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The soybean flower and the pod drop are important factors in soybean yield, and the
use of computer vision techniques to obtain the phenotypes of flowers and pods in
bulk, as well as in a quick and accurate manner, is a key aspect of the study of the
soybean flower and pod drop rate (PDR). This paper compared a variety of deep learning
algorithms for identifying and counting soybean flowers and pods, and found that the
Faster R-CNN model had the best performance. Furthermore, the Faster R-CNN model
was further improved and optimized based on the characteristics of soybean flowers
and pods. The accuracy of the final model for identifying flowers and pods was increased
to 94.36 and 91%, respectively. Afterward, a fusion model for soybean flower and pod
recognition and counting was proposed based on the Faster R-CNN model, where
the coefficient of determination R2 between counts of soybean flowers and pods by
the fusion model and manual counts reached 0.965 and 0.98, respectively. The above
results show that the fusion model is a robust recognition and counting algorithm that
can reduce labor intensity and improve efficiency. Its application will greatly facilitate
the study of the variable patterns of soybean flowers and pods during the reproductive
period. Finally, based on the fusion model, we explored the variable patterns of soybean
flowers and pods during the reproductive period, the spatial distribution patterns of
soybean flowers and pods, and soybean flower and pod drop patterns.

Keywords: soybean, fusion model, flower, pod, deep learning

INTRODUCTION

Soybeans are an important food crop all around the world, and are also a major source of oil and
protein (Singh et al., 2010). In recent years, many scholars have worked on yield components, such
as the number of grains and pods per plant in order to improve soybean yield (Li et al., 2018,
2019; Du et al., 2019; Song et al., 2020). However, the attempts made so far have not fundamentally
improved yields (Zhang et al., 2012), so it is essential to find the main factors affecting soybean
yields in order to increase them. Soybean flower and pod drops are a common phenomenon
during the growth and development of soybeans. It occurs from the emergence of flowers buds
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to flowering and all stages of podding. The flower and pod drop
rates can even reach 30 to 80%. (Selvaraj et al., 2019). Therefore,
reducing the flower and pod drop can significantly increase
soybean yield (Wang et al., 2010).

In the study of flower and pod drop patterns, many researchers
have explored different aspects of the flower and pod patterns
of soybeans over the years. Gao et al. (1958) first investigated
the order of flower abscission in soybeans and concluded that
the order of flower abscission is identical to the order of
flowering, with early flower abscission being higher than late
flower abscission. Ma et al. (1960) observed average flower
drop, pod drop, and bud drop rates of 56.5, 28.4, and 13.1%,
respectively, from 163 soybean plants. Song and Dong (2002);
Su et al. (2004) conducted an in-depth study on the flowering
order, and concluded that the flowering order of limited pod habit
soybeans starts from the middle and gradually opens upward and
downward, while the flowering order of both sub-limited and
unlimited pod habit soybeans opens sequentially from the bottom
upward. Zhang et al. (2010) localized the QTL for the number
of flowers and pods per plant trait from a genetic perspective
and identified gene regions associated with flowering and pods
setting. Zhao et al. (2013) broke away from the conventional
approach of conducting static observations of flowering and
flower drop statistics, and studied flowering patterns from both
spatial and temporal perspectives. They concluded that the
number of flowers per day varied significantly among different
soybean flowering stages, with different flowering nodes and
durations. Meanwhile, the drop rate of flowers at different
stages also differed significantly. However, there is a gap in
this area of research abroad, and, in the studies mentioned
above, the indicators were done manually, which can be time-
consuming and labor-intensive, and the surveys are subjective,
difficult, and error-prone (Bock et al., 2010; Singh et al., 2021).
Because of these drawbacks, it is impractical to carry out
flower and pod phenotypic surveys manually for large fields and
difficult to implement on large samples, thus preventing more
general conclusions from being drawn. On the other hand, the
complex structure of the soybean plant and the severe shading
during the growing season have made many fine phenotypes
unavailable, and even important phenomena, such as flower and
pod abscission, have been stalled by the difficulty of phenotypic
investigations and the lack of real-time, accurate, and bulk
phenotypic support for their patterns.

In recent years, there have been significant advances in
computer vision technology, largely thanks to the development
of neural network techniques, such as deep learning (Lecun
et al., 2015). Singh et al. (2021) proposed machine vision
as a method to address duress severity phenotyping, which
could improve the speed, accuracy, reliability, and scalability
of image-based disease phenotyping. Deep learning is a kind
of the machine learning method, which predicts complex and
uncertain phenomena by learning a large amount of data. DL
has led to the pattern transformation of the image-based plant
phenotype. This method is not only used for the digital image-
based plant adversity phenotype, but also performs well in a
wide range of plant phenotype tasks, such as leaf counting
(Ubbens et al., 2018), flowering detection (Xu et al., 2018),

and plant identification (Šulc and Matas, 2017) with good
results (Singh et al., 2018). Gill et al. also introduced the
application of machine learning and deep learning methods in
plant stress phenotypes. The DL models used for Phenomics
mainly include multilayer perceptron, generative antagonism
network, convolutional neural network (CNN), and recurrent
neural network. CNN has great advantages in image analysis,
and different CNN networks are used for different plants (Gill
et al., 2022). CNNs in deep learning demonstrate powerful
feature extraction capabilities for images and are widely used
in image-based agricultural computer vision tasks. In addition,
deep learning also plays an important role in field phenotype
counting. Many scholars have used deep learning techniques to
identify and count different research targets. Rahnemoonfar and
Sheppard (2017) proposed a method for estimating fruit counts
based on a deep CNN regression model using synthetic data
for the training of the network, achieving 91% accuracy on a
real data set, which is robust under adverse conditions. Lu et al.
(2017) proposed the TasselNet model for counting maize males
in complex field environments to estimate them as an output
density map. TasselNet has greatly reduced counting errors, but
field counting of maize ears is still an open question. Xiong et al.
(2019) improved TasselNet by using context-enhanced context-
linked local regression networks for field counts of wheat ears,
further enhancing the accuracy of TasselNet for field ears by up
to 91.01% on the dataset. Hasan et al. (2018) proposed a wheat-
counting algorithm based on the Faster R-CNN’s object detection
model, but not tested at higher densities. Ghosal et al. (2019)
proposed different object detection algorithms for high accuracy
detection of sorghum heads in UAV images, all with an accuracy
of around 95% and robustness to changing directions, as well as
different lighting conditions. Wu et al. (2019) proposed a rice
grain-counting method based on Faster R-CNN object detection,
with an accuracy higher than 99%, which has a very high accuracy
for calculating the number of rice grains per spike. Mu et al.
(2020) applied an object detection model to the identification
and counting of unripe and ripe tomato fruits at all periods, with
an accuracy of 87.83% and good detection accuracy for highly
shaded unripe tomatoes in real cultivation scenarios. David et al.
(2020) applied the object detection model for experiments on
the detection of different periods and varieties of wheat ears,
and the results showed that the object detection model has
good accuracy, stability, and robustness. Riera et al. (2020) also
proposed a combination of object detection and RGB images that
could count pods in the R8 period, and thus make a soybean
yield prediction. However, they only counted pods in the R8
period, in contrast to our work, where we counted pods from
the beginning pod stage to the full maturity stage (R3 to R8).
The above methods based on CNNs and regression models focus
more on the number of objects present in the image and do not
give the position of the objects in the image, and are often used
for automatic counting in high-density, high-volume fields; deep
networks based on object detection can not only automatically
count objects in images but also locale and track them. This shows
that the object detection class of models based on deep learning
algorithms is more suitable for the localization and identification
of soybean flowers and pods.
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In this paper, we optimized the Faster R-CNN model for the
characteristics of soybean flowers and pods, respectively, and
proposed a fusion model based on the Faster R-CNN two-stage
object detection algorithm to identify and count flower and pod
simultaneously. The fusion model was then used to explore and
analyze three aspects of soybean fertility: patterns of flower and
pod variation, patterns of flower and pod spatial distribution, and
patterns of flower and pod drop in soybeans.

