening and hypocotyl phototropism (Kitakura et al., 2011; Yu 
et al., 2016; Zhang et al., 2017). Studies of the clc2 clc3 double 
mutants show that disruption of clathrin formation influences 
hypocotyl growth by changing PIN3 lateral localization and causes 
PIN3 relocalization after exposure to blue light (Zhang et al., 2017; 
Hu et al., 2021). During CME, dynamin-related proteins, which 
assist in the vesicle isolation from the membrane, affect PIN 
polarity because they may be involved in CME of PINs from the 
cell plate (Mravec et al., 2011).

Lipids can also affect the CME process. The sterol-biosynthesis 
mutants, cyclopropylsterol isomerase1-1 (cpi1-1), display defective 

PIN localization (Men et al., 2008). An additional type of signaling 
phospholipid, phosphatidylinositol (4,5)-bisphosphate [PI(4,5)
P2], also influences PIN localization. PI(4,5)P2 mostly localizes to 
the PM and regulates many subcellular events. PI(4,5)P2 is mainly 
derived from phosphatidylinositol-4-phosphate (PI4P), which is 
synthesized by 11 phosphatidylinositol 4-phosphate 5-kinases 
(PI4P5K; Mueller-Roeber and Pical, 2002). The pip5k1 pip5k2 
double mutant exhibits a disruption of PIN recycling. This 
indicates that PI(4,5)P2, which influences the formation of 
clathrin vesicles, is required for the establishment of PIN polarity 
(Ischebeck et al., 2013). Besides, PIP5Ks are recruited by BREVIS 
RADIX (BRX), a plant-specific PM-localized protein, and a type 
of kinase that is PROTEIN KINASE ASSOCIATED WITH BRX 
(PAX), to influence the abundance of PINs at PM (Marhava et al., 
2020). This interaction establishes the link between CME and 
kinases, and suggests that PI(4,5)P2 abundance may be the signal 
at the PM. In addition, lipids can affect other membrane proteins 
to influence PIN polarity. The endocytosis of PIN1 is regulated by 
the clustering of RHO-LIKE GTPASE (ROP6), which is influenced 
by lipid phosphatidylserine (LP), phosphatidylglycerol (PG) and 
the sterol-dependent clustering of TRANSMEMBRANE 
RECEPTOR KINASE 1 (TMK1), and ROP-INTERACTIVE CRIB 
MOTIF-CONTAINING PROTEIN 1 (RIC1; Chen et al., 2012; 
Han et al., 2018; Platre et al., 2019; Pan et al., 2020). Polyacidic 
phospholipids might impact on the binding between the PM and 
a 14–3-3 regulated protein, NON-PHOTOTROPIC 
HYPOCOTYL 3 (NPH3), to regulate the PIN polarity during 
phototropic growth of the hypocotyl (Keicher et al., 2017; Reuter 
et al., 2021).

Vesicular transport

After endocytosis and during recycling, PINs are located in 
the vesicles, where many proteins may influence the trafficking of 
PINs (Figure  2). The cytoskeleton and molecular machinery 
control the movement of vesicles, but it is the small GTPases, Arf 
and Rab proteins that regulate intracellular transport by 
connecting membranes to the cytoskeleton machinery and 
labeling vesicles for their final destination (Khan and Menetrey, 
2013; Kjos et al., 2018). In addition, although Arf and Rab mainly 
regulate intracellular trafficking, they can also influence other 
GTPase, such as Rho, which usually regulates the actin 
cytoskeleton and may influence the localization of PIN proteins 
(Han et al., 2018; Kjos et al., 2018).

