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Brown blight, target spot, and tea coal diseases are three major leaf diseases

of tea plants, and Apolygus lucorum is a major pest in tea plantations.

The traditional symptom recognition of tea leaf diseases and insect pests is

mainly through manual identification, which has some problems, such as low

accuracy, low e�ciency, strong subjectivity, and so on. Therefore, it is very

necessary to find a method that could e�ectively identify tea plants diseases

and pests. In this study, we proposed a recognition framework of tea leaf

disease and insect pest symptoms based on Mask R-CNN, wavelet transform

and F-RNet. First, Mask R-CNN model was used to segment disease spots and

insect spots from tea leaves. Second, the two-dimensional discrete wavelet

transform was used to enhance the features of the disease spots and insect

spots images, so as to obtain the images with four frequencies. Finally, the

images of four frequencies were simultaneously input into the four-channeled

residual network (F-RNet) to identify symptoms of tea leaf diseases and insect

pests. The results showed that Mask R-CNNmodel could detect 98.7% of DSIS,

which ensure that almost disease spots and insect spots can be extracted from

leaves. The accuracy of F-RNet model is 88%, which is higher than that of

the other models (like SVM, AlexNet, VGG16 and ResNet18). Therefore, this

experimental framework can accurately segment and identify diseases and

insect spots of tea leaves, which not only of great significance for the accurate

identification of tea plant diseases and insect pests, but also of great value for

further using artificial intelligence to carry out the comprehensive control of

tea plant diseases and insect pests.
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Introduction

Tea plant (Camellia sinensis (L.) O. Kuntze) is an important

cash crop, which is widely planted in tropical and subtropical

areas. In the process of tea cultivation, it is often damaged by

various diseases and insect pests, resulting in heavy losses to

tea production (Roy et al., 2019). Among these tea pests and

diseases, brown blight, target spot, and tea coal disease often

occur in tea plantations around the world and have become three

important diseases causing tea production reduction. Apolygus

lucorum is an important pest in tea plantations, which seriously

affects the quality and yield of tea. The symptom judgment and

analysis of diseases and pests are important for the prevention

and control of diseases and pests in tea plantations.

The traditional identification of disease and pest symptoms

is mainly done manually, which has some problems, such as low

accuracy, low efficiency, difficult identification, and so on. For

example, brown blight and target spots appeared mainly in the

matured leaves and old leaves, and the symptoms were similar.

Brown blight has irregular ring lines, while target spots often

show obvious concentric ring lines. Moreover, in most cases,

these two diseases occur at the same time, often on one leaf,

which increases the difficulty of manual identification (Chen

et al., 2015, 2018). Tea coal disease is caused byAscomycete fungi.

In the process of disease, Bemisia spinosa provides nutrients

for the tea coal pathogen. The severity of tea coal disease is

closely related to the number of Bemisia spinosa. In the early

stage of tea coal disease, black circles appear on the front of

leaves and gradually expand in the later stage. When manually

discovered, it is often too late. Apolygus lucorum is an important

pest in tea plantations. It uses the mouthparts of adults and

nymphs to bite young buds, young leaves, flower buds, and

young fruits. After young leaves are injured, reddish-brown or

scattered black spots will appear first. With the growth of tea

plants, spots become irregular holes. It mainly harms the tea

plants in the morning. After biting the leaf, it transfers rapidly,

and it is difficult to find. Accurate identification of the symptoms

of Apolygus lucorum harming leaves is conducive to the early

detection of Apolygus lucorum. Therefore, how to quickly and

accurately find the symptoms of the above diseases and insect

pests harming leaves is of great significance to take effective

prevention and control measures.

