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The compounds involved in the hydroxycinnamic acid amide (HCAA) pathway are an 
important class of metabolites in plants. Extensive studies have reported that a variety of 
plant hydroxycinnamamides exhibit pivotal roles in plant–pathogen interactions, such as 
p-coumaroylagmatine and ferulic acid. The aim of this review is to discuss the emerging 
findings on the functions of hydroxycinnamic acid amides (HCAAs) accumulation associated 
with plant defenses against plant pathologies, antimicrobial activity of HCAAs, and the 
mechanism of HCAAs involved in plant immune responses (such as reactive oxygen 
species (ROS), cell wall response, plant defense hormones, and stomatal immunity). 
However, these advances have also revealed the complexity of HCAAs participation in 
plant defense reactions, and many mysteries remain to be revealed. This review provides 
an overview of the mechanistic and conceptual insights obtained so far and highlights 
areas for future exploration of phytochemical defense metabolites.

Keywords: hydroxycinnamic acid amides, plant immunity, antimicrobial activities, cell wall, p-coumaric acid, 
ferulic acid

INTRODUCTION

Plants are well stocked with chemical defense compounds that function in protection against 
herbivores and pathogens (Gershenzon and Ullah, 2022). The global metabolic reprogramming 
is a common event in plant innate immunity. A large number of compounds are involved in 
the process of plant disease resistance. For example, pathogens stimulated the phenylpropanoid 
pathway (PPP) and lead to the synthesis of secondary metabolites. These compounds can 
provide protection against biotic and abiotic stresses in plants. Hydroxycinnamic acid amides 
(HCAAs) are widely distributed in plant secondary metabolites and are often referred to as 
one of the major phenylpropanoid metabolites (Herrmann, 1989).

Hydroxycinnamic acid amides have been described throughout the plant kingdom and 
accumulated in various organs, sometimes at high concentrations, especially in injured tissues 
(Bassard et  al., 2010). HCAAs are purported to function in several growth and developmental 
processes, including tuberization, flower development, pollen wall formation, pollen health 
effects sexual differentiation, senescence, cell division, and stress responses (Facchini et  al., 
2002; Luo et  al., 2009). HCAAs pathway is an important offshoot pathway of the PPP (Kim 
et  al., 2021). The PPP accessory pathway involves the biosynthesis of HCAAs, which are 
polymers made from hydroxycinnamic acids (HCAs) and polyamines (PA; Facchini et  al., 
2002). HCAAs are synthesized through the condensation of various biogenic amines with 
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HCAs via BAHD acyltransferase (Li et  al., 2018). HCAAs are 
thought to be the final accumulation product of PA and aromatic 
amine metabolism, or as a form of cellular storage to regulate 
the metabolic pool of the two parent components (Bassard 
et  al., 2010). HCAAs may be  secreted into the apoplast space 
under the action of multidrug and toxin extrusion (MATE) 
transporters (Zeiss et al., 2021). The HCAAs tend to be present 
in the insoluble-bound form, as they were covalently bound 
to the arabinoxylans of the cell wall hemicellulose. Through 
dimerization and trimerization, the insoluble-bound HCAAs 
form an extensive network of cross-linkages that deter insect 
herbivory in stored grain, prevent pathogen penetration during 
the growing season, and impart plant tolerance to drought 
(Butts-Wilmsmeyer et  al., 2020). Moreover, many studies have 
demonstrated that the biosynthesis of HCAAs and their 
subsequent polymerization in the plant cell play a vital role 
in response to pathogenic infections (Muroi et  al., 2009). For 
instance, 24 h post Pseudomonas syringae pv. tomato (Pst) 
DC3000 and Erwinia carotovora carotovora infections, the 
content of HCAAs in Arabidopsis thaliana leaves was significantly 
increased (Macoy et  al., 2022). Tyramine-derived HCAAs 
overproduced in plants may interfere with colonization of 
Ralstonia solanacearum by becoming incorporated into the 
blood vascular and perivascular cell walls, thereby restricting 
the movement of pathogens within the plant (Kashyap et  al., 
2022). Pretreatment with p-Coumaric acid results in an 
accumulation of hydroxycinnamic acid in soluble and cell wall-
bound form, which protects against infection by Xanthomonas 
campestris pv. Campestris (Islam et  al., 2018). With the 
development of high-throughput metabolomics technology, 
numerous studies have demonstrated that HCAAs are involved 
in plant responses to biotic stress. By using a comparative 
metabolomic approach, researchers identified defense-related 
biosynthetic pathways as affected in susceptible and resistant 
wheat cultivars, and HCAAs were found accumulated within 
4–8 days of fungal infection in wheat (Seybold et  al., 2020). 
In addition, experiments have demonstrated that HCAAs have 
antimicrobial activity (Kyselka et  al., 2018).