Arf binds to the vesicular membrane weakly in the GDP form 
and binds tightly in the GTP form. After Arf binds to the 
membrane, the GDP/GTP EXCHANGE FACTOR FOR SMALL 
G PROTEINS OF THE ARF CLASS (ARF-GEFs) are recruited to 
change the Arf type from GDP to GTP (Donaldson and Jackson, 
2000). Brefeldin A (BFA) blocks the guanine-nucleotide exchange 
reaction to inhibit vesicle trafficking reversibly, ARF-GEFs in 
A. thaliana were initially classified as BFA-INHIBITED GEFs 
(BIG) and Golgi BFA resistance factor (GBF) initially (Donaldson 

FIGURE 2

PINs can be recycled or degraded through endocytosis, 
subcellular trafficking and membrane fusion. In endocytosis, 
clathrin mediates the formation of vesicles. The PINs are then 
transported in the endosomal vesicles, in which many Arf and 
Rab proteins influence the destination of the PINs. These Arf and 
Rab proteins are further regulated by GEF and GAP, including 
GNOM, a PINs-specific AEF-GEF. Finally, the vesicles fuse to the 
destination membrane, regulated by SNARE. In addition, lipids are 
involved in the binding of these membrane-associated proteins. 
Notably, among these factors that may affect the polarity of PINs, 
only GNOM is primarily involved in the recycling basal PINs.
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and Jackson, 2000). Among GBFs, GNOM is BFA sensitive 
(Naramoto et al., 2010). GNOM is mostly localized to the Golgi 
apparatus and partly to the PM and TGN/EE (Naramoto et al., 
2010, 2014). GNOM regulates the endocytosis and recycling of 
PIN1, which further affects PIN1 polarity (Steinmann et al., 1999; 
Geldner et al., 2003). Inhibition of GNOM by BFA leads to apical 
localization of PIN1, but the engineered BFA-insensitive GNOM 
only causes the recycling of PIN1 to become BFA insensitive, not 
that of other proteins (Geldner et al., 2003). Localization of PIN2 
is not completely determined by GNOM. It requires additional 
homologs, such as GNOM-LIKE1 (GNL1), which also is localized 
to the Golgi apparatus but differs from GNOM (Richter et al., 
2007; Teh and Moore, 2007; Kleine-Vehn et al., 2008). GNL1 plays 
an important and conserved role in ER-Golgi trafficking (Richter 
et al., 2007; Teh and Moore, 2007). In contrast, whereas GNOM is 
functionally redundant in ER-Golgi trafficking, the primary role 
of GNOM is the recycling of basal PINs (in root cells; Richter 
et al., 2007; Teh and Moore, 2007). There is evidence that GNOM 
and GNL1 are involved in the early secretory of PIN1 in the root, 
which contributes to the basal localization of PIN1 (Luschnig and 
Vert, 2014; Doyle et al., 2015). In addition, other factors acting in 
GNOM-independent endosomes can regulate PIN polarity. For 
example, recycling of PIN2 requires SORTING NEXIN 1 (SNX1), 
CLASP, and VACUOLAR PROTEIN SORTING 29 (VPS29), a 
factor downstream of GNOM (Jaillais et al., 2006, 2007; Ambrose 
et  al., 2013). Some research indicates that the PM-localized 
GNOM and VAN3, an ARF-GTPase-activating protein (GAPs), 
which counteracts GEF, are also required for endocytosis 
(Naramoto et al., 2010; Naramoto and Kyozuka, 2018).

In the BIG class, BEN1/BIG5 and BEN3/BIG2 mainly 
co-localize in the TGN/EE, and influence the early trafficking 
and polar localization of PIN1 (Richter et al., 2014; Jonsson 
et al., 2017; Kitakura et al., 2017; Matsuura et al., 2020; Zhang 
et  al., 2020). BEN1/BIG5 is involved in hydrogen peroxide-
induced relocalization of PIN2 (Zwiewka et  al., 2019). In 
addition, ALA3, a phospholipid flippase, produces and 
maintains the asymmetric distribution of phospholipids. The 
ALA3 protein directly interacts with GNOM and BIG3, and 
affects the transport and polarity of PINs (Best et  al., 2019; 
Zhang et al., 2020). Similar to Arf, Rab-related pathways also 
involve RAB-GEF and RAB-GAP to activate or inactivate Rab 
(Martiniere and Moreau, 2020). Although no RAB-GEF is 
known to regulate polar trafficking of PINs, some evidence 
indicates that the Rab pathway is involved in vesicle circulation 
and degradation of PINs, and the change in Rab pathway affects 
the polar growth of root hair cells (Preuss et al., 2006; Feraru 
et al., 2012; Ivanov et al., 2014; Rodriguez-Furlan et al., 2019). 
Knocking out RGTB1, which catalyzes the Rab prenylation to 
assist Rab to bind more stably to the membrane, impairs the 
recycling of PIN1 and PIN3 (Rojek et al., 2021a,b).