With the rise of computer vision, high-throughput

phenotypic technology has been used more in crop disease

and pest identification (Jangra et al., 2021). The traditional

method was usually applied to extract the color and texture,

shape features of disease spots in leaves, and then distinguish

the disease spots from normal leaves by adjusting the threshold

(Tao et al., 2014). Researchers improved the traditional method

and proposed a method based on singular value decomposition

(SVD). This method extracted the comprehensive features

of different color spaces, color indexes, and color to gray

conversion of images and used the region growth method

to segment the disease spots (Jothiaruna et al., 2019). Bao

et al. (2022) proposed a classification model using UNIREP

as a feature and the LIGHTGBM algorithm as a classification

model. The model can effectively classify virus particle proteins,

and the accuracy of the model is better than the traditional

machine learning algorithm. Yang et al. (2021) proposed a

novel disease-related compound identification model based

on the capsule network (CapsNet). The CapsNet medal was

used to identify the pneumonia-related compounds in Qingre

Jiedu injection. In recent years, with the development of deep

learning, feature extraction and recognition classification have

brought good progress. In particular, convolutional neural

network (CNN) has been widely used in feature extraction

and recognition classification by researchers and has brought

good progress in disease identification of wheat, rice, potato,

and other crops (Ap et al., 2019; Abdu et al., 2020; Zj et al.,

2021). However, most of the disease identification of these

crops is to distinguish between normal leaves and diseased

leaves or to identify diseases with large differences in external

characteristics. It is difficult to distinguish diseases with small

differences in external characteristics (Prajna, 2021). Therefore,

it is difficult for CNN to directly distinguish diseases with small

differences in characteristics, such as brown blight disease and

target spot disease. To solve the above problems, we segmented,

extracted, enhanced, recognized, and classified the images of tea

plant diseases and pests.

Image segmentation is a key step from image processing

to image analysis, which is widely used in plant recognition.

Zhao et al. (2014) proposed a tomato leaf segmentation

method based on threshold, which used the Otsu algorithm

to segment the image into two parts, namely, target and

background, to eliminate the interference caused by non-leaf

data in the image. However, for some small disease spots, the

Otsu algorithm was difficult to segment them. Therefore, the

researchers proposed a cassava necrosis segmentation method

based on the U-Net algorithm. The U-Net algorithm could

not only segment small disease spots but also be fully trained

in small sample datasets to improve data utilization efficiency

(Tusubira et al., 2020). However, the structure of the U-Net

network is relatively simple, and the effect of disease spots

segmentation with complex features and different types is poor.

Yu et al. (2021) proposed a method to segment mariculture

cages from remote sensing images using Mask R-CNN. The

results show that compared with U-Net, Mask R-CNN can

significantly improve the segmentation accuracy and robustness

of the model. Therefore, we developed a disease spots and insect

spots segmentation model of tea leaves based on Mask R-CNN,

which has a more complex structure and can segment more

complex disease spots. At present, the Mask R-CNN algorithm

has brought good progress in the fields of coffee bean leaf disease

segmentation and weed species segmentation (Yang et al., 2020;

Tassis et al., 2021), which has important reference value for us to

engage in this research.
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Image enhancement technology is an effective means

to solve the problems of image blur and small differences

in different object features. At present, it has become an

indispensable technology in the field of computer vision. For

example, Kumar and Domnic (2018) proposed a statistically

based image enhancement technology, which could not only

better extract leaves but also accurately calculate the number

of leaves. Bao et al. (2022) proposed a novel two-fold ensemble

based on method ensemble and data ensemble, which improved

the accuracy of modification residue identification. Moreover,

the researchers proposed an image enhancement framework,

which could expand the number of training samples and provide

data for target detection, semantic segmentation, image de-

drying, and recognition and classification (Nesteruk et al., 2021).

However, there are few studies on image feature enhancement.

Therefore, we proposed an image enhancement algorithm based

on the wavelet transform. The algorithm used a series of

wavelets with different scales to decompose the image, so as

to obtain the low-frequency and high-frequency images of

the original image at the different wavelet scales. The wavelet

transform is called the “image microscope” in the field of image

processing because of its multi-resolution decomposition ability

to decompose and strip images of information layer by layer.

Therefore, the tea leaf images under the stress of diseases and

insect pests can be enhanced by wavelet transform to extract

more comprehensive features.

In the field of image recognition and classification, the

methods of machine learning (ML) and deep learning (DL)

have brought good progress, especially in improving the speed,

accuracy, reliability, and scalability of disease phenotypes to

accomplish diverse programmatic goals (Singh et al., 2018).

