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Astragalus variabilis is a locoweed of northwest China that can seriously

impede livestock development. However, it also plays various ecological roles,

such as wind protection and sand fixation. Here, we used an optimized

MaxEnt model to predict the distribution of suitable habitat of A. variabilis

under current (1970–2000) conditions and future (2021–2080) climate

change scenarios based on recent occurrence records. The most important

environmental variables (suitability ranges in parentheses) affecting the

distribution of A. variabilis were average maximum temperature of February

(–2.12–5.34◦C), followed by total precipitation of June (2.06–37.33 mm), and

topsoil organic carbon (0.36–0.69%). The habitat suitability of A. variabilis was

significantly correlated with the frequency of livestock poisoning (p < 0.05).

Under current climate conditions, the suitable environment of A. variabilis

was distributed in central and western Inner Mongolia, Ningxia, central and

northwestern Gansu, central and northwestern Qinghai, and the four basins

around the Tianshan Mountains in Xinjiang. Under future climate conditions,

the suitable habitat of A. variabilis shifted to higher latitudes and altitudes. No

previous studies have used niche models to predict the suitable environment

of this species nor analyzed the relationship between the habitat suitability of

poisonous plants and the frequency of animal poisoning. Our findings provide

new insights that will aid the prevention of livestock animal poisoning and

the control of poisonous plants, promote the development of the livestock

husbandry industry, and provide basic information that will facilitate the

maintenance of the ecological balance of grassland ecosystems.

KEYWORDS

locoweed, MaxEnt, climate change, habitat suitability, livestock poisoning control
and prevention

Frontiers in Plant Science 01 frontiersin.org

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.921310
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.921310&domain=pdf&date_stamp=2022-09-09
https://doi.org/10.3389/fpls.2022.921310
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpls.2022.921310/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-921310 September 16, 2022 Time: 10:29 # 2

Huang et al. 10.3389/fpls.2022.921310

Introduction

According to the 5th Global Climate Change Assessment
Report of the United Nations Intergovernmental Panel on
Climate Change (IPCC), the world’s average surface temperature
has increased by 0.85◦C over the past 130 years and is continuing
to increase (Stocker, 2013). The effects of warming on the
distribution of moisture and the soil microclimate are thought to
be particularly important in shaping the range shifts of plants, as
their distributions are largely determined by abiotic factors such
as precipitation, temperature, soil, and elevation (O’Connor
et al., 2020). The effects of climate warming on the distribution
of plants have thus been a major focus of research in recent
years (Bellard et al., 2012). Studies of how climate change might
affect the distribution of plants can aid agricultural production
and biodiversity conservation and promote the sustainability of
ecosystems.

Locoweeds (e.g., Astragalus, Oxytropis, and Swainsona) are
poisonous plants that have caused major economic losses to
livestock industries in China, Australia, North America, and
South America (Lu et al., 2014; Cook et al., 2016; Welch et al.,
2018). Astragalus variabilis Bunge ex Maxim (Figure 1), a cold-
resistant and drought-tolerant locoweed plant, is one of the
main threats to the development of the livestock industry in
northwest China (Dong et al., 2003). The main toxic component
of A. variabilis is swainsonine, which can cause neurologic
symptoms, reproductive dysfunction, and eventually death in
poisoned animals (Wang et al., 2015). Despite its deleterious
effects (Zhou et al., 2013), A. variabilis is nutritious and can
be used as fodder after being detoxified, which could alleviate
forage shortages in arid areas (Zhao et al., 2006; Tao et al.,
2020). A. variabilis can also grow in arid and barren desert
steppe, where it can prevent sand fixation, slow soil erosion, and
improve soil chemical properties (Zhao et al., 2006; Wang Q. H.
et al., 2021). Thus, the development of strategies for managing
A. variabilis that balance the needs of ecological systems and
farmers is needed, and predictions of the potential distribution
of A. variabilis can provide important information that aids the
development of such management strategies.