In current knowledge, HCAAs are still a key class of secondary 
metabolites that were defined as biomarkers to measure plant 
resistance. In a previous review, the important role of HCAAs 
in plant defense against pathogens was also described in detail 
(Macoy et  al., 2015). On this basis, we  summarized the latest 
research on HCAs/HCAAs in recent years. This review paper 
aims to give a thorough understanding on the functions of 
HCAs/HCAAs accumulation during defense responses, 
antimicrobial activity of HCAs/HCAAs, mechanism of HCAs/
HCAAs involved in plant immune responses, and the regulation 
of HCAAs biosynthesis in plants.

THE BIOSYNTHESIS OF HCAAs FROM 
THE PHENYLPROPANOID PATHWAY

Flavonoids, hydroxycinnamic acid esters, hydroxycinnamic acid 
amides, the precursors of lignin, lignans, and tannins are end 
products of PPP (Gray et  al., 2012). HCAAs are the products 

of an important branch of the PPP, in which phenylalanine 
ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 
4-coumaric acid-CoA ligase (4CL) are all involved (Gray et al., 
2012; Figure  1). The PPP begins with the deamination of 
phenylalanine by PAL to trans-cinnamic acid or cinnamate, 
and then catalyzed by 4CL (Hahlbrock and Scheel, 1989). PAL 
directs metabolic flow from the shikimate pathway to the 
various branches of PPP by catalyzing phenylalanine to trans-
cinnamic acid (Zhang and Liu, 2015). The second reaction is 
catalyzed by C4H known to catalyze the hydroxylation of 
trans-cinnamic acid to p-coumaric acid (4-hydroxycinnamic 
acid; Schilmiller et  al., 2009). The 4CL catalyzes the third step 
of PPP, forms p-coumaroyl-CoA in an ATP-dependent manner 
(Gui et  al., 2011). The condensation of CoA derivative of 
p-coumaric acid (thioester p-coumaroyl-CoA) and the amine 
tyramine is catalyzed by hydroxycinnamoyl-CoA:tyramineN-
hydroxycinnamoyltransferase (THT), and putrescine 
hydroxycinnamoyl transferase (PHT) further activates the 
synthesis of p-coumaroyltyramine and p-coumaroylputrescine 
(Pushpa et  al., 2014). Agmatine coumaryl transferase (ACT) 
catalyzes the last step in the biosynthesis of the HCAAs, where 
p-coumaroylagmatine and feruloylagmatine are generated (Muroi 
et al., 2009). With the action of tyrosine decarboxylase (TyDC), 
tyrosine is further converted into tyramine (Von Roepenack-
Lahaye et  al., 2003).

HCAAs PATHWAY IS INVOLVED IN 
PLANT DISEASE RESISTANCE

Hydroxycinnamic acid amides are conjugated PA, such as 
cinnamic acid, coumaric acid, caffeic acid, ferulic acid, and 
sinapic acid that form acylated PA (El-Seedi et  al., 2012). This 
kind of secondary metabolites have been reported to protect 
plant cell against pathogen invasion by strengthening cell walls 
or act as antimicrobial agents directly (Campos et  al., 2014). 
Meanwhile, the accumulation of HCAAs in plants contributes 
to the induction of plant hypersensitive responses (HR) in 
response to pathogen challenge (Walters, 2003). Since the first 
demonstration of p-coumaroyl- and feruloyl-2-hydroxyputrescine 
accumulation in leaves of rust-infected wheat (Samborski and 
Rohringer, 1970). Multiple studies have shown that HCAAs 
accumulated due to infection by pathogens. In wheat, untargeted 
metabolomic and proteomic analyses indicated that HCAAs 
were the major factor influencing Fusarium graminearum 
resistance (Gunnaiah et  al., 2012). HCAAs synthesized as a 
result of F. graminearum infection were observed regardless 
of susceptibility, but occurred at different times after infection 
(Whitney et al., 2022). In the incompatible interaction between 
wheat and stripe rust, the HCAAs pathway was strongly induced, 
and p-coumaroyl agmatine was significantly increased (Liu 
et  al., 2022). Significantly increased levels of sinapic acid and 
ferulic acid in wheat after infestation with stripe rust (Atta 
et  al., 2020). In maize, HCAAs pathway was strongly induced 
after Puccinia sorghi infection (Kim et  al., 2021). In cocoa-
phytophthora spp., leaves of the tolerant genotype were found 
to accumulate dramatically higher levels of clovamide and 
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several other HCAAs compared to the susceptible (Knollenberg 
et  al., 2020). In potato, studies have suggested that HCAAs 
can be  used as biomarker metabolites for late blight resistance 
and black dot (Pushpa et  al., 2014). In banana, nematode-
resistant varieties have very marked increases in p-coumaric, 
ferulic, and sinapic acid content compared to susceptible varieties 
(Vaganan et  al., 2014). HCAAs were significantly increased in 
Arabidopsis after Sclerotinia sclerotiorum infection (Chen et  al., 
2021). Furthermore, plant growth-promoting rhizobacteria was 
shown to affect root HCAAs content in rice (Valette et  al., 
2020). The above reports fully demonstrated that the accumulation 
of HCAAs improves the resistance of plants to pathogens. 
Plant endogenous HCAs/HCAAs defend against infection by 
pathogens, and exogenous application of HCAs/HCAAs to resist 