Both ML and DL can be seamlessly integrated into data

acquisition, data preprocessing, and data analytics for real-time

high-throughput plant phenotyping (HTP) of plant traits in the

field (Singh et al., 2021). For example, researchers proposed a

multidimensional machine learning method. The digital image

of the strawberry was converted to an ordered scale. Then, using

human recognizable shape categories, the quantitative features

most suitable for genetic anatomy and analysis were extracted

from a variety of morphological analyses (Feldmann et al.,

2020). The researchers also improved the traditional BP neural

network, automatically adjusted the learning rate according to

the output loss, and established a soybean disease detection

model (Jiang et al., 2019). In recent years, researchers have

used deep convolution neural networks (DCNN) to identify

cucumber leaf diseases and compared the detection results

of random forest (RF), support vector machine (SVM), and

AlexNet with the detection results of DCNN. The results show

that the accuracy of the DCNN model was 93.4%, which

was significantly higher than other conventional classifiers

(Ma et al., 2018). Researchers used multilayer convolution

neural network (MCNN) to classify mango leaf diseases and

found that the MCNN model had higher classification accuracy

compared to other advanced methods (Singh et al., 2019).

Facts show that compared with the machine learning methods,

deep learning methods have better effects in the fields of

image recognition and classification and have expanded to

almost all the areas of plant phenotyping (Arya et al., 2022).

This is mainly because deep learning can more easily perform

high-precision data analysis on a large number of images

(Gill et al., 2022). Among the deep learning methods, the

residual network is one of the most widely used networks.

The network can better fit the classification function, resulting

in higher classification accuracy. Therefore, we built a four-

channeled residual network (F-RNet) to classify the image of

tea leaves under disease and insect stress. The network takes

ResNet18 as the framework, inputs the image processed by

wavelet transform into the first layer network, transforms it into

a four-channeled network to extract image features, and the

parameters of the network are automatically adjusted by 10-fold

cross verification.

As shown in Figure 1, it is the overall framework of

the model in this study. In our implementation, the main

contributions of this study are as follows:

1) A disease spots and insect spots segmentation model of

tea leaves based on Mask R-CNN is proposed. The region

of harmful symptoms is segmented from the image of tea

leaf under disease and insect stress, and other backgrounds

are removed, so as to obtain more useful information. To

increase the data set, the segmented image is rotated and

flipped horizontally and vertically.

2) An image enhancement algorithm based on the wavelet

transform is proposed. The segmented image is

transformed by wavelet transform, and the image is

gradually multi-scale refined by scaling and translation

operations to obtain a low-frequency image and

three high-frequency images, so as to extract more

comprehensive disease spots and insect spots information.

3) A detection model of a four-channeled residual network

(F-RNet) is proposed. The low-frequency and high-

frequency images processed by wavelet transform are

input into a four-channeled convolutional neural network

to extract image features. At the same time, the

imagefolder function is overloaded, and the images are

selected as the training set and test set by means of 10-

fold cross-verification to train the network and adjust

the parameters.

Materials and methods

Data acquisition

In April 2021, the images of tea leaves under disease and

insect stress were collected at Rizhao Tea Research Institute,

Shandong Province, China (35◦40
′
N, 119◦33E). The varieties of

tea are Longjing 43, Jinxuan, and Zhongcha 108. The images
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FIGURE 1

The overall framework of the model in this study.

FIGURE 2

The collection of the original photographs. (A) BB; (B) TS; (C) BB and TS; (D) TC; (E) AL.

were taken by a Canon EOS 6D digital camera under natural

light conditions, and the shooting angle and shooting distance

were random. The images were saved in JPG format with a

resolution of 6,000 × 4,000. In this study, the following four

kinds of images of tea leaves under disease and insect stress

with a high incidence rate were selected: brown blight (BB),

target spot (TS), tea coal disease (TC), and Apolygus lucorum

endangers leaves (AL). Among them, there is less difference in

phenotypic characteristics between BB and TS, and these two

diseases often exist in tea leaves at the same time. We collected

about 1,200 images in total, and five types of images are shown

in Figure 2.

Data labeling

The training sets used in the Mask R-CNN network must be

labeled. Therefore, the Labelme software was used to construct

training sets to manually mark the images of tea leaves under

disease and insect stress. The Labelme software was developed by

the MIT Computer Science and artificial intelligence laboratory.