Species distribution models (SDMs) can be used to
predict suitable environments for species by integrating species
occurrence data with relevant environmental variables (Guisan
and Zimmermann, 2000). Maximum Entropy (MaxEnt) models
have become a popular tool for predicting the potential
distributions of species because they have been shown to have
greater predictive power and accuracy compared with other
SDMs (Phillips et al., 2006; Panda and Behera, 2019). MaxEnt
models are also capable of handling complex interactions
between response and predictor variables, and model outputs
remain robust to small sample sizes (Wisz et al., 2008; Elith
et al., 2011). Moreover, MaxEnt models are simple to use for
researchers in various fields and only require species occurrence
data and environmental layers. The information provided by

FIGURE 1

Astragalus variabilis (inset) and its habitat in Alxa, Inner Mongolia.

these models has been widely used in the fields of ecology,
evolutionary biology, conservation biology, and biosafety (Elith
et al., 2011; Luo et al., 2017).

Most previous studies on locoweed plants have focused
on examining their deleterious effects, toxic components,
poisoning mechanisms, and endophytic fungi (Lu et al., 2012;
Yao et al., 2013). However, few studies have examined the
ecology of locoweed plants, and no studies to date have
attempted to predict the distribution of suitable habitats of
locoweeds under different climate scenarios. Here, niche models
were used for the first time to predict the distribution of suitable
habitat of locoweed plants and analyze the relationship between
habitat suitability and the frequency of livestock poisoning. The
results of our study will aid future efforts to minimize the
deleterious effects of poisonous plants and prevent their spread,
promote the development of the livestock husbandry industry
in northwest China, and provide basic information that will
facilitate the maintenance of the ecological balance of grassland
ecosystems.

Materials and methods

The design of this study is summarized in a flow chart in
Figure 2. We used the following software, packages, and tools:
spThin package (Aiello-Lammens et al., 2015) and ENMeval
2.0 package (Kass et al., 2021) in R 4.2.1, ENMTools (Warren
et al., 2010), MaxEnt 3.4.4 (including the jackknife test function)
(Phillips et al., 2006), SDMTools 2.0 (Brown et al., 2017), ArcGIS
10.7 (including its various toolkits), and SPSS 20.0.

Target species and study area

Astragalus L. (Fabales: Fabaceae: Galegeae) is mainly
distributed in arid and semi-arid regions of the northern
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FIGURE 2

Flow chart of the design of this study. The software, packages, and tools used are indicated in purple font.

hemisphere and temperate South America (Podlech, 1986;
Ranjbar and Karamian, 2003). China is one of the major centers
of Astragalus diversity and has more than 400 species belonging
to 59 sections (Huang et al., 2018). A. variabilis belongs to the
subgenus Cercidothrix Bunge, A. Sect. Craccina (Stev.) Bunge,
and it is mainly distributed in Inner Mongolia, Ningxia, Gansu,
and Qinghai (Editorial Committee of Chinese Flora, C.A.O.S.,
2006). A. variabilis is known to be resistant to cold, drought, and
barren soils (Dong et al., 2003).

We conducted a preliminary study in which we determined
the area of the potential distribution of A. variabilis
in a restricted area: 30.04◦–49.35◦N, 73.45◦–118.86◦E.
The study area covers most pastoral areas in China,
including central and western Inner Mongolia, Ningxia,
Gansu, Qinghai, Xinjiang, central and northern Tibet, and
northern Sichuan. Most of this preliminary study region
comprises arid and semi-arid regions that receive low
amounts of precipitation in an uneven fashion (annual

precipitation ranges from 200 to 400 mm) and experience
rapid changes in temperature and precipitation (Lv et al.,
2009).

