

Genome-Wide Identification and Characterization of the *LpSAPK* Family Genes in Perennial Ryegrass Highlight *LpSAPK9* as an Active Regulator of Drought Stress

Jing Xing, Ruijie Zhao, Qing Zhang, Xinru Huang, Tingchao Yin, Jing Zhang* and Bin Xu*

SAPK/SnRK2 family genes play crucial roles in plant growth, development, and abiotic

College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China

OPEN ACCESS

Edited by:

Peng Zhou, Shanghai Jiao Tong University, China

Reviewed by:

Ke Teng, Beijing Academy of Agricultural and Forestry Sciences, China Gang Nie, Sichuan Agricultural University, China

*Correspondence:

Jing Zhang nauzj@njau.edu.cn Bin Xu binxu@njau.edu.cn

Specialty section:

This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

Received: 18 April 2022 Accepted: 06 May 2022 Published: 02 June 2022

Citation:

Xing J, Zhao R, Zhang Q, Huang X, Yin T, Zhang J and Xu B (2022) Genome-Wide Identification and Characterization of the LpSAPK Family Genes in Perennial Ryegrass Highlight LpSAPK9 as an Active Regulator of Drought Stress. Front. Plant Sci. 13:922564. doi: 10.3389/fpls.2022.922564 stress responses. The objective of this study was to identify and characterize the LpSAPK genes in perennial ryegrass (Lolium perenne L.). The results showed that there are 10 LpSAPKs in perennial ryegrass that could be classified into three groups with similar genic (exon-intron) structures to their orthologous genes in Arabidopsis and other grass species. Ka/Ks analysis suggested that the LpSAPKs and their orthologs were under purifying selection to maintain their conserved function during evolution. Nine out of ten LpSAPKs were localized in the cytoplasm and nucleus with the exception of LpSAPK5 which was only observed in the cytoplasm. Most LpSAPKs were responsive to various abiotic stress and hormonal (ABA, cytokinin, and ethylene) treatments but were downregulated in leaves and upregulated in roots, suggesting that there were unknown cis elements in promoters of these genes or unidentified post-transcriptional mechanism responsible for the tissuedependent stress-regulated expression of these LpSAPKs. Furthermore, LpSAPK9 was identified as a candidate positive regulator in drought tolerance using a yeast ectopic expression system, and LpSAPK9 showed contrasting expression changes in droughtsensitive and -tolerant ryegrass varieties, suggesting that expression levels of LpSAPK9 were related to ryegrass drought tolerance. These results will facilitate further functional analysis of LpSAPKs for molecular breeding of ryegrass and other related grass species.

Keywords: perennial ryegrass, LpSAPK genes, abiotic stress, plant hormone, drought tolerance

INTRODUCTION

Protein phosphorylation and de-phosphorylation, catalyzed by kinases and phosphatases, comprise one important type of post-translational modification that plays in the regulation of plants' adaptation to abiotic stresses (Couso et al., 2021). The stress-activated protein kinase (SAPK), also known as the SnRK2 (sucrose non-fermenting 1-related protein kinase 2 subfamily), is a plant-specific Ser/Thr protein kinase family that regulates plant growth, development, and abiotic stress responses *via* abscisic acid (ABA) dependent or independent signaling pathway (Pang et al., 2018; Chen et al., 2020b; Takahashi et al., 2020).

All SAPKs contain two domains: the N-terminal kinase domain and the C-terminal regulatory domain. The N-terminal kinase domain is conserved to the kinase domain of AMPK (AMP-activated protein kinase; Hrabak et al., 2003). The C-terminal domain consists of two subdomains, including Domain I and Domain II (Yoshida et al., 2006). The Domain I harbors about 30 amino acids, which exist in all SnRK2 members and are required for activation by osmotic stress; while the Domain II contains about 40 amino acids that mediate interaction with the clade A-type PP2Cs (2C Protein Phosphatases) for ABA signaling transduction (Kobayashi et al., 2004). Some SAPKs were identified as important regulators in plant tolerance to multi-environmental stresses. For example, in response to salt stress, AtSnRK2.4 and AtSnRK2.10 bind to phosphatidic acid (PA) through a 42 aa long domain, while the mutant proteins with the loss of PA interaction domains showed severe root inhibition under salt stress (Julkowska et al., 2015; Putta et al., 2020). Overexpression of AtSnRK2.8 and TaSnRK2.3/2.4/2.7 significantly enhanced drought stress tolerance in transgenic plants (Umezawa et al., 2004; Mao et al., 2010; Zhang et al., 2011; Tian et al., 2013). Several other SAPKs, such as ZmSAPK8, OsSAPK4, and PtSnRK2.5/2.7, act as positive regulators of multiple stress tolerances (Diédhiou et al., 2008; Ying et al., 2011; Song et al., 2016). Therefore, SAPKs excellent candidate genes are for stress tolerance improvement.

Perennial ryegrass (*Lolium perenne* L.) is an important coolseason perennial grass species widely cultivated in temperate regions throughout the world for its turf and forage purposes. It is important to further improve the drought stress tolerance of perennial ryegrass for better pasture and turf persistence where irrigation is often of major concern. The objectives of this study were (i) to classify and characterize *SAPKs* gene family in perennial ryegrass, and (ii) to identify *SAPKs* which can be used as candidate genes for perennial ryegrass stress tolerance.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and Stress Treatments

Seeds of perennial ryegrass (cv. "Buena vista") were sown in a cell tray filled with fritted clay and maintained in a greenhouse at Nanjing Agricultural University (Nanjing, China). 20 days old seedlings were transplanted and cultivated hydroponically for 2 weeks in Hoagland's nutrient solution and maintained in a growth chamber set at a photoperiod of 14/10 h, the controlled temperature of 25/20°C (day/night), relative humidity of 70%, and photosynthetically active radiation (PAR) of 750 µmol photos $m^{-2} s^{-1}$. The Hoagland's nutrient solution was replaced with a fresh solution twice a week to ensure adequate oxygen and nutrient supply.