First, the symptom areas of disease and pest damage were

marked with different colors, and each symptom area was

classified with different color labels. Among them, yellow, green,

red, and blue color labels represent BB, TS, TC, and AL,

respectively. Areas beyond themark were treated as background.

Then, the labeling data was saved in a JSON file corresponding

to the original photo. Figure 3A shows the images in the

process of leaf labeling. We converted the JSON format marking

data into visual images to obtain the leaf marking image in

Figure 3B. Here, you could see that the different target parts

were covered with different color masks, and the labels we

marked were displayed in the lower right corner of the image.

Next, we converted the JSON format of the tag data into the

COCO dataset format and input it into the neural network

for training.
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Mask R-CNN

To further classify the disease spots and insect spots on tea

leaves, we extracted the disease spots and insect spots from tea

leaves by using the Mask R-CNN network. The Mask R-CNN

network could be divided into five main structures (He et al.,

2017). We drew the Mask R-CNN network structure as shown

in Figure 4. The five structures in Mask R-CNN are explained

as follows:

FIGURE 3

Labeled images sample. (A) The images in the process of leaves

labeling and (B) images after leaves marking.

(1) Backbone framework: In this study, ResNet101 and

feature pyramid network (FPN) are used as the backbone

framework to extract the image features of tea leaf

disease spots and insect spots. Resnet101 is a mainstream

convolutional neural network, which can extract features

from images. We used ResNet101 to convolute the disease

spots and insect spots images of tea leaves 101 times and

extracted the low-level and high-level features of the disease

spots and insect spots images. Then, FPN is used to fuse the

feature images from the bottom to the top, so as to achieve

the best extraction effect. FPN can improve the accuracy and

speed and generate higher quality feature map pyramids.

(2) Region proposal network (RPN): Using a sliding window,

the RPN can receive the feature map extracted from the

backbone structure, and the images are divided into two

categories, namely, target disease and insect spots and

background. Then, the disease spots and insect spots are

selected by the boxes that fit the size of disease spots

and insect spots as far as possible. If the predicted boxes

overlap too much in a region, the RPN prediction will

retain the box with the highest foreground score and discard

the remaining boxes. At this time, the target disease spots

and insect spots areas and the background can be roughly

distinguished, and it is impossible to carry out detailed

classification and segmentation of the target disease spots

and insect spots.

(3) Region of interest (ROI) align: ROI align is used to

receive the region of interest from the RPN. Using the

bilinear interpolation, the feature map of the region of

interest is cut by pooling and sent to two branches. One

branch network is a region of interest classifier and a

border regression, and the other branch network is a mask

generation network composed of the full convolutional

networks (FCN).

FIGURE 4

Structure of Mask R-CNN.
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(4) Box regression and classification: ROI classifier and border

regression are used for target disease spots and insect spots

recognition, and both of them are composed of a full

connection layer. The ROI classifier classifies the ROI into

specific disease spots and insect spots. The border regression

adjusts the center point position and aspect ratio of the

region of interest to detect disease spots and insect spots

more accurately.

(5) Segmentation mask: The mask-generating network is

composed of fully connected network (FCN). The network

can generate a mask consistent with the size and shape of

the target disease spots and insect spots, and segment the

images of the target disease spots and insect spots. Finally,

the mask images are combined with the recognition result

to obtain an image containing the target disease and insect

spot category and segmentation mask.

The loss function of Mask R-CNN is as follows:

L=Lcls + Lbox + Lmask (1)

Lcls and Lbox are consistent with the classification and regression

losses defined in Faster R-CNN (Ren et al., 2017). The

mask branch has k×m2 dimensions of output for each ROI.

Represents k binary masks with resolution m×m. Lmask is the

average binary cross loss. For an ROI belonging to the k category,

Lmask considers only the k mask.

Two-dimensional discrete wavelet
transforms of disease and insect damage
spots image

To better extract the characteristic information of tea leaf

disease and insect damage spots, the images were enhanced

by wavelet transform. The wavelet transform first converts the

image into a signal, and then transforms the signal by selecting

the appropriate wavelet base and wavelet decomposition scale

in order to obtain the low-frequency coefficients and high-

frequency coefficients. Finally, the signal is separated according

to the low-frequency coefficient and high-frequency coefficient

to obtain four components, as shown in Figure 5. The four

components are described as follows:

(1) LL component is a wavelet coefficient generated by

convolution of low-pass filter in row direction and column

direction. It is an approximate representation of image.