Species occurrence data

We obtained records of A. variabilis occurrence from
fieldwork conducted between 2014 and 2021; the coordinates
of all localities were taken using a GPS (GARMIN GPSMAP
621sc; accuracy ± 3 m). Records were also obtained from
searches conducted on two online databases: the Chinese
Virtual Herbarium1 and the Global Biodiversity Information
Facility.2 To ensure the accuracy of occurrence points, we only

1 https://www.cvh.ac.cn/

2 https://www.gbif.org/
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used records with precise coordinates after 2000. All records
were carefully inspected, and records with erroneous data and
duplicate records were removed. See Supplementary Table 1
for details of all records. One assumption of MaxEnt models
is that all areas have been systematically or randomly sampled
(Phillips et al., 2009). However, samples are often spatially
autocorrelated due to sampling bias, and this can result in the
overfitting of MaxEnt models and affect the model’s predictive
ability (Warren et al., 2014; Kong et al., 2019). Spatial filtering of
occurrence points has been shown to be effective for reducing
spatial autocorrelation and sampling bias (Kong et al., 2019).
Thus, we used the spThin package in R to spatially filter the
occurrence points (Aiello-Lammens et al., 2015) at distances
of 5, 10, and 20 km. We used AcrGIS to conduct spatial
autocorrelation analysis on the unfiltered data as well as the data
that were spatially filtered at 5, 10, and 20 km (Jiang et al., 2022).
These data were added to the MaxEnt model, and the degree
of overfitting was evaluated using a 10% training omission rate
(OR10) (Radosavljevic and Anderson, 2014). The distance of
OR10 to 0.1 is positively correlated with the overfitting degree of
the model (Muscarella et al., 2014; Radosavljevic and Anderson,
2014). Finally, the optimal spatial filtering distance was selected.

Environmental variables

Because few ecological studies of A. variabilis have
been conducted, we used the environmental variables most
commonly used in previous studies that have predicted the
distribution of suitable habitat for various plant species (Fois
et al., 2018; Shi et al., 2022; Zhang L. et al., 2022). Given
that we were interested in comparing current and future
suitable habitats, environmental variables with both current
and future data available were used. We initially used 19
bioclimatic, 36 climatic variables, 1 topographical variable,
and 4 soil variables that might affect the distribution of
A. variabilis (Supplementary Table 2). Bioclimatic, climatic,
and topographical layers were downloaded from WorldClim
2.13 (Fick and Hijmans, 2017), and soil variable layers were
downloaded from the Harmonized World Soil Database version
1.2 (HWSD v1.2)4 (Wieder et al., 2014). The spatial resolutions
of the environmental variable layers from WorldClim were 10
arc min, 5 arc min, 2.5 arc min, and 30 arc s. We used the 2.5
arc-min spatial resolution layers for analyses. There were no
observable differences in the results when data at a resolution of
30 arc s and 2.5 arc min were used, which is consistent with the
results of a previous study (Guisan et al., 2007). The processing
of the data is also much more rapid when 2.5 arc-min data are
used compared with 30 arc-s data. Data at a resolution of 2.5
arc min have been used in several previous studies that have

3 https://www.worldclim.org/

4 https://daac.ornl.gov/

estimated the potential distributions of species (Wan et al., 2021;
Xu et al., 2021; Jiang et al., 2022).

Future climate data were derived from four shared
socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585)
under the BCC-CSM2-MR model from the Coupled Model
Inter-comparison Project 6 (CMIP6) published by the IPCC on
the WorldClim website (Fick and Hijmans, 2017; Riahi et al.,
2017). Previous studies have shown that the BCC-CSM2-MR
model is robust for modeling climate change in China (Yang
et al., 2016; Shi et al., 2020). SSP126, SSP245, SSP370, and
SSP585 represent future climate scenarios with low to high
carbon emissions (Table 1; Riahi et al., 2017). Future climate
prediction was carried out in three periods: 2021–2040 (2030s),
2041–2060 (2050s), and 2061–2080 (2070s). We included the
same elevation and soil layers in both the current and future
climate models given that elevation and soil can be expected to
remain unchanged over these short time frames.

TABLE 1 Description of four shared socioeconomic pathways.

Future climate
scenarios

Social
development
description

CO2 emissions
and climate
change description

SSP126 Societies shift to more
sustainable practices,
with a shift in focus from
economic growth to
overall well-being,
investment in education,
and health; inequality
decreases.