the infection of pathogens by stimulating the production of 
plant immune responses (Figure  2).

Transcriptional Responses of HCAAs 
Pathway Related Genes in Plant Defense
Rapid transcriptional reprogramming of genes encoding 
biosynthetic enzymes for protective secondary metabolites (such 
as HCAAs) is one of the mechanisms of plant defense responses. 
During Alternaria brassicicola infection, the expression of AtACTs 
(ATT3G03480, AT5G01210, AT5G39050, and AT5G61160) in 
Arabidopsis was rapidly induced (Muroi et al., 2009). In resistant 
varieties of potato, relative expression of StTyDC, StTHT, St4CL, 
and StPHT was induced by Solanum tuberosum infection 

FIGURE 1 | Biosynthetic pathway of HCAAs. HCAAs, hydroxycinnamic acid amides; HCAs, hydroxycinnamic acids; PAL, phenyl alanine ammonia lyase; C4H, 
cinnamate 4-hydroxylase; 4-CL, 4-coumarate: CoA ligase; ACT, agmatine coumaryl transferase; TyDC, tyrosine decarboxylase; THT, tyramine hydroxycinnamoyl 
transferase; and PHT, putrescence hydroxycinnamoyl transferase.
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(Pushpa et  al., 2014). The transcriptional alterations of key 
genes affect HCAAs levels in pathogen-infected plants, leading 
to changes in plant defense responses. The Atact mutant was 
susceptible to infection by A. brassicicola and 
p-coumaroylagmatine content of Atact mutant was reduced 
(Muroi et  al., 2009). Likewise, wheat TaACT-knockout plants 
exhibited that p-coumaroylagmatine content was significantly 
reduced and susceptibility to F. graminearum was increased 
(Kage et  al., 2017a). In contrast, overexpression of SlTHT in 
tomato increased the accumulation of tyramine and octopamine 
derivatives and enhanced tomato resistance against P. syringae 
(Campos et al., 2014). Additionally, ectopic expression of AtACT 
increased the resistance of torenia plants to Botrytis cinerea 
(Muroi et  al., 2013). In potato, simultaneous overexpression 
of AtACT and Arabidopsis DETOOXIFICATION18 (AtDTX18) 
genes gave plants the ability to synthesize p-coumarin and 
export it to the leaf surface, so that increased the accumulation 
of HCAAs on plant leaf surface and reduced spore germination 
of Phytophthora infestans (Dobritzsch et  al., 2016; Figure  2). 
Stable expression of N-caffeoyl-L-3,4-dihydroxyphenylalanine 
hydroxycinnamoyl transferase (HDT) in alfalfa resulted in foliar 
accumulation of p-coumaroyl- and feruloyl-L-Tyr and transient 

expression of HDT in Nicotiana benthamiana resulted in the 
production of caffeoyl-L-Tyr (Sullivan and Knollenberg, 2021). 
The above studies showed that key genes in the HCAAs pathway 
play a role in plant disease resistance by controlling the synthesis 
of HCAAs. Key genes in the HCAAs pathway have great 
potential for application in disease resistance breeding.