(2) HL component is a wavelet coefficient generated by the

convolution of a low-pass filter in row direction and then

the convolution of a high-pass filter in the column direction.

It represents the characteristics of the horizontal direction

of the image.

(3) LH component is the wavelet coefficient generated by the

convolution of a high-pass filter in the row direction and

then the convolution of a low-pass wavelet filter in the

column direction. It represents the characteristics of the

vertical direction of the image.

(4) HH component is the wavelet coefficient generated by

convolution of high pass filter in the row and column

directions. It represents the characteristics of the diagonal

edge of the image.

A discrete wavelet transform is a mathematical method for

time-frequency analysis of discrete-time signals. Its main idea

is the multi-resolution analysis process. In the process of

two-dimensional image decomposition by discrete wavelet

transform, LL component can cyclemany times until it meets the

requirements. In this study, the LL component only circulates

once. For the image f (x, y) with a size of M× N, the formula of

discrete wavelet transform is as follows:

Wϕ
(

j0,m,n
)

=
1

√
MN

∑M−1

x=0

∑N−1

y = 0
f
(

x,y
)

ϕj0 ,m,n(x,y)(2)

j0 is an arbitrary starting scale; Wϕ is the approximate

coefficient in the scale j0 ; ϕj0 ,m,n(x,y) represents a

scale function.

F-RNet

In this study, we proposed a novel deep learning model

called F-RNet to classify disease spots and insect spots images.

Compared with the traditional convolutional neural network,

the network adds residual blocks, which can solve the problems

of gradient disappearance and difficult network training in the

depth network. When the network layer is too deep, the residual

blocks are connected by the identity map that introduces A,

and the network degradation is solved by fitting the X (A) in

Y (A) = X (A) + X to 0. Owing to the introduction of A,

the derivative value is invariably >1 in the back propagation

process, which prevents the gradient of the neural network

from disappearing. F-RNet is based on ResNet18, as shown in

Figure 6. The BN is the batch regularization processing, the

Relu is the activation function, the MAX POOL represents the

maximum pool operation, AVG POOL represents the global

average pool layer operation, and Rebslock-1 to Rebslock-4

represent residual blocks.

To enhance the underlying features and enable the network

to achieve better classification effects, in the first layer network,

four-channeled convolution layers are used to extract the

characteristics of disease spots and insect spots. The input

data size of the ResNet18 neural network is 224 × 224

× 3. Therefore, it is necessary to preprocess images of

different frequencies before inputting data to ensure smooth

input. The images of four frequencies processed based on

the wavelet transform are input to four 5 × 5 filters for

convolution. After feature fusion, nonlinear transformation,
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FIGURE 5

(A) The image signal is separated by wavelet transform according to low frequency and high frequency. “W” is the original image; “Fhigh” is the

high frequency component; “Flow” is the low frequency component; (B) schematic diagram of wavelet transform; and (C) real image of wavelet

transform.

and maximization, the images are input to Resblock-1,

and each residual block contains four convolution layers.

After the continuous convolution of residual blocks, the

number of channels of the image pixel matrix becomes

deeper and deeper. Finally, the size of the image pixel

matrix is input to the full connection layer FC, and

the corresponding category probability is output by the

Softmax classifier.

To simplify the tedious operation of making data sets, we

combined the image folder function in the Pytorch framework

with the 10-fold cross-validation in statistics, overloaded the

image folder function, made the obtained pictures into 9 training

sets and 1 test set in the way of 10-fold cross-validation, packaged

them into the DATA dictionary in the way of K and Key

values, replacing the traditional iterative training method, and

further improved the training efficiency of the network. For each

iteration cycle, we will get the accuracy and loss rate of the results

for 10 times, take the average value as the estimation of the

model accuracy, and then automatically discard the parameters

with low accuracy and retain the parameters with high accuracy.
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FIGURE 6

Structure of F-RNet.