Most of the factors that affect the polar trafficking of PINs are 
localized in the TGN. Recently, FORKED1 (FKD1), FORKED1-
LIKE (FL), and SCARFACE (SFC) were detected in the TGN and 
were proposed to influence the secretory pathway that transports 

PIN1 to the apical PM during leaf vein development (Mariyamma 
et al., 2018). CHOLINE TRANSPORTER-LIKE 1 (CTL1) partially 
localizes to the TGN and can mediate choline transport to impact 
the homeostasis of membrane lipids. Interestingly, CTL1 regulates 
trafficking of PIN1 and PIN3 by acting on both secretory vesicles 
and clathrin-coated vesicles in the TGN (Wang et al., 2017). In 
addition, sphingolipids mediate polar sorting of PIN2 at the TGN 
by changing the level of PI4P, and thus the lipid can also affect 
PIN2 recycling (Ito et al., 2021).

Membrane fusion

Fusion of the vesicles to the destination membrane is the final 
step in the vacuolar protein transfer. The PINs then may 
be degraded, recycled or remained in the membrane to form or 
change the polarity (Figure 2). Before fusion, the exocyst complex 
is responsible for the initial attachment of the vesicle to the PM 
(Saeed et al., 2019). Studies of sec6, sec8, and exo70 mutants, show 
that the exocyst directly influences polar exocytosis of PINs 
(Drdova et al., 2013; Tan et al., 2016). Membrane fusion is then 
mediated by SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE 
FUSION (NSF) PROTEIN ATTACHMENT PROTEIN 
RECEPTOR (SNARE). SNARE proteins can be  classified as 
Q-SNARE and R-SNARE. Q-SNARE proteins are normally 
localized to the target membrane and R-SNARE proteins are in the 
TGN/EE (Fasshauer et al., 1998). When the three Q-SNARE and 
one R-SNARE proteins bind together, the membrane vesicles are 
fused (Jahn et al., 2003; Pratelli et al., 2004). The R-SNARE triple 
mutants, vamp714 vamp721 vamp722, shows defective polarity of 
PIN1 and PIN2 (Gu et al., 2021; Zhang et al., 2021). Notably, the 
polarity of PIN1 and PIN1-mediated polar auxin transport also 
requires AtNSF, which regulates leaf serration (Tang et al., 2021). 
It is generally accepted that SNAREs are involved in the Rab 
GTPase pathway, by interacting with Rab proteins to enable the 
fusion of membrane vesicles (Ebine and Ueda, 2009; Ohya et al., 
2009; Ebine et al., 2011). No data are available on the interaction 
between ARF-GEF and SNAREs, but ARF-GAP is capable of 
interacting with SNAREs (Rein et al., 2002).

Overall, the function of each subcellular-trafficking related 
factor has not been fully explored. These factors can influence 
more than one process: clathrin can influence the recycling; 
GNOM and VAN3 are also involved in endocytosis (Naramoto 
et  al., 2010; Robinson and Pimpl, 2014). Thus, although an 
intracellular trafficking model to explain the localization of 
PINs is accepted, it is not a complete theory. Many additional 
factors can influence the polarity of PINs and the relationships 
among the factors that already identified are not clearly 
demonstrated. Therefore, large scale exploration of the 
interactions or networks of these proteins is required (Tang 
et al., 2020). In addition, since vesicular trafficking is conserved 
in many organisms, the focus should be not only on PINs, or 
plants, but also on the regulatory mechanisms documented in 
other organisms (Glanc et al., 2021).
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Post-translational modification of 
PINs