Antimicrobial Activity of HCAs/HCAAs
Hydroxycinnamic acids and their derivatives also show 
antimicrobial activity. As shown in Table  1, the inhibitory 
effect of HCAs/HCAAs on microorganisms involves at least 
two processes: direct antimicrobial activity and strengthening 
of secondary cell walls (Roumani et  al., 2021). Natural 
compounds, such as caffeic acid, syringic acid, p-coumaric 
acid, and ferulic acid have strong inhibitory effect on pathogenic 
fungi (Hassan et  al., 2021). HCAAs inhibits the growth of 
Aspergillus niger, F. aureus, and Penicillium verruciformis 
(Kyselka et  al., 2018). Trans-cinnamic acid, ferulic acid, and 
p-coumaric acid can inhibit the growth of Colletotrichum 
acutatum (Roy et  al., 2018). Ferulic acid, the most abundant 
HCAs in the plant kingdom, is an ester linked to arabinose 
(Mathew and Abraham, 2006). Ferulic acid inhibited the growth 

FIGURE 2 | Mechanisms of HCAs/HCAAs enhancing plant resistance. After pathogen infection, elevation of plant endogenous hormones stimulates the production 
of HCAs/HCAAs. Rapid transcriptional reprogramming of genes encoding biosynthetic enzymes for HCAAs is one of the mechanisms of plant defense responses. 
Glutathione S-transferase (GST) may act as an amide carrier protein for HCAAs translocation to the plasma membrane, then deposited on the cell wall. Under the 
action of MATE, HCAAs move to the leaf surface, thereby inhibiting spore germination. Exogenous HCAs/HCAAs treatment stimulated a series of plant immune 
responses, such as plant hormones (JA, SA, and ABA) levels are elevated, SA and JA stimulate resistance responses in plants. HCAs/HCAAs stimulated stomata 
opening and closing, which may be achieved by controlling the content of ABA. HCAs/HCAAs also stimulate the production of lignin, callose, and ROS. The 
stimulation of these immune responses increases the resistance of plants to pathogens.
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of F. oxysporum at high concentrations and affected the activity 
of hydrolases associated with pathogenicity (Wu et  al., 2010). 
Ferulic and rho-coumaric acids reduced Alternaria growth in 
vivo and black spot in stored fruits (Yadav et al., 2021). Ferulic 
acid leads to irreversible changes in cell membrane properties 
(charge, intracellular and extracellular permeability, and 
physicochemical properties) through hydrophobicity changes, 
reduction in negative surface charges, and local rupture of 
the cell membrane or pore formation, resulting in the leakage 
of essential intracellular components of pathogenic bacteria 
(Borges et  al., 2013). Exogenous caffeic acid enhanced apple 
resistance to B. cinerea (Zhang et  al., 2020). Caffeic acid can 
damage the membrane structure of R. solanacearum cells, 
resulting in thinning of the cell membrane and irregular 
intracellular voids. In addition, caffeic acid can also inhibit 
biofilm formation by inhibiting the expression of lecM and 

epsE genes. Exogenous caffeic acid also effectively activated 
peroxidase and PAL (Li et  al., 2021b). Sinapic acid was 
chemically studied as a cinnamic acid derivative and also 
inhibited the growth, conidial germination of F. oxysporum 
and reduced the activity of pathogenic enzymes at high doses 
(Wu et al., 2009). In vivo test, changes in the levels of phenolic 
compounds in infected plants and their antifungal activity 
for against Verticillium dahliae strongly suggested that 
p-coumaric acid was involved in the natural defense or resistance 
mechanisms of plant (Baidez et  al., 2007). Exogenously 
p-coumaric acid increased chitinase activity in leaves and 
β-1,3-glucanase activity in roots, thereby enhancing watermelon 
resistance to F. oxysporum (Ren et  al., 2016). The antibacterial 
mechanism of p-coumaric acid includes two aspects: disrupts 
bacterial cell membranes and binds to bacterial genomic DNA 
to inhibit cell function, ultimately leading to cell death 

TABLE 1 | Antimicrobial activity of various hydroxycinnamic acids (HCAs)/hydroxycinnamic acid amides (HCAAs) and their mechanisms.

Host Pathogen Disease name Compounds Mechanism References

Solanum lycopersicum Pseudomonas syringae Bacterial speck of 
tomato

p-coumaroyltyramine, 
feruloyltyramine

SA, PR gene Campos et al., 2014

Torenia fournieri Linden Botrytis cinerea _ p-coumaroylagmatine Inhibit the germination and 
development of conidial 
germ tubes

Muroi et al., 2013

Solanum tuberosum Phytophthora infestans Potato late blight 
disease

p-coumaroylagmatine Inhibit spore germination Dobritzsch et al., 2016

Fragaria x ananassa 
Duch

Colletotrichum 
acutatum

Strawberry anthracnose trans-cinnamic acid, ferulic 
acid, and p-coumaric acid

Inhibit fungal growth Roy et al., 2018

Citrullus lanatus Fusarium oxysporum f. 
sp. niveum

Watermelon fusarium 
wilt

Ferulic acid Inhibit spore germination Wu et al., 2010

Diospyros kaki L. var Alternaria black spot disease Ferulic, and rho-coumaric 
acids