MATERIALS AND METHODS

Experimental Materials
In this paper, four soybean cultivars, namely, DongNong252
(DN252), HeiNong51 (HN51), ZheNong No. 6, and
ChunFengZao, were selected as experimental soybean flower
samples in three fields in Harbin, Heilongjiang province, Fuyang,
Anhui province, and Hangzhou, Zhejiang province, China. The
Harbin experimental field in Heilongjiang province is located
at an east longitude of 125◦42′–130◦10′ and north latitude
of 44◦04′–46◦40′, the Fuyang experimental field in Anhui
province is located at an east longitude of 114◦52′–116◦49′ and
north latitude of 32◦25′–34◦04′, the Hangzhou experimental
field in Zhejiang province is located at an east longitude of
118◦21′–120◦30′ and north latitude of 29◦11′–30◦33′. Among
them, DN252 and HN51 have a sub-limited pod habit, while
ChunFengZao and ZheNong No. 6 have a limited pods habit.
The basic information on image acquisition is shown in Table 1.
A total of 1,895 images (3,024 × 4,032 pixels) were captured.
The soybean pod test samples were planted at the Northeast
Agricultural University experimental field base, and the two
cultivars tested were DN252 and HN51. A total of 2,693 images
(3,024 × 4,032 pixels) were acquired. Two soybean cultivars,
DongNong252 (DN252) and HeiNong51 (HN51), which are
mainly grown in Harbin, Heilongjiang Province, were selected as
the test samples to study the variation pattern.

In our data samples, the samples with red spider disease are
included. Red spider disease damages soybean leaves. At the early
stage of damage, yellow and white spots appear on the front of

TABLE 1 | Basic information on image acquisition.

Variety Image
acquisition

time

Podding
habit

Number of
images

Color of
flower

DN252 2019 Sub-limited
podding
habit

568 White

ChunFengZao 2020 Sub-limited
podding
habit

545 White

ZheNong NO. 6 2020 Limited
podding
habit

266 Purple

HN51 2019 Limited
podding
habit

516 Purple

soybean leaves. After 3–5 days, the spot area expands and the
spots are dense, and the leaves begin to appear reddish brown
patches. With the aggravation of the damage, the leaves turn
rusty brown, curl, and, finally, fall off. When spider disease is
serious, it will affect the size of soybean flowers and the number
of pods. However, at the beginning of suffering from spider
disease, we used 2,000–3,000 times of 1.8% avermectin EC to
treat the diseased plants. We sprayed the medicine every 5 days,
focusing on the back of the upper tender leaves, tender stems,
and flower organs of the plants, and sprayed the medicine evenly.
After spraying, the soybean plants have completely recovered to
normal, and there is no obvious abnormality in flowers and pods,
so it has no impact on our identification and counting.

Image Acquisition and Processing
Due to soybean plants having a complex structure, various
problems made it impossible to obtain a clear picture of all
the soybean pods in a single image. These issues include pods
and leaves being similar in color, leaves blocking pods and
flowers, pods blocking one another, soybean flowers being
stacked, flowers too small to see, etc. Nodal shots were used
for the soybean flower and pod images. To view the soybean
flower characteristics, the viewing angle was overhead, the angle
between the phone and the main stem was about 25 degrees,
and the distance from the node was 10 to 15 cm; the pods with
unobstructed nodes were photographed from a flat angle, and
those with heavily obscured nodes from a top angle. The details
of the soybean flower data collection method are presented in
Figure 1. Figure 1A features a photograph of the flowers at each
node on the plant. Figure 1B is a sketch of the sample structure
from the overall photograph of the sample plants, with the lowest
node number of the soybean structure marked as 1, and the
higher nodes numbered sequentially. As seen in Figure 1C, the
photographed node soybean flower image corresponds to the
individual nodes of the structural sketch.

Flower and pod drop pattern test samples were planted in
pots on 25th May 2019 in the Northeast Agricultural University
experimental field. Three plants of each variety were selected
for observation, and six plants were observed daily at 8 a.m.,
12 noon, and 5 p.m. Flowering began on 25th June (R1) and
finished on 30th September (R8); the number of flowers per
plant, the flowers at the nodes, and the flowers dropped were
recorded, and the flowering nodal positions and nodal position
of the flowers dropped were photographed. The plants were
affected by red spider disease during planting, and, despite being
promptly treated with pesticides, some of the sample plants were
still affected, rendering it impossible to repeat the trial due to the
effects of new crown pneumonia.

The soybean flower and pod datasets were reduced to
640 ×640 pixels using image processing techniques. All datasets
were produced in the PASCAL VOC format, and the flowers
and the pods in the images were manually labeled as real
bounding boxes using the LabelImg tool (Tzutalin, 2018). After
production, the datasets were randomly divided into a training
set, a validation set, and a test set, with the ratio of the training
set plus the validation set to test the set at 8:2. The training and
validation sets are then divided in the ratio of 9:1. The specific
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FIGURE 1 | A detailed diagram of the soybean flower data collection scheme. (A) Soybean flowers sample plant. (B) A structural sketch drawn from the sample
plants. (C) Images of soybean flowers taken at each node, corresponding to the structural sketch.

division of the soybean flower and pod datasets is presented in
Table 2.