To determine the expression patterns of *LpSAPKs* involved in stress and hormone responses, plants were exposed to cold (4°C), heat (38°C), osmotic stress (15% PEG6000, w/v), NaCl (255 μ m), AlCl₃ (1.6 mm), CdCl₂ (200 μ m), 6-BA (25 μ m), ABA $(50\,\mu\text{m})$, and ethephon $(200\,\mu\text{m})$, an ethylene releaser) treatments, respectively. Leaf and root samples were collected at 0, 0.5, 2, 6, 12, 24, & 48h under each treatment, frozen in liquid nitrogen, and kept at -80°C for RNA extractions. Tissues including the root, crown, stem, leaf sheath, expanding leaf (the 2nd leaf from the top), mature leaf (the 3rd leaf from the top), and senescent leaf (the 4th leaf from the top) were collected from adult plants separately for RNA extractions and used for organ-specific expression analysis.

For drought tolerance assessment of perennial ryegrass lines, seeds of one commercial cultivar "Buena vista" and two selected lines bred in our research program (cv. "XiaLu-4" and "XiaLu-6," previously named as "R2-4" and "R2-6," respectively; Zhang et al., 2022a) were germinated on wetted paper towels with water and 10% PEG6000 in a growth chamber. 1 week later, the plant height, root length, and fresh weight of seedlings were measured, and the samples of leaf and root were collected to examine the expression level of *LpSAPK9*. Plant height was measured manually from the base to the shoot tip of each plant.

Identification and Cloning of *LpSAPK* Genes

Coding sequence (CDS) of ten OsSAPKs in rice was obtained from NCBI1 based on the accession number reported by Zhang et al. (2018). All LpSAPKs gene sequences were identified using the local BLAST program to screen the perennial ryegrass genome database (Daniel et al., 2021) and our transcriptome database (Xu et al., 2019; Zhang et al., 2022b) with ten OsSAPKs sequences as quires. The E-value threshold for the BLAST program was set at 1e-10 to obtain the candidate dataset of SAPK genes. The local perennial ryegrass genome database and transcriptome databases were built using Bioedit software.² Sequences of all LpSAPKs were examined using the Conserved Domain Database³ to confirm whether these proteins have typical features of the SAPKs. The biophysical properties of the LpSAPKs, such as Molecular weight (Mw), Isoelectric point (pI), and Grand average of hydropathy (GRAVY), were calculated using the ProtParam tool.4

Total mRNA was extracted from different tissues of perennial ryegrass using the Plant RNA Kit (Omega Bio-Tek, United States). The first-strand cDNA was synthesized using a cDNA Reverse Transcription Kit (TaKaRa, Dalian, China) and was used for gene cloning. All confirmed *LpSAPK* genes were cloned by using primers designed according to the sequences flanking their open reading frame (ORF; **Supplementary Table S1**). PCR was performed in a 50 µl reaction volume using Phanta Super-Fidelity DNA Polymerase from Vazyme (Vazyme Biotech Co., Ltd., Nanjing, China) for gene cloning. The PCR products were purified using the Gel Extraction Kit (Omega Bio-Tek, United States) and cloned into a modified pEND-linker vector for sequencing.

³http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

¹https://www.ncbi.nlm.nih.gov/

²https://bioedit.software.informer.com/

⁴https://web.expasy.org/protparam/

Phylogenetic Tree, Genic Structure, Motif, Ka/Ks, and Promoter Analyses

A phylogenetic tree was constructed using the neighbor-joining (NJ) method in the MEGA 7.0 software program with 1,000 bootstrap replicates, p-distance model/method, uniform rates among sites, partial deletion with 50% Cutoff gaps/missing data treatment, and the number of threads is seven. We have added this information in the revised MS. In addition to LpSAPKs from perennial ryegrass, their orthologous proteins (SAPK/SnRK2) from Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), and brachypodium (Brachypodium distachyon) were used for the phylogenetic analysis. Multiple amino acid sequence alignment of LpSAPKs was performed using online Multiple Sequence Alignment tool.⁵ The gene structures of the LpSAPKs were determined based on the comparison of their coding sequences (CDS) and genomic sequences. The online MEME program (version 5.4.1)⁶ was used to identify the conserved motifs of the LpSAPK proteins. The Ka/Ks analysis was performed using TBtools (Chen et al., 2020a). Two kb nucleotide sequences upstream from the transcription initiation site were considered as promoters of each gene. The cis elements of LpSAPK promoters were obtained from the PLACE database.7

Subcellular Localization Analysis

The CDS of the *LpSAPKs* were amplified with gene-specific primers (**Supplementary Table S1**) and cloned into the pEarleyGate103 vector to generate *LpSAPK-GFP* fusion genes and transformed into *Agrobacterium tumefaciens* strain "*AGL1*." Then, the resuspended *Agrobacterium* at OD600=0.6 in 1/4 MS salt solution was injected into the leaves of 4 to 6-week-old *Nicotiana benthamiana* plants. The injected leaves were incubated in the dark for 12h and then moved to a normal growth environment for 3 days, and then examined the GFP fluorescence signal using a Zeiss LSM 800 laser scanning confocal microscope (Carl Zeiss SAS, Jena, Germany). The subcellular localizations of *LpSAPKs* were also predicted by using the online PSORT software.⁸

qRT-PCR Analysis

For qRT-PCR analysis, the same procedure was used as reported previously (Zhang et al., 2016b, 2021). Detailed information on primers used for the qRT-PCR analysis was listed in **Supplementary Table S1**, and *LpeIHF4A* was selected as the reference gene (Huang et al., 2014). The relative expression levels of *LpSAPK* genes were calculated using the $2^{-\Delta\Delta CT}$ method.