Reduce growth Yadav et al., 2021

_ Escherichia coli, Pseudomonas aeruginosa, 
Staphylococcus aureus, and Listeria 
monocytogenes

Ferulic acids Changes in membrane 
properties

Borges et al., 2013

Malus pumila Mill. Botrytis cinerea Apple gray mold Caffeic acid Activation of different 
branches of the 
phenylpropanoid metabolism 
pathway

Zhang et al., 2020

Nicotiana tobaccum Ralstonia 
solanacearum

Tobacco bacterial wilt Caffeic acid Damaged the membrane 
structure and promote the 
accumulation of lignin

Li et al., 2021b

_ Fusarium oxysporum f. sp. niveum Sinapic acid Inhibit the growth and 
conidial germination

Wu et al., 2009

C. lanatus Fusarium oxysporum  
f. sp. niveum

Watermelon fusarium 
wilt

p-coumaric acid Increased β-1,3-glucanase 
activity

Ren et al., 2016

_ Verticillium dahliae p-coumaric acid _ Baidez et al., 2007
_ S. aureus, Streptococcus pneumoniae Bacillus 

subtilis, E. coli, Shigella dysenteriae and 
Salmonella typhimurium

p-coumaric acid Disrupted cell membranes 
and binding to bacterial 
genomic DNA

Lou et al., 2012

_ Botrytis cinerea _ p-coumaric acid Retard the germination of 
conidia

Morales et al., 2017

_ Dickeya dadantii _ p-coumaric acid Manipulating the expression 
of the T3SS

Li et al., 2009

S. tuberosum P. infestans Potato late blight 
disease

N-4-coumaroyl- and 
N-Feruloyltyramine

Cell wall reinforcement Schmidt et al., 1998

Arabidopsis thaliana Erwinia carotovora carotovora Coumaroyl tyramine and 
coumaroyl tryptamine

Increased the induction of 
callose deposition

Macoy et al., 2022

Brassica napus Xanthomonas campestris pv. campestris p-coumaric acid Primed the JA-signaling-
mediated induction of 
phenylpropanoid 
biosynthesis

Islam et al., 2019
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(Lou et  al., 2012). However, p-coumaric acid did not affect 
the integrity of the cell wall and plasma membrane of B. cinerea, 
nor did it produce oxidative stress (Morales et  al., 2017). 
HCAAs have been shown against bacteria by regulating the 
expression of the type III secretion system (T3SS). For example, 
p-coumaric acid inhibited the expression of T3SS gene of the 
plant pathogen Dickeya dadantii (Li et  al., 2009). However, 
ferulic acid may mimic host conditions, thereby activating 
T3SS expression (Zhang et  al., 2017). High concentrations of 
HCAs can inhibit the growth of R. solanacearum in the 
medium. However, R. solanacearum can protect itself from 
HCAs toxicity by degrading low concentrations of HCA as 
the sole carbon source (Lowe et al., 2015). Chitosan treatment 
of wheat increased the content of p-coumaric acid, ferulic 
acid, and sinapic acid in leaves and enhanced resistance to 
F. graminearum (Reddy et  al., 1999). The above studies have 
proved that HCAs can inhibit the growth of pathogenic fungi 
and spore germination, and HCAs can inhibit pathogenic 
bacteria by damaging the cell membrane and DNA of pathogenic 
bacteria. Pathogens have also evolved mechanisms to reduce 
the harm of HCAs/HCAAs, and this aspect will also be  the 
focus of research.

HCAAs Strengthen Plant Cell Walls
Polyamines and aromatic amines bind to HCAs phenolic 
resins, leading to the formation of HCAAs-molecules that 
have the ability to confer antimicrobial activity and potentially 
deposit into cell walls (Zeiss et  al., 2021). HCAAs in the 
cytosol may be  transported to different vesicles and then to 
the plasma membrane, allowing the deposition of HCAAs 
into the cell wall. Glutathione S-transferase (GST) may act 
as an amide carrier protein for HCAAs translocation to the 
plasma membrane (Macoy et  al., 2015; Figure  2). HCAAs 
constitute the polyaromatic domains of suberin. These polymers 
increased the thickness of the cell wall, limit the spread of 
pathogens, and act as antifungals. As a plant defense response, 
HCAAs require the deposition of amide conjugates in the 
cell wall to reduce fungal pathogen penetration and infection 
(Graca, 2010). HCAAs, such as coumaroylputrescine, 
feruloylputrescine, cinnamoyltyramine, cis-p-
coumaroylagmatine, feruloylagmatine, coumaroylserotonin, 
caffeoylserotonin, and feruloylserotonin were proven to increase 
cell wall thickness in wheat to resist F. graminearum (Gunnaiah 
et  al., 2012). Deposition of HCAAs was thought to form a 
barrier against pathogens by reducing cell wall digestibility 
(Facchini et  al., 2002). In date palm-resistant cultivars, cell 
wall-bound phenols (p-coumaric acid, ferulic acid, and sinapic 
acid) were found to strongly reduce hyphal growth and cell 
wall-degrading enzymes of F. oxysporum production (El Modafar 
and El Boustani, 2001). Fungal infection of potato cell cultures 
and leaves has been reported to trigger the incorporation of 
p-coumaroyltyramide and feruloyltyramide into the cell wall 
(Schmidt et  al., 1998). The two main HCAs, p-coumaric acid 
and ferulic acid, were present in the complex cell walls of 
oat husks and act as crosslinkers between lignin and 
polysaccharides or between polysaccharides. Therefore, they 
inhibited the biodegradation of the cell wall by microorganisms 