Models
Faster R-CNN (Resnet-50) and Faster R-CNN
(VGG16)
Faster R-CNN is a fast, two-stage target detection method,
developed after the R-CNN and Fast R-CNN methods, which has
been widely used in various fields (Rampersad, 2020). The Faster
R-CNN object detection algorithm is divided into four main
parts: Feature Extraction Network, Region Proposal Network
(RPN), RoI Pooling Layer, and Fully Connected Layer. The
network structure is displayed in Supplementary Figure 1A. The
RPN replaces the previous Selective Search method and is used
to generate candidate boxes, classify and determine whether the
set anchor contains the detection target, and perform bounding
box regression. RoI Pooling is used to collect the RPN-generated
proposals and extract them from the feature maps in the feature
extraction network, generating feature maps to be fed into
the subsequent fully connected layers for further classification
and regression. Finally, we use the proposed feature maps to
calculate the specific category and perform another bounding-
box regression to obtain the exact final position of the detection

TABLE 2 | Classification of the data set for soybean flowers and pods.

Dataset Division Number Dataset Division Number

Soybean
flower

Training set 1,364 Soybean
pod

Training set 1,938

Validation
set

152 Validation set 216

Test set 379 Test set 539

Total
number

1,895 Total number 2,693

box. In this paper, we used both Resnet-50 and VGG16 backbone
for the training of the feature extraction network.

Single Shot MultiBox Detector
Compared to the two-stage algorithm Faster R-CNN, the first
proposed YOLO algorithm has a significantly faster detection
speed, but its accuracy rate is inadequate. Consequently, Liu et al.
(2016) proposed a Single Shot MultiBox Detector (SSD). The SSD
algorithm uses multi-scale features and default anchor boxes to
detect the presence of multi-scale objects in the scene in a single
step (Akshatha et al., 2022). Its network structure is shown in
Supplementary Figure 1B. The SSD network uses a one-stage
network to solve the detection speed problem and adopts the
anchors idea from Faster R-CNN. Feature extraction is performed
in layers and border regression, and classification operations are
computed sequentially, allowing training and detection tasks to
be adapted to multiple target scales. The elements extracted from
the shallow layer help to detect smaller objects, while the deeper
layer elements are responsible for detecting larger objects. SSD
networks are divided into six stages, each of which learns a feature
map and then performs border regression and classification.

EfficientDet
EfficientDet, like SSD, is a single-shot detector with an anchor-
based target detection method that has achieved good results
in both detection speed and accuracy. EfficientNet (Tan and
Le, 2019) is the backbone of the network, and the BiFPN
feature network extracts the P3, P4, P5, P6, and P7 features in
EfficientNet and performs a bidirectional feature fusion. BiFPN
(bidirectional feature network) is the core part of the EfficientDet
network for fast multi-scale feature fusion (Tan et al., 2020). The
fused features are then sent to the class prediction and bounding
box prediction networks, which generate the class and bounding
box positions of the objects. The class and bounding box network
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weights are shared between all feature levels. The EfficientDet
network structure is presented in Supplementary Figure 1C.

YOLOV3
The popular target detection algorithm YOLOV3 (Redmon
and Farhadi, 2018) has significant advantages in terms of
speed and accuracy (Wang and Liu, 2020). Its backbone
network is Darknet53, which uses the 52 layers in front of
Darknet-53 (no fully connected layers). This network is a fully
convolutional network that makes extensive use of residual
hopping connections in order to reduce the negative effect of
gradients from pooling, directly removes pooling, and uses the
stride in conv to achieve down-sampling. The FPN-like up-
sample and fusion approach is used in YOLOV3 to perform
detection on multiple feature map scales, improving the detection
of mAP and small objects (Redmon and Farhadi, 2018). The
network structure is shown in Supplementary Figure1D.

YOLOV5
YOLOV5 is the latest algorithm in the YOLO series, and
it performs better than other YOLO networks in terms of
accuracy and speed (Thuan, 2021). Its network structure, with
two different CSPs used in Backbone and Neck, is shown in
Supplementary Figure 1E. In Backbone, CSP1_X with a residual
structure is used since the Backbone network is deeper and the
addition of the residual structure enhances the gradient value
when back-propagating between layers. This effectively prevents
the gradient from disappearing as the network deepens, resulting
in finer features. Using CSP2_X in Neck, the backbone network
output is split into two branches as opposed to one simple CBL,
which is later concatenated, enhancing the network’s ability to
fuse features and retain richer feature information. Furthermore,
it uses focus for image slicing operation in Backbone and the
FPN+PAN structure in Neck.

Fast-SCNN
The Fast-SCNN network consists of 4 parts: a down-sample
learning module, a global feature extractor, a feature fusion
module, and a classifier (Poudel et al., 2020). The network
structure is shown in Supplementary Figure 2A, where it can
be seen that the 2 branches share the down-sample learning
module to further reduce the computational effort. The learning
to down-sample a module consists of 3 convolutional layers, the
first of which is a normal convolutional layer and the following
two use depth-separable convolution to improve computational
efficiency. The global feature extractor is used to extract global
features and the learning to down-sample module output feature
map is fed into the depth branch of the 2-branched structure. The
bottleneck residual block proposed in MobileNet-v2 is used to
construct the global feature extractor, where the depth-separable
convolution helps to reduce both the number of parameters
and the computational effort required (Sandler et al., 2018). The
global feature extractor also contains a pyramid pooling module
to extract contextual features at different scales (Zhao et al.,
2000). The feature fusion module is used to fuse the output
features of the 2 branches. Fast-SCNN uses a relatively simple
structure for feature fusion to maximize computational efficiency.

The classifier module contains two deeply separable convolutions
and a convolutional kernel (size, 1 × 1) to improve network
performance. SoftMax is also included in the classifier module to
calculate the training loss.

Image Cascade Network
Image Cascade Network, or ICNet (Zhao et al., 2018), is fed with
multiple varying resolution images in order to balance accuracy
and speed. Low resolution images are fed into an PSPNet
network, called a heavy CNN, where parameters are shared
between the branches of low- and medium-resolution images,
thus reducing the execution time. High-resolution images are
then fed into a light CNN. ICNet throws low-resolution
images into a complex CNN and high-resolution images into
a lightweight neural network. CFF and cascade label guidance
are then used to integrate high resolution features and gradually
refine the coarse, low-resolution semantic graph. The ICNet
network structure is illustrated in Supplementary Figure 2B.

U-Net
The U-Net network structure (Navab et al., 2015) is relatively
simple compared to other networks, with Encoder on the
left operating as a feature extractor and Decoder on the
right operating as an up-sampler. Since the overall network
structure is similar to a U shape, it is known as U-Net, and
its network structure is shown in Supplementary Figure 2C.
The Encoder consists of a convolution operation and a down-
sampling operation. The convolution structure is a uniform
3-×-3 convolution kernel with 0 padding and a striding of 1.
The above two convolutions are followed by a max pooling with
a stride of 2. The output size becomes 1

2 (H, W). The above
steps are repeated 5 times, the final time without max pooling,
and the resulting feature map is fed directly into Decoder. The
feature map is restored to its original resolution by Decoder, using
convolution, up-sampling, and skip connection.