Phosphorylation and dephosphorylation

The activity and localization of long PIN proteins can 
be regulated through phosphorylation by at least three different 
types of protein kinases (Table  4): SERINE/THREONINE-
PROTEIN WITH HOMOLOGY TO MAMMALIAN PROTEIN 
KINASE A, CGMP-DEPENDENT KINASE, AND PROTEIN 
KINASE C (AGC kinases), MITOGENACTIVATED PROTEIN 
(MAP) KINASES (MPKs), and Ca2+/CALMODULIN-
DEPENDENT PROTEIN KINASE-RELATED KINASES (CRKs). 
In addition, certain phosphatases dephosphorylate PINs (Figure 3).

AGC kinases

PINOID (PID), a member of the AGC family, was first found 
to be related to PINs. In A. thaliana, there are four members of the 

PID family (PID, PID2, WAVY ROOT GROWTH 1 (WAG1) and 
WAG2; Galvan-Ampudia and Offringa, 2007). Given that the pid 
mutants are phenotypically similar to pin mutants, the relationship 
between these two genes was studied (Bennett et al., 1995). PID 
was first cloned and implicated as a negative regulator in auxin 
expression signaling (Christensen et al., 2000). Benjamins et al. 
(2001) used overexpression lines to demonstrate that PID was not 
associated with the expression signaling, but may be a positive 
regulator of auxin efflux carriers (Benjamins et  al., 2001). 
Overexpression of PID can over-phosphorylate the three 
conserved serine sites of PINs, S1, S2, and S3 (S231, 252, and 
290 in PIN1), thereby altering the localization of PIN proteins 
from the basal to apical PM; in addition, the PINs showed apical-
to-basal localization in pid mutants (Friml et al., 2004; Huang 
et al., 2010). Given that the distribution of PID is non-polar but 
that of PIN is polar, Dhonukshe et al. proposed a model in which 
PINs are not first polarly distributed at first, and thereafter reach 
the apical side when phosphorylated by PID. However, this model 
has not been clearly demonstrated (Dhonukshe et al., 2010). In 
addition, WAG1 and WAG2 are functionally redundant to PID 

TABLE 4 Kinases that may affect PIN polarity.

Kinase Distribution Influence on PINs localization Influence on 
PINs transports 
activity

Phosphorylation 
sites

References

Loss of function Overexpression

PID, WAG1, WAG2 None-polarity Apical-to-basal 

localization

Basal-to-apical 

localization

Activate S231, S252 and S290 

(vitro and vivo) in PINs

Benkova et al., 2003; 

Friml et al., 2004; 

Kleine-Vehn et al., 

2009; Dhonukshe et al., 

2010; Huang et al., 

2010; Zourelidou et al., 

2014

D6PKs Basal membrane (root 

cell)

Unchanged Unchanged Activate S231, S252, S290, S215 

and S271, mainly S215 

and S271 (in vitro and in 

vivo) in PINs

Zourelidou et al., 2009; 

Barbosa et al., 2014; 

Zourelidou et al., 2014

PAX Basal membrane (root 

cell)

Unchanged Activate In PINs Marhava et al., 2018

PDK1 Basal membrane (root 

cell)

Unchanged Activate In PID, D6PKs andPAX Zegzouti et al., 2006; 

Rodriguez et al., 2010; 

Xiao and Offringa, 2020

MPK6 None-polarity Apical-to-basal 

localization

S337, T227, T248 and 

T286 in PINs (in vitro 

and in vivo)

Jia et al., 2016; Dory 

et al., 2018

MPKK7 None-polarity Reduce basal 

localization

In MPK6 and other 

MPKs

Jia et al., 2016

CRK5 None-polarity Only change PIN2 

localization in root 

transition region

S252 / S253 of PIN1, 

S271 of PIN4, and S431 

and S277/S278 in PIN7 

(supposed)