(Yu et  al., 2004). HCAAs prevent the infection of pathogens 
by strengthen the cell wall and reduced the degradation of 
the cell wall.

HCAs/HCAAs Regulate Lignin and Callose 
Deposition
Lignin and callose deposition are two late immune responses 
that enhance plant cell walls. Lignin is mainly deposited in 
the secondary cell walls of plants (Zhao and Dixon, 2011). 
During pathogens infection, lignin is deposited and acts as a 
physical barrier to limit the spread of pathogens (Lee et  al., 
2019). Lignin deposition around pathogen penetration sites 
was found to increase potato resistance to P. infestans (Sorokan 
et  al., 2018). Tobacco with lower total lignin content shows 
tobacco susceptibility to blackleg and bacterial wilt (Ma et  al., 
2018). HCAAs also affect lignin content (Figure 2). For example, 
exogenously applied p-coumaric acid, caffeic acid, ferulic acid, 
and sinapic acid were directed into the PPP, resulting in the 
overproduction of lignin and its main monomers (Lima et  al., 
2013). The perception of pathogen or microbe-associated 
molecular pattern molecules by plants triggers a basal defense 
response analogous to animal innate immunity and was defined 
partly by the deposition of the glucan polymer callose at the 
cell wall at the site of pathogen contact (Clay et  al., 2009). 
Deposition of callose prevented powdery mildew hyphae from 
entering epidermal cells (Ellinger et  al., 2014). Exogenous 
application of coumaroyltyramine and coumaroyltryptamine 
increased the induction of callose deposition (Macoy et  al., 
2022). These findings also indicate that HCAAs can resist the 
infection of pathogens by enhancing the synthesis of lignin 
and the deposition of callose.

HCAs/HCAAs Contribute to Stomatal 
Immunity
Stomatal is a dynamic and captivating system that opens or 
closes in response to external and internal cues. As part of 
the innate immune system, stomatal closure can limit bacterial 
invasion and act as a barrier against bacterial infection. Upon 
perception of pathogens, plants can rapidly close their stomates 
to restrict pathogen entry into internal tissue (Melotto et  al., 
2006). Stomates of silenced NbGCN4 and AtGCN4 were open 
during pathogen infection, leading to compromised disease 
resistance in both host and nonhost (Kaundal et  al., 2017). 
Arabidopsis bzip59 mutant was partially impaired in stomatal 
closure induced by Pst DC3000 and was more susceptible to 
Pst DC3000 infection (Song et  al., 2022). The application of 
exogenous compounds also affected the opening and closing 
of stomatal, such as HCAAs, with sinapic acid leading to 
considerable closure, while ferulic acid stimulated wider openings 
(Plumbe and Willmer, 1986; Figure 2). However, recent studies 
have shown that low concentrations of ferulic acid significantly 
inhibited stomatal opening, stomatal opening rate, stomatal 
length and width (Fu et  al., 2019). This may be  due to the 
different concentrations of ferulic acid, resulting in different 
results on stomates. Plant endogenous abscisic acid (ABA) level 
was increased after ferulic acid treatment (Holappa and 
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Blum, 1991), and may regulated the opening and closing of 
stomatal by regulating the biosynthesis of ABA.