DeepLabV3+
The DeepLabV3+ network (Firdaus-Nawi et al., 2011) structure
is shown in Supplementary Figure 2D, which adds simple
Decoder to DeepLabV3+ to refine the segmentation results, has
good target boundary detection results, and is implemented in a
two-in-one spatial pyramid pool module or codec structure. In
Encoder, DCNN is the backbone network for feature extraction,
and Atrous Spatial Pyramid Pooling is based on SPP with Atrous
Convolution, which is used for feature extraction with different
rates of Atrous Convolution. The features are then compressed
through being concat-merged and 1 × 1 convolved. In Decoder,
the low-level features are dimensionally adjusted by 1 × 1
convolution and the high-level features are upsampled by a factor
of 4 to adjust the output stride. The features are then concat,
followed by 3 × 3 convolution, before being upsampled by a
factor of 4 to obtain the output prediction.

Establishment of a Fusion Model
Due to the complex soybean structure, a highly accurate and
stable phenotype extraction model is necessary for the process of
flower and pod phenotype extraction. Firstly, we selected some
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classical models to simultaneously identify soybean flowers and
pods, and discovered that the Faster R-CNN algorithm object
detection was the most accurate, much greater than any other
recognition and segmentation models, but there is still room for
improvement, so the Faster R-CNN algorithm was fine tuned and
a fusion model was finally proposed.

Faster R-CNN is a classical, two-stage, object detection
algorithm based on CNNs, which has been widely used in several
fields since it was proposed. The model contains four main
components: a feature extraction network, a RPN, an RoI pooling
layer, and a fully connected layer. The feature extraction network,
also known as the backbone network, is generally composed of
a CNN that extracts features from the input image to obtain a
feature map for use in the proposal module and RoI pooling.
Studies have shown that the backbone feature extraction ability
largely determines the network performance, and a large deep
backbone can effectively improve detection. Therefore, generally
speaking, the deeper the network, the better the results, and the
more difficult it is to train. However, as the depth increases, so
does the network training cost and the effect decreases instead of
increasing (He et al., 2016).

The benchmark Faster R-CNN uses a pre-trained VGG16
CNN as the feature extraction network. In the targeting soybean
flower recognition and counting section, we used ResNet-50, pre-
trained on the ImageNet dataset (Fei-Fei et al., 2010), instead of
VGG16 as a feature extraction network to extract deeper flower
features as the ResNet-50 residual structure enables the fusion
of shallow and deep features, solving the gradient disappearance
problem and making the model easier to train.

The backbone selection is particularly critical to soybean
pod identification and counting, and four backbone networks
were employed: ResNet-50, ResNet-101, CSPResNet-50, and
CSPResNet-101, in combination with Feature Pyramid Network
(FPN) modules (Lin et al., 2017) for soybean pod identification,
whereas Composite Backbone Network was proposed by Liu
et al. (2019). The model is composed of different, or multiple,
backbones, in a phase-by-phase iterative manner using the
output features of the previous backbone as part of the input
features for the subsequent backbone, and, finally, using the
feature mapping of the last backbone for object detection. The
FPN module can fuse lower-level features with less feature
semantic information, and higher-level features with more
semantic information, to independently perform predictions
at different feature levels. Analysis of the results resulted in
CSPResNet-50 combined with FPN being used as our pod
recognition and counting feature extraction network, where
ResNet-50 was chosen as the basic network for the CSPResNet-
50 network.

Secondly, according to the characteristics of the large
difference in pod size over different periods, we analyzed the
pixel area occupied by the 6,334 bounding boxes annotated
in the training set, as shown in Figure 2. Figure 2A shows
the distribution of the number of bounding box areas, and
Figure 2B shows the percentage of the area of the bounding
box in the image.

Following the same criteria as the Microsoft COCO dataset
(Lin et al., 2014), we took the number of pixels occupied by the

bounding box as the area of each pod instance, divided into small,
medium, and large scales, according to the following conditions:

1. Small target: the area of pixels occupied by the bounding box
≤32× 32;

2. Medium target: 32× 32≤ the area of pixels occupied by the
bounding box ≤96× 96;

3. Large target: the area of pixels occupied by the bounding box
≥96× 96.

Taken together, the percentage of annotated bounding boxes
in the image ranges from 0 to 0.25, with more significant scale
variation, and a large proportion of the annotated bounding
boxes are within the small target range. These small targets are
likely to be pods at R3 and R4, with multiple scales caused by
pod growth variations and different imaging angles. To resolve
this issue, we added an FPN module, which extracts multi-
scale features from images, enhances semantic information, and
strengthens the detection of small target, multi-scale objects.

Suitable anchor boxes can effectively improve accuracy, for
example, Mosley et al. (2020) improved detection accuracy by
7% by adjusting anchor boxes based on annotation data, while
Zhang et al. (2020) also achieved significant results by modifying
anchor boxes in a tomato-disease-detection algorithm based on
object detection. This indicates that adjusting the anchor box
size can effectively improve the model detection effectiveness.
Consequently, we used k-means to cluster the normalized labeled
bounding boxes in the training set by adjusting the number and
size of anchor boxes to make them better fit the pod shape.
k-means is a common clustering algorithm that allows the input
samples to be clustered by similar characteristics into one class.
The distance of all points to all the centroids is calculated, and the
closest centroid is assigned to the cluster it represents. After one
iteration, the centroids are recalculated for each cluster class, and
the closest centroid for each point is found again. The procedure
is repeated until there is no change in the cluster class for two
iterations before and after. Generally, the distance formula selects
the Euclidean distance, whereas, here, we take formula (1) to
calculate the distance as follows.

d
(
box, centroid

)
= 1−IOU

(
box, centroid

)
(1)

In Eq. 1, intersection over union (IOU), a concept often used
in object detection, is used, where it refers to the ratio of
the intersection and merge between the box and the centroid.
A complete overlap, i.e., a ratio of 1, is ideal, where box denotes
the sample box and centroid is the chosen centroid. The larger
the overlap area between the sample box and the chosen centroid,
the larger its IOU, and so the smaller the 1−IOU, the smaller the
distance of the sample from the centroid. To perform clustering,
the distance was calculated according to this formula.

Figure 2C shows the clustering plots under different K values
derived by k-means, where the K value refers to the number
of anchor boxes, and line plots of the relationship between the
number of different anchor boxes and Mean IOU are obtained,
as in Figure 2D. By investigating the anchor boxes, we found
that the Mean IOU changes slowly at 14–18 and almost stops
increasing. Therefore, the chosen number of anchor boxes was
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FIGURE 2 | Distribution of pods area and percentage and determining the number of anchor boxes versus the aspect ratio. (A) Distribution of the number of
different pods areas. (B) Distribution of the percentage of the image area occupied by different pods. (C) Plots of clustering effects for different K values. (D) A plot of
the number of different anchor boxes versus Mean IOU.