FIGURE 7

A legend to summarize the overall framework of this study. (A) Original image; (B) Mask R-CNN segment; (C) Amplification; (D) Wavelet

transform; (E) F-RNet classification.

Overall framework

To more clearly express the overall idea of this study, we

added a legend to summarize the overall framework of this study

(Figure 7). Figure 7A shows the original image of tea leaf target

spot disease, and Figure 7B shows the target and background

segmented by the Mask R-CNN model. The background image

is discarded, and the target image is rotated and flipped

horizontally and vertically to form four images (Figure 7C).

The amplified image is processed by wavelet transform, and

four images with different frequencies are obtained (Figure 7D).

These four images with different frequencies are simultaneous

input to F-RNet for classification (Figure 7E). Finally, the

classification result is TS.

Results and analysis

Experimental environment and
evaluation method

The data processing environment of this experiment are

as follows:

Hardware: Processor: Inter Xeon CPU E5-2640 V4 @

2.4GHZ 2.40GHZ (two processors); RAM: 128 GB; Software

environment: CUDA Toolkit 10.1; CUDN V7.6.0; Python 3.8;

Pytorch-GPU 1.6.0; Operating system: Windows 10.

To evaluate the overall probability of the model correctly

classifying all disease spots and insect spots, accuracy

index was adopted. To evaluate the effectiveness of the

Frontiers in Plant Science 08 frontiersin.org

https://doi.org/10.3389/fpls.2022.922797
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.922797

FIGURE 8

Variation trend of loss rate and accuracy rate in the training

process of Mask R-CNN model.

model in single disease spots or insect spots detection,

precision and recall indices were adopted. To evaluate the

comprehensive performance of disease spots and insect spots

detection model, F1-score index was adopted. The formula is

as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 - score = 2×
precision× recall

precision + recall
(6)

“TP” is the number of positive samples correctly classified

and located. “TN” is the number of negative samples correctly

classified and located. “FP” is the number of negative samples

wrongly classified as positive samples. “FN” is the number of

positive samples wrongly classified as negative samples (Xie

et al., 2018).

Mask R-CNN model segmentation of
disease spots and insect damage spots
on tea leaves

Training of Mask R-CNN model

In this study, the 1,200 images were divided into training

sets and test sets according to the method of five-fold cross-

validation. The learning rate was 0.001, the batch size was 1, the

epoch was 20, and the momentum was 0.9. Figure 8 shows the

change trend of the loss rate and accuracy rate in the training of

the Mask R-CNNmodel.

TABLE 1 Mask R-CNN test results for the whole area of disease spots

and insect spots.

Type Model Precision Recall F1-score

DSIS Mask R-CNN 94.8% 98.7% 96.7%

TABLE 2 Mask R-CNNmodel recognition results of disease spots and

insect spots.

Types of

disease spots

and insect

spots

Precision (%) Recall (%) F1-score(%)

BB 50.1 78.3 61.1

TS 55.9 81.4 66.6

TC 89.4 87.2 88.3

AL 92.3 98.5 95.3

Mask R-CNN model extraction of overall
disease spots and insect spots

In this study, we first analyzed the two categories of disease

spots and insect damage spots (DSIS) and non-disease spots and

insect damage spots (NDSIS). Table 1 shows the detection results

of Mask R-CNN on the whole DSIS area. We can see that the

precision rate of the model is 94.8%, the recall rate is 98.7%,

and the F1 score is 96.7%. This shows that the Mask R-CNN

model can well distinguish DSIS and NDSIS, and almost DSIS

can be identified. This provides a basis for further research on

the classification of DSIS.

Mask R-CNN model classification of disease
spots and insect spots

To explore whether theMask R-CNNmodel can well classify

disease spots and insect spots, we compared and analyzed the

recognition results of disease spots and insect damage spots, as

shown in Table 2. The results show that the model has achieved

good results in the identification of TC and AL. The F1-score

of TC and AL identified by the Mask R-CNN model is 88.3

and 95.3%, respectively, indicating that this model can well

distinguish TC and AL. However, the F1 scores of BB and TS

are 61.1 and 66.6% respectively, and the recognition accuracy

is lower than 60%, indicating that the Mask R-CNN model

cannot effectively distinguish the two disease spots. This may be

because the textures of the two disease spots are too similar. It

is easy to confuse the features of these two disease spots when

extracting the features of the two disease spots. The final results

show that Mask R-CNN cannot distinguish these four DSIS well.