Rigo et al., 2013; Baba 

et al., 2019a,b

CAMEL, CANAR Change PIN1 

localization

T129, T234, S240, T257, 

and S408 in PINs

Hajny et al., 2020
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FIGURE 3

Post-translational modification regulates the localization of PINs. 
Kinases such as PID, D6PK, MPKs, and CRKs, directly 
phosphorylate PINs to change the polarity and transport activity 
of PINs. PAX recruits BRX to regulate the formation of PI(4,5)P2, 
which further influences the endocytosis of PINs. Phosphorylated 
PINs can recruit MAB4/MEL to maintain or change the 
localization of PINs through BFA-sensitive or BFA-insensitive 
endosomal vesicles. In addition, dephosphorylation regulated by 
phosphatases acts antagonistically to the changes caused by 
kinases. Among these proteins, only PAX/D6PK is localized only 
found to the basal PM.

(Dhonukshe et al., 2010). WAG1 and WAG2 phosphorylate the 
same region as PID does and show similar localization to PID 
(Dhonukshe et  al., 2010). These three kinases have similar 
functions in root development, namely apical hook opening and 
photoresponse (Dhonukshe et al., 2010; Willige et al., 2012; Haga 
et  al., 2014). More importantly, these three kinases all show 
BFA-insensitive localization and phosphorylate PINs to change 
their localization through BFA-insensitive processes (Dhonukshe 
et al., 2010). PID2 has not been well studied, but according to 
evolutionary reconstruction and the observation that 
photoreactions in pid pid2 wag1 wag2 quadruple mutants are 
significantly more impaired than pid wag1 wag2 triple mutants, 
the function of PID2 may be similar to that of the other three 
kinases (Tang et  al., 2020). Despite the shift in distribution, 
PID-related phosphorylation can stimulate the activity of PINs 
transport (Zourelidou et al., 2014). Some studies have reported 
that phosphorylated PIN1 is detectable at the basal PM in the 
wild-type and pid mutants, suggesting that PID does not alter PIN 

polarity but only activates PIN transport activity (Weller et al., 
2017). The change in polarity might result from other factors that 
interact with PID in PID-overexpression lines (Haga et al., 2014). 
Thus, although genetic and biochemistry experiments have 
provided substantial information on PID-related phosphorylation, 
the mechanism of the change in PIN polarity remains unknown.

Two important factors upstream and downstream of PID that 
regulate the PIN polarity should be mentioned. The first protein 
is associated with lipids. PHOSPHOLIPASE D (PLD) is 
responsive to many environmental signals. Under salt stress, PLD 
ζ 2 is involved in the endocytosis of PIN2 (Li and Xue, 2007; 
Galvan-Ampudia et al., 2013). Also, salt stress activates PLD α 1 
and PLD Δ, which will generate phosphatidic acid (PA). The PA 
then binds to PID to phosphorylate PIN2, and increase the 
activity of PIN2 (Wang et al., 2019). A recent study observed that 
MACCHI-BOU4 / MAB4(ENP1)-LIKE (MAB4/MEL), to which 
belongs to the MAB4 protein family and was originally 
considered to be associated with PIN-related auxin transport, is 
recruited by phosphorylated PINs, which in turn form a positive 
feedback loop, thus promoting continuous phosphorylation of 
PINs by the AGC3 family to confine PIN to polar regions (Glanc 
et al., 2021).