18, and all the obtained similar-sized aspect ratios were summed
to calculate the mean, resulting in three sets of aspect ratios for
testing of 0.75, 1.8, and 3.2.

With the above adjustments, we can obtain our fusion
model. This is realized by connecting the flower recognition and
counting model, and the pod recognition and counting model in
series. In the process of image data acquisition, a single plant is
taken as the object, so all nodes of the same plant are identified.
After identification, a data summary is made. The input image
first goes through the flower recognition and counting model to
detect the number of flowers, and then into the pod recognition
and counting model to detect the number of pods before finally
outputting the number of flowers and pods at each node and
generating a CSV file, which is summed to the number of flowers
and pods per plant. The entire process is shown in Figure 3.

Flower Drop Rate, Pod Drop Rate, and
Pod Formation Rate
The formulae for calculating the flower drop rate (FDR), PDR,
and pod formation rate (PFR) are the key to the study of soybean

flower and pod drop patterns, and are usually defined as follows,
according to the relevant literature (Wang et al., 2014; Xu, 2015).

FDR(%) =
TNOFD

TNOFD+ TNOPD+ TNOPF
×100% (2)

PDR(%) =
TNOPD

TNOFD+ TNOPD+ TNOPF
×100% (3)

PFR(%) =
TNOPF

TNOFD+ TNOPD+ TNOPF
×100% (4)

where FDR = flower drop rate, PDR = pod drop rate, PFR = pod
formation rate, TNOPD = total number of flowers dropped,
TNOPD = total number of pods dropped, and TNOPF = total
number of pods formed. The next step is to determine the
soybean plant flower and pod drop rates and explore the soybean
flower and pod drop patterns based on the above formulae.
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FIGURE 3 | An overall flowchart of the fusion model.

Hardware and Software
To train CNN on the soybean flower image dataset, we used
a personal desktop computer with an Intel (R) Core (TM) i9-
9900k CPU, NVIDIA Titan XP (12G) GPU, and 64G RAM
under the Pytorch and MXNET deep learning frameworks for the
Windows operating systems using Python language to train seven
networks. While the soybean pod dataset training was based on
PaddlePaddle framework programming, the experiments were
trained on an NVIDIA GeForce RTX 2080 Ti GPU with 11 Gb
RAM, operating system Ubuntu 14.08, CUDA version v10.1, and
Cudnn version 7.6.5.

Evaluation Indicators
We used the precision, recall, AP, and mAP values to evaluate
the results and performance of the different networks used on the
dataset, where the precision, recall, AP, and mAP are determined
by the following equations:

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

AP =
N∑
k=1

Precision
(
k
)
4Recall

(
k
)

(7)

mAP =
∑M

m=1 AP(m)

M
(8)

where TP (True Positive) indicates that the model correctly
identified objects from the defined object region, FP (False
Positive) indicates that the background was wrongly identified
as an object, and FN (False Negative) indicates that the object
was wrongly identified as the background. N is the total image
number in the test dataset, M is the total number of categories,
m is the number of categories, Precision (k) is the precision value
of the kth image, and 4Recall (k) is the change value of the kth
image and the k− 1th image.

Mean intersection over union was used to evaluate the
semantic segmentation model. MIOU calculates the ratio of the
intersection and the union of the two sets of true and predicted
values and can be calculated as follows.

MIOU =
1

K + 1

K∑
i=0

TP
FN+ FP+ TP

(9)

where TP signifies the prediction is correct, the prediction is
positive, and the true is positive; FP denotes that the prediction
is wrong, the prediction is positive, and the true is negative; FN
denotes that the prediction is wrong, the prediction is negative,
and the true is positive; K is the total number of categories, and i
is the number of categories.

RESULTS

Selection of a Suitable Counting Model
Firstly, we took the semantic segmentation algorithms U-Net,
ICNET, Fast-SCNN, DeepLabV3+, and object detection
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algorithms Faster R-CNN, YOLOV3, SSD, EfficientDet,
and YOLOV5 to detect soybean flowers and pods together,
attempting to simultaneously count flowers and pods. For the
model evaluation metrics, the object detection algorithm chose
the commonly used mAP threshold value of 0.5, and the semantic
segmentation algorithm chose MIoU as the evaluation metric.
The experimental results are presented in Table 3.

The results indicate that the object detection algorithm has
a higher detection accuracy than the semantic segmentation
algorithm. The highest semantic segmentation algorithm
accuracy was 64.42%, and the lowest was 54.01%, both below
70%. The object detection algorithm Faster R-CNN reached
an average detection accuracy of 81.7% in the flower and pod
counting study, with 85.5% accuracy for flower detection and
77.9% accuracy for pod detection. As can be seen, although
the Faster R-CNN has a higher accuracy rate than other object
detection algorithms, it still does not meet our requirements
for accurately counting flowers and pods simultaneously.
Subsequently, the Faster R-CNN algorithm was explored to
find a suitable new method, and the Faster R-CNN algorithm
was fine-tuned to achieve satisfactory simultaneous counting
of flowers and pods. The Faster R-CNN algorithm was then
improved for flowers and pods, respectively.

Training and Evaluation of Six Soybean
Flowers and Pods Recognition Models
For the soybean flower counting model, we evaluated the
performance of the improved Faster R-CNN (ResNet-50) model
and five alternatives [Faster R-CNN (VGG16), SSD, EfficientDet,
YOLOV3, and YOLOV5]. The learning rate of these six networks
starts at 0.0001, with Faster R-CNN (VGG16), SSD, and
Faster R-CNN (ResNet-50), making 200 iterations, EfficientDet,
YOLOV3, and YOLOV5 use 50 iterations, with the loss values
slowly converged to a value near the exact one. We compared
the proposed model with five other methods, based on deep
learning, under the same experimental configuration, trained
with the same training set, and assessed on the test set. The
specific experimental evaluation results are presented in Table 4.

It can be observed that the highest of the five alternative
models is EfficientDet, with an accuracy of 92.83%, but Faster
R-CNN (ResNet-50) also outperformed that by 1.53% on the test
set. In terms of training time, the Faster R-CNN (ResNet-50) took

TABLE 3 | Experimental results of different deep learning algorithms.

Deep learning algorithms Models Evaluation
indicators

Accuracy

Object detection Faster R-CNN mAP 82.63%

YOLOV3 mAP 68.9%

YOLOV5 mAP 76.55%

SSD MIoU 54.01%

EffientDet mAP 80.84%

Semantic segmentation Fast-SCNN mAP 54.01%

ICNET MIoU 60.02%

DeepLabV3+ MIoU 56.32%

U-Net MIoU 64.42%

longer to train, while the YOLOV3 network took the least time to
train. Considering the test accuracy and training time, this study
favors Faster R-CNN (ResNet-50) due to its higher detection
accuracy and sacrifices training time for accuracy improvement.