Heterologous Expression of *LpSAPKs* in Yeast

Two Saccharomyces cerevisiae yeast mutant strains, $\triangle hog1$ (Winkler et al., 2002) and $\triangle G19$ (Quintero et al., 1996),

that were sensitive to drought and salt treatments, were used to screen stress-related LpSAPKs. The CDS of the LpSAPKs were cloned into the pGAD426 vector and then transformed to the yeast strains using the Frozen-EZ Yeast Transformation Kit (Zymo Research, United States). The transformed yeast strains were grown in the synthetic dropout uracil (SD-Ura) or synthetic dropout uracil histidine (SD-Ura-His) medium. The pGAD426-GUS plasmid was used as the negative control. For drought tolerance assessment, $10 \,\mu l \, \triangle hog1$ yeast solution (OD₆₀₀ = 1) was spotted on solidified SD-Ura medium containing 0.75 M sorbitol and incubated at 28°C for 3 days. The growth of transformants in SD-Ura liquid medium containing 0.75 M sorbitol was determined by measuring OD_{600} at 24 h intervals. The transformed yeast mutant strain $\triangle G19$ was used for salt tolerance by assessing their growth in SD-Ura-His medium containing 500 mm NaCl.

Statistical Analysis

Data in this study were statistically analyzed by the LSD and Duncan test program at a significance level of 0.05 using the SPSS software (Version 12, SPSS Inc., Chicago, IL). Data were expressed as means \pm standard error (SE).

RESULTS

Identification of *SAPK* Genes in Perennial Ryegrass

Ten LpSAPK genes were isolated from the perennial ryegrass genome and transcriptome databases and named as LpSAPK1-10 after corresponding to their orthologous proteins in rice. Subsequently, their CDSs were cloned and sequenced (GenBank accession numbers were listed in Supplementary Table S2). The CDS of the LpSAPKs vary from 1,017 bp (LpSAPK3) to 1,143 bp (LpSAPK9) and their encoded proteins range from 338 aa to 380 aa with molecular weights of 38.30 kDa (LpSAPK3) to 43.52 kDa (LpSAPK9). All LpSAPKs have isoelectric points (pI) less than 7.0, indicating they are acidic hydrophilic proteins (GRAVY <0) according to the GRAVY analysis (Supplementary Table S2).

Furthermore, all *LpSAPKs* have typical domains of the SAPK family, including the ATP-binding region (DI/LGXGXFGVA) and protein kinase-activating domain (I/VCHRDLKLENTLLD) in N-terminal regions that constitute the serine/threonine kinase domain, and the domain I and domain II in the C-terminal regions (**Figure 1**). It is interesting to note that domain I is present in all LpSAPKs, while domain II is specific to LpSAPK8 and LpSAPK10 (**Figure 1**).

Phylogenetic Analysis, Conserved Domain, and Motifs of LpSAPKs

To illustrate the evolutionary relationship among SAPK/SnRK2 homologs in different plants, a phylogenetic tree was constructed comprising 10 *LpSAPKs* in perennial ryegrass, 10 OsSAPKs in rice, 11 ZmSnRK2s in maize, 10 BdSAPKs in brachypodium, and

⁵https://www.genome.jp/tools-bin/clustalw

⁶http://meme-suite.org/tools/meme

⁷https://www.dna.affrc.go.jp/PLACE/

⁸https://www.genscript.com/psort.html

respectively.

10 AtSnRK2s in Arabidopsis (Figure 2; Supplementary Table S3). The SAPKs were clustered into three subclasses, namely, groups 1, 2, and 3 (Figure 2). Group 1 comprised 5 LpSAPKs, including LpSAPK4/5/6/7/9; the group 2 comprised 3 ones, namely, LpSAPK1/2/3; while the rest two (LpSAPK8/10) were classified in the group 3.

Most LpSAPKs exhibit similar exon-intron organizations that LpSAPK1/2/3/4/6/7/8/9 have 9 exons, LpSAPK10 has 8 exons, while LpSAPK5 only has 3 exons (Figure 3A). A total of 12 conserved motifs were identified by MEME analysis (Figure 3B). The motifs 1–5 and 7–9 were found in all LpSAPK proteins, while the motif 11 was specific to the group 3 LpSAPKs, and motifs 10 & 12 were specific to the group 1 LpSAPKs. Moreover, the identified motifs 1, 4, and 5 were the protein kinase-activating domain, the domain I, and the ATP-binding region, respectively.

LDSAPK4

FIGURE 2 | Phylogenetic analysis of SAPK/SnRK2 proteins from Arabidopsis (AtSnRK2s), rice (OsSAPKs), and maize (ZmSnRK2s), brachypodium (BdSAPKs), and perennial ryegrass (*LpSAPKs*). The phylogenetic tree was constructed using the neighbor-joining (NJ) method with 1,000 bootstrap replicates in MEGA7.0. The Genebank accession numbers of *LpSAPK*, AtSnRK2, OsSAPK2, ZmSnRK2, and BdSAPK proteins are listed in **Supplementary Tables S2**, **S3**.