Therefore, we proposed a new F-RNet network to better classify

disease spots and insect spots. Figure 9 shows the segmentation

process of tea leaves with disease spots and insect spots.
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FIGURE 9

Segmentation process of tea leaf disease spots and insect damage spots. (A) Original image; (B) identified image; and (C) segmented image.

F-RNet model classification of disease
spots and insect damage spots

Training of F-RNet model

To increase the number of images, the segmented image

by Mask R-CNN was subjected to data amplification, namely,

rotation, horizontal flip, and vertical flip. F-RNet network used

10-fold cross-validation to select images as training sets and test

sets for training and automatically adjust parameters. The initial

learning rate was 0.001, the epoch was 90, the batch size was 64,

and the momentum parameter was 0.9. To prevent overfitting

of the model, the learning rate was reduced by one-third for

every 27 iterations, and the final learning rate was 0.000037. In

addition, the F-RNet model used the Adam optimizer, which

had the advantages of fast convergence and easy adjustment of

parameters. Figure 10 shows the change trend of the loss rate and

accuracy rate in the training process of the F-RNet model.

F-RNet model classification of disease spots
and insect spots

To improve the accuracy of the network model in the

classification of disease spots and insect spots, we built a four-

channeled residual network (F-RNet) based on the ResNet18

network and wavelet transform to classify disease spots and

insect spots images segmented by the Mask R-CNN model in

detail. To verify whether our improved model can improve the

FIGURE 10

Variation trend of loss rate and accuracy rate in the training

process of F-RNet model.

performance of the network, we tested the F-RNet network

and other models (i.e., SVM, AlexNet, VGG16, and ResNet18)

under the same test environment and the same test set. With the

increase of network depth, the training loss decreases and the

network performance becomes more optimized. Table 3 shows

the test accuracy of disease spots and insect spots images in

different models. Among them, the classification accuracy of the

SVMmodel is 65%, which is the worst of the five models, which

shows that the method of deep learning is significantly better
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than the traditional machine learning method. The classification

accuracy of ResNet18 is 82%, which shows that the residual

network model is better than the traditional CNN model, which

is consistent with the previous research results (Hati and Singh,

2021). The classification accuracy of our proposed F-RNetmodel

is 88%, which is the highest classification accuracy among the

five models, while the classification accuracy of ResNet18 is

82%, which shows that the generalization ability of the improved

network model has been improved.

To further compare the recognition performance of different

models for single disease spots and insect spots, we evaluated

TABLE 3 Test accuracy of disease spots and insect spots images in

di�erent network models.

Model Input size Number of test set images Accuracy (%)

SVM 256× 256 480 65

AlexNet 256× 256 480 73

VGG16 256× 256 480 80

ResNet18 256× 256 480 82

F-RNet 256× 256 480 88

five models through precision, recall, and F1-score indicators, as

shown in Figure 11. The results show that for BB, TS, and TC

classification, the three evaluation indexes of the F-RNet model

are the highest. For the classification of AL, the three evaluation

indexes of the ResNet18 model are the highest. This may be

related to the obvious characteristics of AL, and the performance

of relatively shallow networks is better. However, the difference

between the F1-score of the ResNet18 model and the F-RNet

model is not large (only 3%). Therefore, the F-RNet model has

the best comprehensive performance in classifying disease spots

and insect spots.

Discussion

Mask R-CNN model can accurately
extract disease spots and insect spots
from tea leaves

Mask R-CNN is a target instance segmentation model

proposed by He Kaiming et al. on the basis of Faster R-CNN

(Girshick et al., 2015; He et al., 2017). The model adds a branch

for predicting the target mask in parallel with the existing Rox

FIGURE 11

Evaluation results of di�erent disease spots and insect spots by di�erent network models. (A) BB; (B) TS; (C) TC; and (D) AL.
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FIGURE 12

Confusion matrix of tea leaf DSIS detection model based on

F-RNet.

identification branch of Faster R-CNN. Previously, researchers

used the Mask R-CNN model to segment the leaves of different

plants and then used the VGG16 network to classify the leaves,

so as to realize the identification of plant varieties (Yang et al.,

2020). In this study, the effect of DSIS segmentation using

the Mask R-CNN model is consistent with that of plant leaves

segmentation. From able 2, it can be seen that the Mask R-CNN

model has poor results in identifying four DSIS areas, especially

identifying BB and TS, with an accuracy of only about 50%.