For the soybean pod counting model, we evaluated the
performance of the improved Faster R-CNN (CSPResNet-50)
model and five alternatives [Faster R-CNN (VGG16), SSD,
EfficientDet, YOLOV3, and YOLOV5]. The learning rate of these
six networks starts at 0.0001, with Faster R-CNN (VGG16), SSD,
and Faster R-CNN (CSPResNet-50), making 200 iterations, and
EfficientDet, YOLOV3, and YOLOV5 using 50 iterations, with
the loss values slowly converged to a value near the exact one.
We compared the proposed model with five other deep learning-
based methods under the same experimental configuration,
trained with the same training set, and assessed on the test set.
The specific experimental evaluation results are presented in
Table 4.

It can be observed that Faster R-CNN (VGG16) is the highest
of the five models, with an accuracy of 87.71%, but Faster R-CNN
(CSPResNet-50) also outperformed this by 3.29% on the test set.
In terms of training time, the Faster R-CNN (CSPResNet-50)
took longer to train, while the YOLOV3 and YOLOV5 networks
took the least time to train. When considering the test accuracy
and training time, this study favors Faster R-CNN (CSPResNet-
50), which has a higher detection accuracy and appropriately
sacrifices training time for accuracy improvement.

Adjusting the Number and Aspect Ratio
of Anchor Boxes
All other things being equal, we used CSPResNet-50 as the Faster
R-CNN skeleton network for our experiments and used the
k-means algorithm to adjust the anchor box aspect ratio in the
RPN module to 0.75, 1.8, and 3.2. The effect of aspect ratios on
the model is discussed, and the experimental results are shown in
Table 5. The table shows that following adjustment of the aspect
ratio, the overall model detection improved by 0.1% and the small
target detection capability improved by 0.5%.

Evaluation of the Soybean Flowers and
Pods Counting Results
Approximately, 379 images of soybean flowers were selected
along with 539 images of soybean pods, independent of
the training sample. The data obtained manually and from
Faster R-CNN (ResNet-50) and Faster R-CNN (CSPResNet-50)
recognition and counting models were subjected to correlation
and error value analyses to evaluate the reliability and accuracy of
the models. On this basis, scatter plots and histograms are drawn,
as shown in Figure 4. The size of the circle in the diagram is
related to the number of times a point appears; the more times
it appears, the larger the circle. It can be seen from Figure 4A
that 62.7% of the sample set was identified by the flower model
with zero errors, 92.7% with no more than one error, and 99.05%
with no more than two errors. The percentage of prediction errors
of 0 versus 1 for the pod model in Figure 4C is 96%, indicating
that the models are still fairly stable. The prediction error value
referred to here is the number of differences between the model
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TABLE 4 | Comparison of different object detection algorithms of flowers and pods.

Flower models Flower training
time (h)

Flower detection
accuracy (%)

Pod models Pod training
time (h)

Pod detection
accuracy (%)

Faster R-CNN (Resnet-50) 7.89 94.36 Faster R-CNN
(CSPResNet-
50)

7.19 91%

Faster R-CNN (VGG16) 7.97 82.25 Faster R-CNN
(VGG16)

6.88 87.71%

SSD 3.02 90.82 SSD 4.03 84.89%

YOLOV3 0.83 63.96 YOLOV3 1.07 50.45%

YOLOV5 0.95 83.40 YOLOV5 1.07 74.25%

EffientDet 0.93 92.83 EffientDet 0.87 75.09%

and manual counts. The coefficient of determination R2 values
for soybean pods, obtained in Figures 4B,D, is 0.809 and 0.9046,
respectively, indicating that both Faster R-CNN (ResNet-50) and
Faster R-CNN (CSPResNet-50) have good soybean flower and
pod counting ability and could replace manual counting.

Evaluation of the Fusion Model Count
Results
The above exploration reveals that the recognition accuracy of
soybean flowers and pods using Faster R-CNN is lower than that
of the improved Faster R-CNN (ResNet-50) and Faster R-CNN
(CSPResNet-50) separately; thus, a fusion model for soybean
flowers and pods is proposed. The detection effect, speed, and
accuracy of the fusion model were evaluated. Two soybean plants
of two cultivars, DN252 and HN51, were selected as test samples,
and the image was fed into a fusion model for flower and pod
recognition and counting. The number of flowers and pods
per plant was outputted and compared with the manual count,
and, on this basis, a linear fit of the fusion model detected pod
number versus the actual manual count was plotted, as shown in
Figure 5. Figures 5A,B displays the coefficient of determination
R2 values of 0.9652 and 0.9917 for HN51 and DN252 for flowers,
respectively. The coefficient of determination R2 values of 0.9924
and 0.9872 for pods is shown in Figures 5C,D. Both are close to 1,
indicating that the fusion model performs well at simultaneously
counting soybean flowers and pods.

Study of Flower and Pod Drop Patterns
Analysis of Flower and Pod Variation Patterns During
the Reproductive Period
Using the fusion model, we first analyzed the change patterns of
flower and pod drops during the soybean reproductive period,
mainly in terms of the number of flowering plants, the number
of dropped flowers, and the flowering and pod drop timing.

TABLE 5 | Comparison of test results for adjusting the number of anchor boxes
and the aspect ratio.

k-means AP50 APs APM APL FPS

No 91% 26.3% 50.9% 66.3% 17

Yes 91.1% 26.8% 52.3% 67.8% 17

The number of DN252 and HN51 flowers and pods was plotted
from 27 June 2019 to 30 September 2019, as shown in Figure 6.
HN51 and DN252 have an average daily flowering count of
approximately 7.43 and 4.4 and an average daily flower drop of
about 3.975 and 7.86, respectively. It can be seen from Figure 6
that different soybean cultivars flower and drop at different rates.
HN51 blooms slowly, with a high number of flowers; the peak
is shifted backward, and the number of flowers reaches its peak
after 20 days of flowering and the duration of the fall is about
10–15 days, as shown in Figures 6A–C. Meanwhile, DN252
blooms quickly, with a maximum of 24 flowers per day on a
single plant; the flower number peak is shifted forward, and the
number of flowers is low, but the fall is slower and lasts longer,
about 20–26 days, as shown in Figures 6D,F. The flowers of
both varieties of soybeans last for about a month. The podding
timing is similar, with both starting to set around a week after
flowering, while HN51 had the fastest podding speed at 3–5 days
after peak flowering, gradually reaching a peak, as shown in
Figures 6A–C. DN252 starts to set pods at the peak flowering
time, and pod numbers reach their peak at mid-fall, as shown in
Figures 6D,F. All pods shed after reaching their peak, and slow
flowering varieties are more likely to produce high yields in terms
of the final number of pods.