LpSAPKs Were Under Purifying Selection

Since the phylogenetic classification and genic structures of LpSAPKs were similar to those in other plant species, we speculated that the LpSAPKs might be under purifying selection during evolution to maintain their conserved functions. To verify this hypothesis, we performed the Ka/Ks analysis using LpSAPKs and their close orthologous genes in rice and brachypodium. As shown in **Table 1** all ten LpSAPKs and their compared orthologs had ka/ks ≤ 0.2 , suggesting that all of these genes were under purifying selection.

Subcellular Localization of LpSAPK Proteins

Using the PSORT software, we predicted that all *LpSAPKs* had relatively high affirmatives to the nucleus and cytosol (**Supplementary Table S4**). Consistently, we observed that the subcellular localization of LpSAPKs-GFP was in both the cytoplasm and the nucleus of leaf epidermal cells, while the only exception went for LpSAPK5 which was mainly detected in the cytoplasm of guard cells but not in the nucleus (**Figure 4**).

Cis Elements in LpSAPKs' Promoters

Promoters of all LpSAPKs were amplified from perennial ryegrass and sequenced for *cis* elements analysis. As shown in Table 2, these LpSAPKs promoters have multiple cis elements involved in stress and hormone signaling pathways. For example, the ABRE (MACGYGB) and the CGTCA-motif were found in all LpSAPKs promoters. The ABRE cis element was the core DNA-binding sequence by ABI3 and ABF4 that were key transcription factors in the ABA signaling pathway. Similarly, the CGTCA-motif was one major cis-acting regulatory element involved in the MeJA (methyl jasmonate) pathway and was also identified in all *LpSAPK* promoters. The ethylene-responsive element (ERE) was found in the promoters of LpSAPK3/4/5/6/7/9. The gibberellin-responsive (GARE) was present in the promoters of LpSAPK1/2/7/9. The TGA element, involved in the auxin signaling pathway, was present in the promoters of LpSAPK5/6/7/8/9. The MYB binding site was found in the promoters of LpSAPK5/6/7/9. The TC-rich repeat, a defense and stress-responsive element, was found in the promoters of LpSAPK6/8/9. And the low-temperature responsive element (LTR) was identified in the promoters of LpSAPK5/7 (Table 2).

organizations of the LpSAPKs. Exons and introns are shown by filled boxes and single lines, respectively. (B) Motif analysis of LpSAPKs. Each colored box represents a motif in the protein, with the motif name indicated at the bottom of the figure.

Expression Profiles of *LpSAPKs* in Different Tissues and in Response to Abiotic Stress and Hormone Treatments

Expression patterns of 10 LpSAPKs were analyzed in seven tissues, including root, crown, stem, leaf sheath, expanding, mature and senescent leaves. As shown in **Figure 5**, five LpSAPKs (LpSAPK1/2/5/6/8) had similar expression patterns that were higher in leaves than in stem, crown, and root; expression levels of LpSAPK6 and LpSAPK7 were gradually and significantly increased along with leaf aging, while the contrary was true for *LpSAPK9*; and *LpSAPK3*&4 showed similar expression levels in all tested tissues.

Then, relative expression levels of *LpSAPKs* were analyzed under six different abiotic stress conditions (PEG, NaCl, CdCl₂, AlCl₃, cold, and heat) at seven-time points. In general, these six stress treatments led to suppressed expression of eight *LpSAPKs* (except for *LpSAPK5* and *LpSAPK6*) in leaves, and suppressed expression of *LpSAPK1/2/3/9* but upregulated expression of *LpSAPK4/5/7/8* in roots over two-fold changes (**Figure 6**). It is also notable that the transcriptional responses of these *LpSAPKs*

TABLE 1	Purifying selection of LpSAPKs and their orthologous	genes in rice
(OsSAPKs)	and brachypodium (BdSAPKs).	

Gene 1	Gene 2	Ka	Ks	Ka/Ks	Evolutionary selection		
LpSAPK1	OsSAPK1	0.032	0.596	0.053	Purifying		
LpSAPK2	OsSAPK2	0.055	0.677	0.081	Purifying		
LpSAPK3	OsSAPK3	0.063	0.592	0.106	Purifying		
LpSAPK4	OsSAPK4	0.053	0.483	0.110	Purifying		
LpSAPK5	OsSAPK5	0.097	0.731	0.133	Purifying		
LpSAPK6	OsSAPK6	0.063	0.669	0.095	Purifying		
LpSAPK7	OsSAPK7	0.043	0.468	0.092	Purifying		
LpSAPK8	OsSAPK8	0.021	0.514	0.041	Purifying		
LpSAPK9	OsSAPK4	0.144	0.736	0.195	Purifying		
LpSAPK10	OsSAPK10	0.025	0.519	0.048	Purifying		
LpSAPK1	BdSAPK1	0.015	0.419	0.036	Purifying		
LpSAPK2	BdSAPK2	0.030	0.431	0.071	Purifying		
LpSAPK3	BdSAPK3	0.046	0.457	0.101	Purifying		
LpSAPK4	BdSAPK4	0.041	0.309	0.133	Purifying		
LpSAPK5	BdSAPK5	0.073	0.571	0.128	Purifying		
LpSAPK6	BdSAPK6	0.029	0.358	0.082	Purifying		
LpSAPK7	BdSAPK7	0.021	0.245	0.084	Purifying		
LpSAPK8	BdSAPK8	0.014	0.246	0.058	Purifying		
LpSAPK9	BdSAPK4	0.155	0.756	0.205	Purifying		
LpSAPK10	BdSAPK10	0.008	0.359	0.024	Purifying		

to these stress treatments were more dramatic in roots than in leaves. For example, the expression levels of *LpSAPK7/8* increased by 10- to 120-fold in roots but decreased by less than 20 folds in leaves in response to different abiotic stress (**Figure 6**).