Role of HCAs/HCAAs in Reactive Oxygen 
Species
Hydroxycinnamic acid amides are formed by conjugation of 
amines with HCAs. Free-form PA may play two conflicting 
roles in regulating cellular ROS: as a source of ROS biosynthesis 
and a free radical scavenging compound. The catabolism of 
PA leads to increased intracellular and extraplasmic H2O2 
concentrations (Zeiss et al., 2021). Production of ROS, a hallmark 
of successful identification of infection and activation of plant 
defenses, is one of the early ways in host plant defense strategies 
(Qi et  al., 2017). It achieves plant immunity by eliminating 
damaged host cells, and limits further pathogen infection. ROS 
may be  involved in signaling in plants against pathogens, 
enhanced resistance to stressors, and downstream cellular 
defense-related genes that limit infection through pathogen 
death (Suzuki et  al., 2011). Furthermore, ROS have also been 
postulated as key molecules involved in the initiation of 
HR. Accumulation of HCAAs also plays an important role in 
plant HR. However, HCAAs also have antioxidant activity 
(Xiang et  al., 2019). Studies have shown that the oxidative 
burst in cucumber roots occurs under the influence of ferulic 
acid and p-coumaric acid (Politycka and Bednarski, 2004; 
Figure 2). Ferulic acid concentration can lead to accumulation 
of ROS, and after exogenous ferulic acid stimulation, the induced 
genes were involved in cell wall formation, chemical 
detoxification, secondary metabolism, and signal transduction 
(Chi et  al., 2013). In addition, the accumulation of ferulic 
acid also enhances the antioxidant capacity of plants (Zhang 
et  al., 2022). It remains to be  seen how plants are both 
contradictory and unified in this regard.

Accumulation of HCAs/HCAAs Is 
Associated With Plant Hormones
Disease resistance mediated by plant hormones, such as SA, 
ethylene (ET), and JA can be  induced by different exogenous 
signals in different plants to resist different types of pathogens, 
which is the basic signaling pathway of plant disease resistance 
(Feys and Parker, 2000). These plant hormones regulated the 
synthesis of compounds. JA regulated the biosynthesis of many 
secondary metabolites, including HCAAs (Li et  al., 2021a). 
The accumulation of p-coumaroylagmatine in leaves was higher 
at 48 h after JA treatment, and reached the highest level at 
48 h after JA/ET combined treatment. These results proved 
that HCAAs accumulation was induced by JA and ET signals 
(Li et  al., 2018). It has also been demonstrated that pathogen-
induced ET production was essential for synthesis of HCAAs, 
whereas SA was also a key signal for initiating plant defense 
responses, not required for this response (Zacares et  al., 2007). 
Similarly, it has also been reported that ET produced after 
bacterial infection was essential for the accumulation of HCAAs, 
and with ET as a signal to respond to pathogen attack, SA 
was not involved in the accumulation of HCAAs (Lopez-Gresa 
et  al., 2011). These studies demonstrated the role of ET and 

JA in intracellular signaling cascades, leading to the accumulation 
of secondary compounds and ultimately the induction of plant 
resistance. However, studies have reported accumulation of 
HCAAs (coumaryltyramide and feruloyltyramide) accompanied 
by elevated SA levels and pathogenesis-related genes induction 
(Campos et al., 2014). The production of ferulic acid, p-coumaric 
acid, and sinapic acid was stimulated by exogenous SA (Zhang 
et  al., 2021). In turn, exogenous HCAs can enhance these 
plant hormones changes and improve plant resistance (Figure 2). 
The contents of caffeic acid, ferulic acid, and p-coumaric acid 
were increased in Methyl jasmonate and SA treated plants 
(Napoleao et  al., 2017). JA content and expression of signaling 
genes (COI1 and PDF1.2) were increased in p-coumaric acid-
pretreated plants, and exogenous p-coumaric acid triggered JA 
signaling-mediated induction of phenylpropanoid biosynthesis, 
which elicited disease resistance to black rot disease in Brassica 
napus (Islam et  al., 2019). These studies demonstrated that 
HCAAs and plant hormones regulate each other and participate 
in the process of plant disease resistance together.

REGULATION OF HCAAs BIOSYNTHESIS

The spatial, temporal and induced formation of secondary 
metabolites and transcripts of corresponding biosynthetic genes 
are tightly regulated at different levels. Transcription factors (TFs) 
usually regulate the transcription of multiple biosynthesis genes 
in a pathway, which makes them attractive tools for improvement 
of the production of secondary metabolites (Zhou and Memelink, 
2016). TFs can integrate internal and external signals to regulate 
genes expression, thereby controlling the specific accumulation 
of secondary metabolites (Yang et  al., 2012). Many studies have 
demonstrated that TFs can regulate HCAAs pathway.