However, the Mask R-CNN model is effective in segmenting

DSIS and NDSIS. This is very important to ensure that the whole

DSIS areas can be accurately segmented, which provides basic

work for further identification of the DSIS. In this study, due

to the high similarity of disease spots, the classification effect of

Mask R-CNN is not ideal, but the overall detection rate of disease

spots and insect spots is very good. Therefore, we introduced a

new classification model to make up for the deficiency of Mask

R-CNN in classification.

F-RNet model has good robustness for
the classification of disease spots and
insect spots

We used the confusion matrix to observe the

misclassification between DSIS, as shown in Figure 12.

The results showed that about 20% of TS were incorrectly

classified as BB. There may be two reasons for this situation.

First, the texture features of the two disease spots are too

similar, and the model is difficult to identify; second, whenMask

R-CNN segments the disease spots areas, one image contains

these two kinds of disease spots, which leads to the confusion of

the features of these two kinds of disease spots in the extraction

of disease spots features by F-RNet. Therefore, in a subsequent

study, we can increase the number of TS images and collect

images with more obvious texture features to further optimize

the model. For the identification of BB, TC, and Al, F-RNet can

be classified accurately with less misclassification. The overall

accuracy of the model is 88%. This shows that the model has

good robustness and can accurately classify the disease spots.

F-RNet model can improve the accuracy
of classifying disease spots and insect
spots

We compared the classification accuracy of the F-RNet

model with that of other models (SVM, AlexNet, VGG16, and

ResNet18). The results show that the classification accuracy of

the F-RNet model is greatly improved for TC and AL, and

the classification accuracy of TC and AL is slightly improved.

This shows that the F-RNet model has great potential to

identify complex and similar disease spots. The reasons why

F-RNet is superior to other models are analyzed. On the

one hand, the four-channeled network is more comprehensive

than the single channel network in extracting the features of

disease spots. Previously, researchers built a two-channeled

residual network to identify tomato leaf diseases. The results

show that the classification accuracy of B-ARNet model

(double channel residual network) is higher than that of

the ResNet50 model (single channel residual network) (Chen

et al., 2020). On the other hand, wavelet transform can

reduce or remove the correlation between different features

of disease and insect damage spot image and enlarge the

main texture features of the disease and insect damage

spots by selecting an appropriate filter. In future research,

we can deeply mine and analyze the technology of wavelet

transform. In this study, the wavelet transform decomposes

the image only once. In the follow-up research, we can

decompose the image many times to deeper study the impact

of the wavelet transforms on the performance improvement of

the model.

Conclusion

In this study, a recognition framework of disease and

insect damage symptoms in tea leaf images based on Mask R-

CNN, wavelet transform, and F-RNet is proposed. First, we

used the Mask R-CNN model to segment disease spots and

insect spots from leaves. Then, the two-dimensional discrete

wavelet transform is used to enhance the features of disease

spots and insect spots images, so as to obtain the images

with four frequencies. Finally, the images of four frequencies

are simultaneously input into the four-channeled residual

network (F-RNet) to identify the disease and insect damage
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symptoms. The results showed that the Mask R-CNN model

could detect 98.7% of DSIS, which ensures that almost all

disease spots and insect spots can be extracted from leaves.

The accuracy of the F-RNet model is 88%, which is higher

than that of other models (e.g., SVM, AlexNet, VGG16,

and ResNet18). Therefore, this experimental framework can

accurately segment and identify disease spots and insect spots

in tea leaves, which is not only of great significance for the

accurate identification of tea plant diseases and insect pests but

also of great value for further using artificial intelligence to

carry out the comprehensive control of tea plant diseases and

insect pests.
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