We also analyzed the relative expression levels of *LpSAPKs* in response to ABA, cytokinin (6-BA), and ethephon (ETH) treatments. As shown in **Figure 7**, nine out of ten *LpSAPKs* (except *LpSAPK5*) were responsive to ABA treatment, among which eight were downregulated but the *LpSAPK6* was upregulated in leaves. The contrary trend was observed in roots that nine *LpSAPKs* (except *LpSAPK9*) were upregulated by ABA treatments. In response to 6-BA treatment, expression levels of *LpSAPK3/4/7/8/9* were downregulated in leaves, while nine *LpSAPKs* (except *LpSAPK9*) were upregulated by 6-BA in roots. Under ethephon treatment, nine *LpSAPKs* (except *LpSAPK9*) were upregulated by 6-BA in roots. Under ethephon treatment, nine *LpSAPKs* (except *LpSAPK5*) were downregulated in leaves; while in roots, *LpSAPK1/2/6/9/10* were suppressed, and *LpSAPK4/5/7/8* were upregulated (**Figure 7**).

Identification of *LpSAPK9* as a Potential Positive Regulator in Drought Stress

To screen potential *LpSAPKs* regulating drought and salt tolerance, we expressed each of these genes in two yeast mutant strains that were susceptible to drought or salt stress. As shown in **Figure 8**, the $\Delta hog1$ cells harboring *LpSAPK9* exhibited remarkably enhanced growth when compared with the *GUS* control on the SD-Ura agar medium with 0.75 M sorbitol (**Figure 8A**). Quantitatively, the *LpSAPK9*/ $\Delta hog1$ lines grew at significantly higher rates than the *GUS*/ $\Delta hog1$ control lines after 24, 48, and 72 h of incubation in SD-Ura liquid medium with 0.75 M sorbitol (**Figure 8B**). Yet, *LpSAPK9*/ $\Delta G19$ lines grew at significantly slower rates than the *GUS*/ $\Delta G19$ control lines when the medium was supplemented with 500 mm NaCl (**Figure 8C,D**). For the rest *LpSAPK* genes, no significant effect was observed on drought or salt tolerance of the yeast mutants.

FIGURE 4 | Subcellular localization of the LpSAPK proteins. The vector 35S::*GFP* was used as the control. All *LpSAPKs* were infusion with a GFP tag and visualized as green fluorescence in leaf cells of *Nicotiana benthamiana*.

To further verify whether *LpSAPK9* was involved in plant drought tolerance, we measured its expression levels in three varieties of perennial ryegrass differing in drought tolerance. Notably, "Xialu-4" and "XiaLu-6" bred in our own program had exceptional drought tolerance. Consistently, the PEG-induced growth inhibitions on "XiaLu-4" and "XiaLu-6" were significantly lower than that in "Buena vista" with less decreased plant height, root length, and fresh weight (**Figures 9A–D**). Under the control condition, the expression level of *LpSAPK9* in "Buena vista" was higher than

<i>cis</i> element		LpSAPK genes									
	Functional annotation -	1	2	3	4	5	6	7	8	9	10
ABRE	Abscisic acid responsiveness	3	5	6	1	4	3	2	5	5	2
CGTCA	MeJA-responsiveness	4	2	3	4	8	5	6	1	4	3
ERE	ethylene-responsive element	0	0	1	1	1	1	1	0	2	0
GARE	gibberellin-responsive	1	1	0	0	0	0	3	0	2	0
TGA element	auxin-responsive element	0	0	0	0	2	1	2	4	2	0
TCA element	salicylic acid responsiveness	0	1	0	0	0	2	0	2	1	0
LTR	low-temperature responsiveness	0	0	0	0	1	0	2	0	0	0
MBS	MYB binding site involved in drought-inducibility	0	0	0	0	2	1	2	0	1	0
TC-rich repeats	defense and stress responsiveness	0	0	0	0	0	1	0	1	2	0

TABLE 2 | The cis element analysis of LpSAPKs promoter regions.

FIGURE 5 | Relative expression levels of *LpSAPKs* in different organs. Data are means \pm SE (*n*=4). Different letters above bars represent significant differences at $p \le 0.05$.

those in "XiaLu-4" and "XiaLu-6"; yet under PEG treatment, the expression of *LpSAPK9* decreased in "Buena vista" but was significantly increased in "XiaLu-4" and "Xialu-6" (Figure 9E).

DISCUSSION

Several *SAPKs/SnRK2s* were identified as important regulators in plant growth and development, ABA signaling transduction, and stress tolerance (Kobayashi et al., 2004; Diédhiou et al., 2008; Huai et al., 2008; Bai et al., 2017). Yet, the *SAPK* family gene(s) has not been characterized in perennial ryegrass before. In this study, we identified and cloned 10 *LpSAPKs* in perennial

ryegrass using the transcriptomic and genomic databases, characterized expression patterns of *LpSAPKs*, and screened out a potential positive regulator (*LpSAPK9*) in plant drought tolerance.