StWRKY1 can directly bind to the promoter encoding the 
HCAAs biosynthesis genes. After StWRKY1 gene silencing, the 
abundance of HCAAs and potato resistance to late blight were 
reduced (Yogendra et  al., 2015). Silencing of StNACA3 and 
StMYB8 altered late blight resistance in the silenced plants by 
significantly increasing pathogen biomass and reducing the 
contents of HCAAs and flavonoid glycosides (Yogendra et  al., 
2017). HvWRKY23 also exhibits the same characteristics, which 
in turn increases barley resistance to Fusarium head blight by 
regulating HCAAs synthesis (Karre et  al., 2019). Induced 
expression of the MYB caused accumulation of ferulic acid 
and enhanced resistance to both fungal and bacterial pathogens 
in plant (Kishi-Kaboshi et  al., 2018). Overexpression of the 
petunia MYB transcript factor, ODORANT1 (ODO1), combined 
with expression of a feedback-insensitive E.coli 3-deoxy-D-
arabino-heptulosonate 7-phosphate synthase (AroG), altered the 
levels of multiple primary and secondary metabolites in tomato 
fruit, boosting levels of multiple secondary metabolites, including 
p-coumaric acid and ferulic acid (Xie et  al., 2016). AtMYB99, 
a putative ortholog of the petunia floral scent regulator ODO1, 
controls the exclusive production of HCAAs (Battat et al., 2019). 
After TaWRKY70 gene silencing, not only confirmed the 
weakening of resistance to F. graminearum, but also reduced 
the expression of downstream resistance genes TaACT, TaDGK 
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and TaGLI1, as well as the content of coumaroylagmatine and 
coumaroylputrescine (Kage et  al., 2017b). Despite of numerous 
studies have shown that TFs regulate HCAAs biosynthesis, more 
studies are needed to further elucidate the relationship between 
TFs and HCAAs, as well as in plant–pathogen interactions.

In addition, HCAAs were also affected by 
UDP-glycosyltransferases (UGTs). UGTs are responsible for the 
glycosylation of small molecule compounds. Glycosylation can 
affect the homeostasis of these substances by altering chemical 
activity, degradation, and/or localization of compounds (Bowles 
et  al., 2005). Glycosylation modulates the biological activity of 
small molecules and often results in their inactivation. 
NbUGT73A24 and NbUGT73A25 can glycosylate N-feruloyl 
tyramine and ferulic acid derivatives (ethyl 4-hydroxy-3-methoxy-
cinnamate, trans-ferulic acid, 4-coumaric acid, caffeic acid, 
N-caffeoyl O-methyltyramine, N-4-trans-coumaroyl tyramine, 
and N-trans-feruloyl-tyramine), overexpression of both genes in 
Nicotiana benthamiana produced clear lesions on the leaves and 
led to a significantly reduced content of pathogen-induced plant 
metabolites (Sun et  al., 2019). A recent study showed that 
UGT73C7 can glycosylate p-coumaric acid and ferulic acid 
glycosylation activity of UGT73C7 resulted in the redirection 
of phenylpropanoid metabolic flux to the biosynthesis of HCAs 
and coumarins, thereby affecting the immune response of plants 
(Huang et  al., 2021). P-coumaric acid and ferulic acid are 
precursors of various metabolites, and the glycosylation of 
p-coumaric acid and ferulic acid by UGT73C7 significantly affects 
the metabolism of phenylpropanes. These evidences suggested 
that glycosylation can simultaneously affect the abundance of 
HCAs/HCAAs, thereby regulating plant disease resistance.

CHALLENGES REMAINED AND FUTURE 
DIRECTIONS

Metabolites of HCAAs pathway were involved in various stress 
responses, play an important role in plants and can also 

directly inhibit microorganisms (Figure  2). It is necessary 
to conduct more in-depth studies on metabolites. The 
information from this review focuses on the induction of 
plant defense responses to biotic stress by HCAAs pathway, 
illustrating the directly inhibition of microorganisms by HCAs/
HCAAs, the defense responses induced by exogenous HCAs/
HCAAs in plants, and the regulation of HCAAs biosynthesis. 
The study helps us to understand the possible functions of 
HCAAs pathway during plant–pathogen interactions. HCAs/
HCAAs have the potential to be developed into plant antagonists, 
and will also be  a hotspot. Metabolomics is emerging as a 
new tool for understanding plant–pathogen interactions. In 
the future, there will be  some new insights into how HCAs/
HCAAs can improve the defense response of plants. Moreover, 
there is a rising trend in the development and application 
of molecular marker assays for gene mapping and discovery 
in field crops and trees (Rasheed et  al., 2017). Resistance 
genes in the HCAAs pathway and genes of regulated HCAAs 
biosynthesis also have great application potential in molecular 
breeding. Varieties with high hydroxycinnamic acid 
concentrations can be  used to produce dietary supplements 
or all-natural food additives, while enhancing resistance to 
biotic and abiotic stresses during the growing season and 
during grain storage.
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