The D6 PROTEIN KINASE (D6PK) belongs to the AGC 
family. It is generally accepted that D6PK as well as D6PKL1, 
D6PKL2, and D6PKL3 phosphorylate S1, S2, S3, S4, and S5 of 
PINs (S271, D215 in PIN1/S215 in PIN3; Zourelidou et al., 2014). 
PID tends to phosphorylate S1, S2, and S3 first, whereas D6PK 
preferentially phosphorylates S4 and S5 (Zourelidou et al., 2009, 
2014). D6PK also phosphorylates S1, S2, and S3, indicating that 
the function of these two kinases is redundant (Zourelidou et al., 
2014). Surprisingly, S4 and S5 are not conserved in PIN2, and S5 
may be replaced by a site that is naturally phosphorylated in PIN1 
(Zourelidou et  al., 2014). Although d6pk mutants show some 
similar morphological phenotypes to pid mutants, some 
differences between D6PK and PID have been noted. Loss-of-
function and overexpression of D6PK do not change PIN polarity 
(Zourelidou et  al., 2009). In addition, unlike PID, D6PK is 
localized only in the basal PM (in root cells) and only 
phosphorylates the basal PINs (Barbosa et  al., 2014). These 
phosphorylated PIN proteins as well as D6PK are sensitive to BFA 
treatment, but D6PK may be  more closely associated with 
GNOM-dependent recycling than PINs (Weller et al., 2017). An 
additional D6PK/D6PKL-related kinase is PAX. BRX is recruited 
by PAX to the basal PM, where BRX normally binds to PAX and 
impedes PIN transport at low auxin concentrations (Marhava 
et al., 2018; Xiao and Offringa, 2020). When the BRX abundance 
declines as auxin concentration increases, PAX phosphorylates 
PINs to promote auxin transport (Xiao and Offringa, 2020). 
3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 
(PDK1), may provide the link between PID and D6PK. PDK1 is 
also a member of the AGC family, and often acts as an upstream 
signal to phosphorylate and activate PID, D6PK, and PAX to 
modulate the polarity of PINs (Zegzouti et  al., 2006; Tan 
et al., 2020).
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MPKs

MAPK/MPKs are a conserved signaling kinase family that 
regulates many processes in plants, such as development and 
response to diverse environmental stresses (Rodriguez et al., 2010; 
Lin et al., 2021). This family always acts as a signal cascade. For 
example, MPK is phosphorylated by MPK KINASE (MPKK), 
which is further phosphorylated by MPKK kinase. MAP KINASE 
KINASE 7 (MKK7) is an upstream kinase of MAP6, and MKK7–
MAP6 phosphorylates an unconservative site of PIN1, S337, to 
affect basal PM localization of PIN1  in the process of branch 
development (Jia et al., 2016). Interestingly, three conserved sites, 
T227, T248, and T286 of PIN1, which are located near the PID 
phosphorylation sites (S1–S3) and are components of the TPRXS 
motifs at S1–S3, are phosphorylated by MAP6 to influence the 
recycling of PIN1 (Dory et al., 2018). This finding indicates that 
PID may be associated with MPKs. However, the PM localization 
of PIN1 is abolished in most cells of MKK7 overexpression 
transformants, which differs from PID-and D6PK-overexpression 
transformants (Dory et al., 2018). Thus, MPKs may regulate PIN 
in a manner different from PID.

CRKs

Calcium ions are an important second messenger involved in 
gravitropism (Perera et al., 2006). CRKs are kinases responsive to 
Ca2+. CRK5 is localized to the PM and phosphorylates PINs to 
regulate plant development (Rigo et  al., 2013). In the root 
transition region of crk5-1 mutants, the amount of PIN2 is 
reduced in the upper PM of epidermal cells, and is increased in 
the apical PM in the cortex, which is similar to the response in the 
wild type treated with a low concentration of BFA, although the 
localization of PIN1, 3, 4, and 7 is unchanged (Rigo et al., 2013). 
In addition, CRK5 may contribute to other mechanisms of PIN 
phosphorylation PINs. CRK5 regulates hypocotyl hook 
development, possibly through phosphorylation of PIN3, and 
embryo development through phosphorylation of PIN1, 4, and 7 
(Baba et  al., 2019a,b). No in vivo or in vitro evidence for the 
phosphorylation sites is available, although CRK5 can 
phosphorylate PIN1, 2, 3, 4, and 7 in vitro (Baba et al., 2019b). 
CRK5 is only supposed to phosphorylate S252 or S253 of PIN1, 
S271 of PIN4 and S431 and S277/S278 of PIN7 (Baba et  al., 
2019b). In addition to CRK5, CPK29 phosphorylates most 
PM-localized PINs to regulate the PIN polarity through 
BFA-insensitive recycling (Lee et al., 2021).