The number of *SAPKs* proteins in perennial ryegrass was similar to other plant species, such as Arabidopsis (10 *SAPKs/SnRK2s*; Boudsocq et al., 2004), rice (10; Kobayashi et al., 2004), maize (11; Huai et al., 2008), and brachypodium (10; Wang et al., 2015), in spite of the big variation of their genome sizes. The phylogenetic trees of LpSAPKs in ryegrass, ZmSnRK2s in maize, OsSAPKs in rice, and AtSnRK2s in Arabidopsis were highly similar in three subgroups (Boudsocq et al., 2004; Kobayashi et al., 2008). And all *SAPKs/SnRK2s* in cotton, Arabidopsis, and rice were found to have similar genic structures

FIGURE 7 | Relative expression levels of LpSAPA's in leaves and roots under three normone treatments. (A,B) ABA treatment; (C,D) Cytokinin (6-BA) treatment; (E,F) ethephon treatment. Data are means \pm SE (n=4). *, **, and *** above the bars represent significant differences compared to 0 h at $p \le 0.05$, 0.01, and 0.001, respectively.

with nine exons (Boudsocq et al., 2004; Huai et al., 2008; Liu et al., 2017). In LpSAPKs, eight have nine exons with two exceptions (LpSAPK5 and LpSAPK10). The coding sequencedbased phylogenetic analysis and full genic sequence-based gene structural (exon-intron) analysis revealed that the SAPKs was a conserved family across dicot and monocot species. Furthermore, the Ka/Ks analysis showed that all LpSAPKs and their orthologs in rice and brachypodium were less than 0.205, suggesting that these genes were under strong purifying selection to keep their conserved functions across different plant species. During evolution, fixation of advantageous mutations would lead to evolutionary innovations causing plants' divergence and plants' adaptation to new or constantly changing environments; while removal of deleterious mutations was essential for plants to maintain their "essential" functions (Paterson et al., 2004). Purifying selection of all LpSAPKs suggested that these genes were essential or even indispensable for plants' survival in nature and their orthologous genes should have similar functions across different plant species.

The C-terminal domain of SnRKs consisted of two subdomains, Domain I and Domain II. Since Domain II was only found in a few specific SnRK2s, it might be responsible for their functional diversity, for example, through interaction with PP2Cs for ABA signaling transduction (Kobayashi et al., 2004; Fujita et al., 2013). In the present study, all the *LpSAPKs* consist of Domain I, while only LpSAPK8 and LpSAPK10 harbor Domain II. At the transcriptional level, LpSAPK8/10 also responded to ABA treatments. Together, this result indicated that LpSAPK8&10 were likely involved in ABA signaling transduction.

LpSARKs are responsive to hormones and various abiotic stress treatments and are often in the opposite trend in roots and in leaves (Figures 7, 8). Similar results were also found in other plant species (Boudsocq et al., 2004, 2007; Kobayashi et al., 2004; Fujita et al., 2009). For example, most Arabidopsis SnRK2s (except AtSnRK2.9) were responsive to sucrose, mannitol, sorbitol, and NaCl treatments; AtSnRK2.2/2.3/2.6/2.7/2.8 were responsive to ABA treatment; but no AtSnRK2 gene was responsive to low temperature (Boudsocq et al., 2004). Notably, nearly all LpSAPKs responded to stress and hormone treatments in contrasting trends at the transcriptional level. For example, LpSAPK5 was not responsive to all tested treatments in leaves but was upregulated by all tested treatments in roots. This contrasting result for LpSARKs in leaves and roots suggested that these protein kinases should be involved in plant stress-inducible development alternations. For example, under mild drought conditions, plants could develop deeper root systems with reduced leaf sizes. It would be interesting to carry out more functional tests on these LpSAPKs in the future.

On the other hand, the promoter analysis of these genes revealed a number of cis elements associated with hormone and stress responses, such as the ABA-response element (ABRE), gibberellin-response element (GARE), ethylene-responsive elements (ERE), methyl jasmonate response element (CGTCA), low-temperature stress response element (LTRE), stress response element (TC-rich repeats), and MYB binding site for droughtinducible element (MBS). Distinct distributions of cis elements were found on promoters of LpSAPKs. For example, no ERE was identified in the promoters of LpSAPK1/2//10, although these genes were responsive to the ethephon treatment. And no MBS and LTR element was found on promoters of LpSAPK1/2/3/4/8/10 although these genes were responsive to drought and cold stress treatments. Similar results were also found in wheat (Zhang et al., 2016a), tea (Zhang et al., 2018), and soybean (Zhao et al., 2017). These findings indicated that there were likely other unrecognized stress-related cis elements or post-transcriptional regulation (e.g., by small RNAs) involved in the regulation of LpSAPKs.

Several functionally characterized SAPKs/SnRK2s were known for their regulatory roles in plant abiotic stress tolerance. For

example, overexpression of AtSnRK2s, OsSAPKs, or TaSnRK2s enhanced plant tolerance to abiotic stresses (Diédhiou et al., 2008; Umezawa et al., 2009; Mao et al., 2010; Zhang et al., 2011). In order to quickly assess their roles in stress tolerance, a yeast heterologous expression system was used. It was found that heterologous expression of the LpSAPK9 increased drought tolerance, but decreased salt tolerance to yeast. However, heterologous expression of the rest LpSAPKs showed no obvious effect on drought or salt stress tolerance in yeast. Furthermore, the expression of LpSAPK9 in different ryegrass cultivars differing in their drought tolerance showed contrasting changes, that is, decreased in leaves of the drought-sensitive variety but increased in the more drought-tolerant varieties. These contrasting expression changes of LpSAPK9 coincided with the drought tolerance degrees of the varieties, suggesting that this gene might be one important regulator in ryegrass drought tolerance. On the other hand, this diversified expression pattern of LpSAPK9 in different ryegrass varieties also reiterated the possibility that this SAPK gene(s) could have been selected and used in ryegrass domestication and breeding.