Analysis of the Spatial Distribution Pattern of
Soybean Flower and Pod
Next, we investigated the soybean flower and pod spatial
distribution pattern. Depending on the podding habit and the
number of nodes on the main stem, the distribution can be
divided evenly into lower, middle, and upper layers. Figure 7
shows the total number of flowering plants, pods dropped, and
pods formed at each main stem node during the reproductive
period. The number of flowers on the branch are calculated at
the corresponding node. The flower spatial distribution in both
soybean cultivars was found to be mainly in the middle and
lower layers, with 40.28% of the flowers on the HN51 branch
and 37.05% in the middle layer, while the lower DN252 layer
accounts for 38.51%, with 40.62% in the middle layer, as shown
in Figures 7A,B. The pod drop was observed at all nodes; the
HN51 pods drop mainly in the lower and middle zones, while
DN252 drops mainly in the middle zone. Both cultivars drop
least in the upper zone, as shown in Figures 7C,D. Regarding pod
formation, the main DN252 pod-forming areas are the lower and
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FIGURE 4 | Absolute values of the difference between true and predicted values of soybean flowers and pods and correlation analysis between manual and
soybean flower and pod counting. (A) Absolute values of the difference between true and predicted values of soybean flowers. (B) Correlation analysis between
manual and the Faster R-CNN (ResNet50) model for soybean flower counting. (C) Absolute values of the difference between true and predicted values of soybean
pods. (D) Correlation analysis of soybean pod counting by manual and the Faster R-CNN (CSPResNet-50) model.

middle layers, while the bulk of HN51 pods forms in the lower
layers. This leads to the conclusion that higher pod-forming areas
drop more pods and lower pod-forming areas drop fewer pods, as
shown in Figures 7E,F.

Analysis of Flower and Pod Drop Patterns in
Soybeans
The soybean reproductive cycle can be divided into two major
growth periods: the first being the V period (Vegetative) and the
second being the R period (Reproductive), which can, in turn,
be divided into eight reproductive periods: the start of flowering
(R1), full bloom (R2), podding starting (R3), full podding (R4),
beginning to seed (R5), full seed (R6), beginning to mature
(R7), and fully mature (R8; Fehr et al., 1971). The time period
covered by this study started at R1 and continued until R8,
whereas in previous flower and pod drop studies, rough statistics
were presented from the soybean reproductive period, without
dividing it into specific reproductive stages. Since it is more
convenient to investigate flower and pod drop phenotypes with
the proposed fusion model, this is used to conduct statistical
analysis during specific reproductive stages. Firstly, the flower
drop percentage data between reproductive zones are shown

in Table 6, where “period” refers to each soybean reproductive
period, “sample” refers to the observed soybean material, and
“percentage” denotes the number of flowers dropped by the
sample in a given period, as a percentage of the number of flowers
dropped during the whole reproductive period. It is found that
the FDR varies between cultivars, and the flower drop percentage
varies between reproductive stages, varying from time to time
but gradually increasing overall. The lowest drop percentage rate
is between R1 and R2, with a mean of only 1.9%, while the
flower drop peaks between R5 and R6, where it reaches as high
as 40%. As the pods grow and develop, the flower drop gradually
increases to an average drop rate of 62.49%.

Table 7 displays the PDR statistics in different reproductive
zones, where “period” refers to each soybean reproductive period,
“sample” refers to the observed soybean sample, and “percentage”
is the number of flowers dropped by a soybean sample in a given
period as a percentage of the total number of pods dropped
within the entire reproductive period. The data indicate that the
PDR varies in different reproductive zones, the pod drop in each
reproductive zone, with a trend of increasing and then decreasing
with soybean growth. During pod growth, development, and seed
filling, the pod drop proportion increases significantly, and the
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FIGURE 5 | Plots of linear correlation between the fusion model predicted soybean flowers and pods and true values of manual counting. (A) A plot of linear
correlation between the fusion model-predicted soybean flowers of variety HN51 and true values of manual counting. (B) A linear correlation plot of the fusion model
predicted the true value of soybean flowers and manual counting for variety DN252. (C) A plot of linear correlation between the fusion model-predicted soybean pod
of variety HN51 and the true value of manual counting. (D) A plot of linear correlation between the fusion model-predicted soybean pod of variety DN252 and the
true value of manual counting.

pod drop peaks at the same time as the flower drop peaks, both
within R5–R6. Consequently, pod development not only leads to
flower drop but also affects the pods themselves. The overall PDR
averaged 54.87%.

DISCUSSION

Recognition of Soybean Flowers and
Pods in Certain Scenarios
Wan and Goudos (2020) utilized Faster R-CNN in the field of
fruit image recognition, and the results indicate that it had good,
robust detection results in various complex scenarios. Quan et al.
(2019) used the Faster R-CNN model to detect maize seedlings in
natural environments and demonstrated high performance under
various conditions, including full cycle, diverse weather, and
multiple angles, which again proved that Faster R-CNN possesses
good robustness in complex environments. In this paper, Faster
R-CNN (ResNet-50) and Faster R-CNN (CSPResNet-50) models

were used to detect flowers and pods in different scenarios, and
the detection results are presented in Figure 8.

The five main confounding factors in soybean flower detection
are different flower colors, too small flowers, flower clusters,
and overlapping flowers. In this study, the soybean flowers were
purple and white, and the different colors interfered with the
model. Raindrops on the stems and leaves are extremely similar
in texture to white flowers when exposed to sunlight, which can
cause the model to misinterpret images. In terms of soybean
flower size, most are very small targets that are difficult to identify,
leading to model miscues. Furthermore, the flowers are mostly
clustered together and are indistinguishable, so some may be
missed by the model. When the flowers overlap, those at the back
are overshadowed by those at the front, and the model may only
detect the flowers at the front and miss those at the back. As can
be observed in Figure 8, the Faster R-CNN (ResNet-50) model
has good flower detection and robustness in all experimental
scenarios, as shown in Figures 8A–E.

In addition, as soybean pods are a very similar color to the
leaves and stems, the pods may be identified as leaves, etc., leading
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FIGURE 6 | Plots of flower and pod counting over time for three plants of soybean cultivars HN51 and DN252. (A–C) Plots of the number of flowers and pods of
three plants of variety HN51 over time. (D–F) Plots of the number of flowers and pods of three plants of variety DN252 over time.
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FIGURE 7 | Distribution of total flowers number, number of pods dropped, and number of pods formed at the main stem nodes of the two cultivars DN252 and
HN51. (A) Distribution of the total number of flowers at the main stem nodes of the DN252 variety. (B) Distribution of the total number of flowers at the main stem
nodes of variety HN51. (C) Distribution of the number of pods dropped at the main stem node of variety DN252. (D) Distribution of the number of pods dropped at
the main stem node of variety HN51. (E) Distribution of the number of pods formed at the main stem node of variety DN252. (F) Distribution of the number of pods
formed at the main stem nodes of variety HN51.