Other kinases

Other types of kinases affect PIN polarity, too. 
CANALIZATION RELATED AUXIN-REGULATED 
MALECTIN-TYPE RLK (CAMEL) and CANALIZATION-
RELATED RECEPTOR-LIKE KINASE (CANAR) are kinases that 

influence PIN1 polarity and respond to auxin (Hajny et al., 2020). 
The kinase may phosphorylate T129, T234, S240, T257, and S408 
of PIN1, which is different from other kinases (Hajny et al., 2020). 
The loss-of-function of CAMEL or CANAR causes defective PIN1 
polarity (Hajny et al., 2020). However, compared with other types 
of kinases, this receptor-like kinase is poorly studied. This 
represents a novel research focus to gain insight into the 
relationships among kinases.

Phosphatases

The function of phosphatases is to dephosphorylate proteins 
and contribute to the homeostasis of reversible phosphorylation. 
PROTEIN PHOSPHATASE 2A (PP2A) is a heterotrimeric protein 
consisting of two regulatory subunits, A and B. It is involved in 
many processes that counteract PID. The PP2A A subunit is able 
to dephosphorylate PIN1 to change the polarity. Overexpression 
of PID further impairs mutants of pp2a subunits, whereas 
knocking out PID rescues pp2a A subunit mutants (Michniewicz 
et al., 2007b). In addition, pp2a A subunit mutants show basal-to-
apical localization of PIN1, which is similar to the response to PID 
overexpression (Michniewicz et al., 2007b). Interestingly, other 
protein phosphatases, such as PP6 and PP1 also affect the PIN 
polarity. PHYTOCHROME-ASSOCIATED SER/THR PROTEIN 
PHOSPHATASE 1 (FyPP1) interacts with PP2A A subunit to form 
the PP6 heterotrimeric holoenzyme complex to regulate the 
phosphorylation of PIN proteins by antagonizing PID (Dai et al., 
2012). An additional subunit of PP1, TYPE-ONE PROTEIN 
PHOSPHATASE 1 (TOPP1), acts antagonistically to PID (Guo 
et  al., 2015). However, in contrast to kinases, few studies of 
phosphatases have been reported, and thus, the network existing 
among these phosphatases remains unknown.

To date, GNOM is the only intracellular trafficking-related 
protein known that specifically regulates PIN recycling. However, 
none of the kinases that can regulate the PIN polarity is recycled 
through GNOM-dependent trafficking. Only D6PK is associated 
with GNOM, but it does not change the PIN polarity. PID and 
GNOM have an antagonistic effect on the localization of PINs. 
PID can phosphorylate apical PINs and maintain the 
phosphorylation abundance to decrease GNOM-dependent 
subcellular trafficking of PINs (Kleine-Vehn et al., 2009). However, 
in response to BFA treatment, to which D6PK is sensitive but the 
PID is insensitive, PIN1 phosphorylation is not maintained in the 
wild type, but is maintained in engineered BFA-insensitive 
GNOM mutants, even though some of the PID proteins are 
localized to the basal PM and potentially may phosphorylate PINs 
(Barbosa et al., 2014). Thus, protein phosphatases may play a role 
in this process (Barbosa et al., 2014). Despite the Arf, Rab may 
also be associated with phosphorylation. Rab5 in endocytosis may 
be involved in phosphorylation (Weller et al., 2017). Notably, it is 
uncertain whether phosphorylation by each kinase can change the 
polarity of PIN proteins by intracellular trafficking directly from 
one part to another. This is because knocking out and 
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overexpressing some kinases cause a clear change in PIN polarity 
(in pid mutants is basal and in PID-overexpression mutants is 
apical; in crk5 mutants is apical), but the phosphorylated PINs are 
observed on each side of the PM (Weller et  al., 2017). The 
phosphorylated PINs may be  confined to one side, newly 
synthesized PINs are secreted de novo to this side, and the PINs in 
other sides are degraded. This is because phosphorylated PINs can 
recruit MAB4/MEL to form positive feedback to limit lateral 
diffusion and maintain phosphorylation, and PIN2 is not recycled 
from the basal to the apical PM, but is newly secreted to the apical 
PM after cell division (Weller et al., 2017; Glanc et al., 2018).