CONCLUSION

In the present study, the *SAPK/SnRK2* genes were identified and characterized using both *in silico* and experimental approaches in perennial ryegrass. The *LpSAPKs* were under strong purifying selection that showed similar genic structures and phylogenetic relationships to their orthologous genes in closely related species. Yet, the promoter regions of these *LpSAPKs* as well as their expression patterns were different from their orthologs, suggesting that even though their functions were conserved but still could have diverged at the transcriptional level. Furthermore, *LpSAPK9* was screened out as a potential positive regulator in ryegrass drought tolerance. Our results will facilitate further functional analysis of *LpSAPK* family genes for molecular breeding of ryegrass.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/**Supplementary Material**.

REFERENCES

- Bai, J. P., Mao, J., Yang, H. Y., Khan, A., Fan, A. Q., Liu, S. Y., et al. (2017). Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (*Solanum tuberosum L.*). *BMC Genet.* 18:41. doi: 10.1186/s12863-017-0506-6
- Boudsocq, M., Barbier-Brygoo, H., and Laurière, C. (2004). Identification of nine sucrose nonfermenting1related protein kinases2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279, 41758–41766. doi: 10.1074/jbc.M405259200

AUTHOR CONTRIBUTIONS

JZ and BX conceived the project. JX, RZ, QZ, XH, and TY performed the experiments and analyzed the data. JX and JZ wrote the paper. BX revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by Jiangsu Agriculture Science and Technology Innovation Fund [grant no. CX(21)3004] and National Natural Science Foundation of China (Grant no. 31971757).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.922564/ full#supplementary-material

- Boudsocq, M., Droillard, M. J., Barbier-Brygoo, H., and Laurière, C. (2007). Different phosphorylation mechanisms are involved in the activation of sucrose nonfermenting1 related protein kinases2 by osmotic stresses and abscisic acid. *Plant Mol. Biol.* 63, 491–503. doi: 10.1007/s11103-006-9103-1
- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020a). TBtools: an integrative toolkit developed for interactive analyses of big biological data. *Mol. Plant* 13, 1194–1202. doi: 10.1016/j. molp.2020.06.009
- Chen, S. S., Jia, H. L., Wang, X. F., Shi, C., Wang, X., Ma, P. Y., et al. (2020b). Hydrogen sulfide positively regulates abscisic acid signaling through

persulfidation of SnRK2.6 in guard cells. Mol. Plant 13, 732-744. doi: 10.1016/j.molp.2020.01.004

- Couso, I., Smythers, A. L., Ford, M. M., Umen, J. G., Crespo, J. L., and Hicks, L. M. (2021). Inositol polyphosphates and TOR kinase signaling govern photosystem II protein phosphorylation and photosynthetic function under light stress in Chlamydomonas. *New Phytol.* 232, 2011–2025. doi: 10.1111/nph.17741
- Daniel, F., Elisabeth, V., Daniel, G., Ingrid, S.-S., Aki, M., Rie, S. I., et al. (2021). Ultralong oxford nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. *Genome Biol. Evol.* 13: evb159. doi: 10.1093/gbe/evab159
- Diédhiou, C. J., Popova, O. V., Dietz, K. J., and Golldack, D. (2008). The SNF1-type serine-threonine protein kinase SAPK4 regulates stressresponsive gene expression in rice. *BMC Plant Biol.* 8:49. doi: 10.1186/1471-2229-8-49
- Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., et al. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. *Plant Cell Physiol.* 50, 2123–2132. doi: 10.1093/pcp/pcp147
- Fujita, Y., Yoshida, T., and Yamaguchi-Shinozaki, K. (2013). Pivotal role of the AREB/ABF SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. *Physiol. Plant.* 147, 15–27. doi: 10.1111/j.1399-3054.2012.01635.x
- Hrabak, E. M., Chan, C. W., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., et al. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. *Plant Physiol.* 132, 666–680. doi: 10.1104/pp.102.011999
- Huai, J. L., Wang, M., He, J. G., Zheng, J., Dong, Z. G., Lv, H. K., et al. (2008). Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep. 27, 1861–1868. doi: 10.1007/ s00299-008-0608-8
- Huang, L. K., Yan, H. D., Jiang, X. M., Yin, G. H., Zhang, X. Q., Qi, X., et al. (2014). Identification of candidate reference genes in perennial ryegrass for quantitative rt-pcr under various abiotic stress conditions. *Plos One* 9:4. doi: 10.1371/journal.pone.0093724
- Julkowska, M. M., Mcloughlin, F., Galvan-Ampudia, C. S., Rankenberg, J. M., Kawa, D., Klimecka, M., et al. (2015). Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain. *Plant Cell Environ.* 38, 614–624. doi: 10.1111/pce.12421
- Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., and Hattori, T. (2004). Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. *Plant Cell* 16, 1163–1177. doi: 10.1105/tpc.019943
- Liu, Z., Ge, X. Y., Yang, Z. R., Zhang, C. J., Zhao, G., Chen, E. Y., et al. (2017). Genome-wide identification and characterization of *SnRK2* gene family in cotton (*Gossypium hirsutum* L.). *BMC Genet*. 18:54. doi: 10.1186/ s12863-017-0517-3
- Mao, X., Zhang, H., Tian, S., Chang, X., and Jing, R. (2010). TaSnRK2.4, anSNF1-type serine/threonine protein kinase of wheat (*Triticum aestivum* L.), confers enhanced multistress tolerance in Arabidopsis. J. Exp. Bot. 61, 683–696. doi: 10.1093/jxb/erp331
- Pang, C. H., Li, S. Y., Xia, Y., Yang, Y., and Liu, S. F. (2018). Research progress of plant ABA-independent SnRK2. *Plant Physiol.* 54, 19–24. doi: 10.13592/j. cnki.ppj.2017.0428
- Paterson, A., Bowers, J., and Chapman, B. (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. *P Natl. Acad. Sci. USA* 101, 9903–9908. doi: 10.1073/ pnas.0307901101
- Putta, P., Creque, E., Piontkivska, H., and Kooijman, E. E. (2020). Lipidprotein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. *Chem. Phys. Lipids* 231:104919. doi: 10.1016/j. chemphyslip.2020.104919
- Quintero, F. J., Garciadeblás, B., and Rodríguez-Navarro, A. (1996). The *SAL1* gene of Arabidopsis, encoding an enzyme with 3'(2'), 5'-bisphosphate nucleotidase and inositol 1-phosphatase activities, increases salt tolerance in yeast. *Plant Cell* 8, 529–537.
- Song, X., Yu, X., Chiaki, H., Taku, D., Misato, O., and Qiang, Z. (2016). Heterologous overexpression of poplar SnRK2 genes enhanced salt stress

tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:612. doi: 10.3389/fpls.2016.00612