TABLE 6 | The flower drop rate at different reproductive stages.

Period

Percentage

Sample R1∼R2 R2∼R3 R3∼R4 R4∼R5 R5∼R6 Number of
flowers dropped

Total number of
flowers

Flower drop rate

DN252(1) 3.62% 12.24% 21.26% 24.88% 38% 110 221 49.77%

DN252(2) 3.50% 15.38% 20.29% 16.78% 44.05% 101 143 70.63%

DN252(3) 2.04% 5.11% 36.73% 26.53% 29.59% 74 98 75.51%

HN51(1) 0.26% 2.06% 45.62% 15.72% 36.34% 196 388 50.52%

HN51(2) 1.02% 5.10% 13.95% 29.59% 50.34% 179 294 60.88%

HN51(3) 0.94% 4.25% 28.80% 26.01% 40.00% 142 210 67.62%

Average value 1.90% 7.36% 27.78% 23.25% 40% 133.67 225.67 62.49%

to errors. The different soybean pod periods can lead to the
presence of small targets that the model tends to miss. Differences
in camera angles can also lead to incorrect judgments, since the
soybean pods may have some shape variation due to the angle
of the shot, and some pods will also be obscured and remain

unidentified by the model. The soybean pod growth habits, which
also bunch together in clusters, can lead to close contact between
the pods, and the model may mistake two pods for one, leading
to misrecognition. Soybean pods overlap one another, with only
a small area being exposed, making it very easy for the model
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TABLE 7 | The pod drop rate at different reproductive stages.

Period

Percentage

Sample R3∼R4 R4∼R5 R5∼R6 R6∼R7 R7∼R8 Number of pods
drop

Total number of
pods

Pod drop rate

HN51(1) 11.71% 17.11% 23.42% 4.50% 0.00% 111 81 42.18%

HN51(2) 0.00% 11.90% 47.61% 2.38% 2.40% 47 68 59.13%

HN51(3) 8.88% 8.88% 29.17% 12.50% 0.00% 35 33 48.53%

DN252(1) 10.42% 9.90% 18.29% 2.08% 1.56% 48 63 56.75%

DN252(2) 6.96% 13.04% 30.43% 5.22% 3.47% 15 27 64.28%

DN252(3) 7.35% 13.23% 22.06% 1.47% 4.41% 10 14 58.33%

Average value 7.55% 12.34% 28.50% 4.69% 1.97% 44 48 54.87%

FIGURE 8 | Recognition of flowers and pods in special scenes. (A–E) Recognition of flowers in special scenes. (F–J) Recognition of pods in special scenes.

to misidentify them. However, the Faster R-CNN (CSPResNet-
50) still had good robustness and good detection results for
pods under different environmental situations, such as similar
color, small targets, shooting angles, clusters, and overlapping
interference, as shown in Figures 8F–J.

Variation in the Spatial Distribution of
Soybean Flowers and Pods Throughout
the Reproductive Period
We analyzed the variation in soybean flower and pod spatial
distribution throughout the reproductive period, and the results
are displayed in Supplementary Figure 3. As seen from section
“Analysis of the Spatial Distribution Pattern of Soybean Flower
and Pod,” the distribution was divided equally into lower, middle,
and upper levels based on the pod setting habit and the number
of nodes on the main stem. Finally, we studied the pod drop in all
layers and periods, with more pods falling during the period R5–
R6 and more dropping in the middle and lower layers compared
to the upper layers. The pods formed mainly in the lower layers

and dropped more in areas with more pods and less in areas with
fewer pods. Soybean flowers are more distributed in the lower and
middle layers and fall more where there are more flowers.

We tracked Node 3 and the number of flowers changed from
three on 27th June 2019 to four on 3rd July 2019 and then back
to three on 12th July 2019. However, one less soybean flower
turned into a pod during the period 3rd July 2019 to 12th July
2019. By 17th July 2019, the flowering, flower dropping, and
pod formation processes led to three flowers remaining and the
pod number increasing to four. One flower was shed by 23rd
July 2019, the number of pods remained constant, and one pod
was shed between 12th and 20th August 2019. Finally, up until
20th August 2019, the number of pods remained the same before
eventually reducing by one.

Pod Formation Traceability Issues
From the above study, we see that the fusion model has a strong
ability to identify and count flowers and pods. Subsequently,
we attempted to trace the origin of the pods using the fusion
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model. This would make it possible to determine which flower a
particular pod originates from and to more closely observe the
phenotypic changes before and after the flowers are shed. The
results are presented in Supplementary Figure 4.

We selected a soybean node in order to detect its temporal
image using the fusion model. The sequence indicated by the
red arrow is the flower to pod tracking record. The results
show that the model does not lose tracking with changes in
flower shape or color, nor is it affected by tracking errors due
to pod color or growth, different camera angles, or complex
backgrounds. This demonstrates it possesses a strong, robust
detection capability. However, the failing is that the fusion model
only mechanically detects flowers and pods in the image and
cannot make causal judgments about them, which still requires
human-assisted observation. There is also interference from
other flowers and pods in the vicinity, so it is not possible to
track and locate individual flowers or pods, which is not suitable
for dense environments. We are currently unable to solve this
problem, but, in the future, we aim to use a counting method
that combines an object detection algorithm with the Deep-Sort
algorithm (Wojke et al., 2018) to solve the existing problems
in the form of numbered tracking counts of tracked target
objects. This would enable flower and pod causal judgments while
achieving more detailed origin tracking.

CONCLUSION

To investigate soybean flower and pod patterns, we propose
a Faster R-CNN-based fusion model for the simultaneous
identification and counting of soybean flowers and pods. The
main findings are as follows:

1. The improved Faster R-CNN model achieved 94.36 and 91%
mAP for soybean flowers and pods, and the results showed
that the method can quickly and accurately detect soybean
flowers and pods, with strong robustness.

2. The coefficient of determination R2 between the fusion
model’s soybean flower and pod counts, and manual counts
reached 0.965 and 0.98, indicating that the fusion model is
highly accurate in counting soybean flowers and pods.

3. Using the fusion model, we also found the following patterns:
firstly, varieties that flower slowly are more likely to produce
higher yields; secondly, areas with more pods are more
likely to drop pods than areas with fewer pods; thirdly,
different varieties have different flower and PDRs and ratios at
different stages of fertility, with the flower drop ratio gradually
increasing over time and the PDR initially increasing and then
decreasing as the soybean grows. The peak range for both
flower and pod drops being R5 to R6.

In the future, we will use a combination of object detection
algorithms and Deep-Sort algorithms (Wojke et al., 2018) to solve
existing counting method issues. We will also locate a platform
that allows the automated, high-throughput, and highly accurate
acquisition of soybean flower and pod phenotypes to obtain more
samples to further demonstrate the patterns we identified.
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