Other post-translational modification

S-Nitrosylation (SNO), the addition of nitric oxide (NO), is 
controlled by NO concentrations and denitrosylation catalyzed by 
thioredoxin and S-NITROSOGLUTATHIONE REDUCTASE 
(GSNOR; Feechan et al., 2005; Sengupta and Holmgren, 2013). 
The lack of GSNOR1 inhibits the endocytosis of PINs by an 
uncertain mechanism. Both GNOM and PID have hypothetical 
SNO modifications (Ni et al., 2017; Sanchez-Vicente et al., 2021). 
The influence of GSNOR also indicates that PIN polarity may 
be affected by NO. In addition, ubiquitination of PINs influences 
the recycling and degradation of PINs. Loss of K63 ubiquitination 
of PIN2 interferes with its transport to the vacuole (Leitner 
et al., 2012).

Conclusion

The PIN-mediated short-distance transport of auxin is 
important to regulate plants growth and for tropic responses. A 
model to explain the distribution of PINs has been formulated. 
PINs are secreted, recycled or degraded through intracellular 
trafficking, in which GNOM plays a role to recycle the basal 
PINs, and PINs can be phosphorylated to change the polarity. 
However, some gaps in this model remain. Only GNOM or 
GNOM-like ARF-GEFs are known to be  responsible for the 
recycling, but additional factors, such as the myosin and other 
Arf and Rab proteins are still poorly studied (Abu-Abied et al., 
2018). Given that previous research on GNOM has invariably 
used BFA to induce the changes, the use of other inhibitors, such 
as endosidin 4, are also worth exploring (Kania et al., 2018). In 
the phosphorylation and dephosphorylation section, the model 
lacks the decisive evidence to determine which role, the change 
in PIN polarity or in PIN transport activity, is dominant. 
Furthermore, many kinases or protein phosphatases are 
functionally redundant but somewhat different in their target 
sites. In addition, the relationship between phosphorylation and 
trafficking remains unknown. It is uncertain how the locations of 
PINs are changed, after phosphorylation. Also, there are many 
other relevant factors not incorporated in this model. For 
example, ubiquitin can regulate whether PINs are directed to the 

vacuoles for degradation, the distribution of lipids, such as PI4P, 
PI(4,5)P2 and PA, can affect the localization of kinases and PIN, 
and the auxin fluxing through plasmodesmata directly challenges 
the PIN transport (Deak et al., 1999; Leitner et al., 2012; Tejos 
et al., 2014; Stanislas et al., 2015; Barbosa et al., 2016; Gao et al., 
2020; Mellor et al., 2020). Certain environmental signals have 
been reported to affect PINs. For instance, PLD responds to 
environmental change to influence kinases (Wang et al., 2019). 
Nevertheless, these pathways do not form a network. An 
additional important point is to consider components from other 
organisms. Studies on Glut4 (GLUCOSE TRANSPORTER 4) in 
mammalian cells, CDC42-dependent symmetry-breaking 
pathway in yeast, and the TRANSPORT PROTEIN PARTICLE 
(TRAPP) complex all show the importance of referring to the 
components from other organisms, because subcellular 
trafficking is conserved among organisms and some components 
of PIN trafficking machinery are evolutionary conserved (Garcia 
et al., 2020; Glanc et al., 2021).
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