- Takahashi, Y., Zhang, J., Hsu, P. K., Ceciliato, P. H. O., Zhang, L., Dubeaux, G., et al. (2020). MAP3 kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. *Nat. Commun.* 11, 1–12. doi: 10.1038/s41467-019-13875-y
- Tian, S. J., Mao, X. G., Zhang, H. Y., Chen, S. S., Zhai, C. C., Yang, S. M., et al. (2013). Cloning and characterization of *TaSnRK2.3*, a novel *SnRK2* gene in common wheat. *J. Exp. Bot.* 64, 2063–2080. doi: 10.1093/jxb/ ert072
- Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., et al. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.* 106, 17588–17593. doi: 10.1073/ pnas.0907095106
- Umezawa, T., Yoshida, R., Maruyama, K., and Shinozaki, K. (2004). SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress responsive gene expression in *Arabidopsis thaliana*. Proc. Natl. Acad. Sci. U. S. A. 101, 17306–17311. doi: 10.1073/pnas.0407758101
- Wang, L. Z., Hu, W., Sun, J. T., Liang, X. Y., Yang, X. Y., Wei, S. Y., et al. (2015). Genome-wide analysis of *SnRK* gene family in Brachypodium distachyon and functional characterization of *BdSnRK2.9. Plant Sci.* 237, 33–45. doi: 10.1016/j.plantsci.2015.05.008
- Winkler, A., Arkind, C., Mattison, C. P., Burkholder, A., and Ota, I. (2002). Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. *Eukaryot. Cell* 1, 163–173. doi: 10.1128/ EC.1.2.163-173.2002
- Xu, B., Yu, G. H., Li, H., Xie, Z. N., Wen, W. W., Zhang, J., et al. (2019). Knockdown of STAYGREEN in perennial ryegrass (*Lolium perenne* L.) leads to transcriptomic alterations related to suppressed leaf senescence and improved forage quality. *Plant Cell Physiol.* 60, 202–212. doi: 10.1093/pcp/ pcy203
- Ying, S., Zhang, D. F., Li, H. Y., Liu, Y. H., Shi, Y. S., Song, Y. C., et al. (2011). Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. *Plant Cell Rep.* 30, 1683–1699. doi: 10.1007/s00299-011-1077-z
- Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310–5318. doi: 10.1074/jbc.M509820200
- Zhang, J., Li, H., Huang, X. R., Xing, J., Yao, J. M., Yin, T. C., et al. (2022b). STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. *Plant Cell Environ.* 45, 1412–1427. doi: 10.1111/pce.14296
- Zhang, H. Y., Li, W. Y., Mao, X. G., Jing, R. L., and Jia, H. F. (2016a). Differential activation of the wheat *SnRK2* family by abiotic stresses. *Front. Plant Sci.* 7:420. doi: 10.3389/fpls.2016.00420
- Zhang, H., Mao, X., Jing, R., Chang, X., and Xie, H. (2011). Characterization of a common wheat (*Triticum aestivum L.*) *TaSnRK2.7* gene involved in abiotic stress responses. J. Exp. Bot. 62, 975–988. doi: 10.1093/jxb/ erq328
- Zhang, Y. H., Wan, S. Q., Wang, W. D., Chen, J. F., Huang, L. L., Duan, M. S., et al. (2018). Genome-wide identification and characterization of the *CsSnRK2* family in Camellia sinensis. *Plant. Physiol. Bioch.* 132, 287–296. doi: 10.1016/j. plaphy.2018.09.021
- Zhang, J., Yu, G., Wen, W., Ma, X., Xu, B., and Huang, B. (2016b). Functional characterization and hormonal regulation of the PHEOPHYTINASE gene *LpPPH* controlling leaf senescence in perennial ryegrass. *J. Exp. Bot.* 67, 935–945. doi: 10.1093/jxb/erv509
- Zhang, C. C., Zeng, L. S., Zhang, J., and Xu, B. (2022a). Analysis of phenophase and morphological traits of perennial ryegrass germplasm. *Acta. Pratac. Sin.* 39, 290–299. doi: 10.11829/j.issn.1001-0629.2021-0365
- Zhang, J., Zhang, Q., Xing, J., Li, H. B., Miao, J. M., and Xu, B. (2021). Acetic acid mitigated salt stress by alleviating ionic and oxidative damages and regulating hormone metabolism in perennial ryegrass (*Lolium perenne L.*). *Grass Res.* 1, 1–10. doi: 10.48130/GR-2021-0003

Zhao, W., Cheng, Y. H., Zhang, C., Shen, X. J., You, Q. B., Guo, W., et al. (2017). Genome-wide identification and characterization of the *GmSnRK2* family in soybean. *Int. J. Mol. Sci.* 18:1834. doi: 10.3390/ ijms18091834

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Xing, Zhao, Zhang, Huang, Yin, Zhang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.