Global CO2 emissions
are cut drastically,
reaching net zero after
2050. By the end of the
century, the global
temperature increase
stabilizes to ca. 1.8◦C.

SSP245 This is a
“middle-of-the-road”
scenario, in which
socioeconomic factors
follow their historical
trends without
significant change.
Progress in sustainability
is slow, and development
and income growth are
uneven.

CO2 emissions hover
around current levels
before starting to decline
by mid-century but do
not reach net zero by
2100. By the end of the
century, the global
temperature increases by
2.7◦C.

SSP370 Competition among
nations intensifies, and a
global focus on national
security and food
security predominates.

Emissions and
temperatures rise
steadily; by 2100, CO2

emissions roughly
double from current
levels. By the end of the
century, the average
global temperature
increases by 3.6◦C.

SSP585 This is a future to be
avoided at all costs. The
global economy grows
rapidly, but this growth is
driven by the extraction
of fossil fuels and an
energy-intensive lifestyle.

By 2050, CO2 emissions
roughly double. By the
end of the century, the
global average
temperature increases by
4.4◦C or higher.
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Because multicollinearity among environmental variables
can affect model outputs and result in an over-fitted model,
Pearson’s correlation analysis was used to examine correlations
among the environmental variables in ENMTools (Sillero, 2011;
Li et al., 2022). If the absolute value of the correlation coefficient
between two environmental variables was greater than 0.7, the
one with a lower percent contribution (according to a jackknife
test) was removed (Zeng et al., 2016; Farrell et al., 2019).

Model optimization and evaluation

Feature class (FC) combinations and regularization
multiplier (RM) settings are important parameters affecting
the predictions of MaxEnt models (Phillips and Dudik, 2008),
and default settings are typically not optimal (Muscarella et al.,
2014). We thus used the ENMeval package in R to optimize
and evaluate models, which supports more evaluation metrics
in its version 2.0 (Kass et al., 2021). Eight RMs (0.5–4 with
an interval of 0.5) and six different FC combinations (L, LQ,
H, LQH, LQHP, LQHPT, where L = linear, Q = quadratic,
H = hinge, P = product, and T = threshold) were used to
create 48 (8 RM × 6 FC) candidate models. We used random
k-fold cross-validation to verify models (Boria and Blois, 2018;
Kass et al., 2021). A recent study suggests that the value of k
in k-fold cross-validation should be the natural logarithm of
the sample number (Jung, 2018). Here, our sample number
was approximately 200; thus, k = 5. The optimal model had
a low OR10 relative to the default, and the lowest Akaike
information criterion (AICc) (Liu et al., 2017; Galante et al.,
2018).

Metrics such as the area under the receiver operating
curve (AUC), continuous Boyce index (CBI), OR10, and true
skill statistic (TSS) were used to evaluate the performance
of the model. AUC is a threshold-independent metric that
is often used to evaluate the performance of MaxEnt
models. The performance of the model was evaluated using
the following criteria: fair (0.7 < AUC < 0.8), good
(0.8 < AUC < 0.9), and excellent (0.9 < AUC < 1) (Jimenez-
Valverde, 2012; Shi et al., 2021). The CBI is also often used
to evaluate the transferability and performance of presence–
absence models; it is a reliable measure of presence-only-
based predictions (Hirzel et al., 2006). CBI ranges from –
1 to 1, and values closer to 1 indicate models with higher
consistency with the distribution of presence data (Boyce
et al., 2002). TSS ranges from –1 to 1, and TSS values
closer to 1 indicate higher prediction accuracy of the model
(Allouche et al., 2006). When TSS is greater than 0.75, model
performance is very good (Landis and Koch, 1977; Franco et al.,
2022).

MaxEnt 3.4.4 (Phillips et al., 2006) was used to model
the potential distribution of A. variabilis. We used optimized
FC and RM parameters. The settings selected were as

follows: “Create response curves,” “Do jackknife to measure
variable importance,” “Random seed,” “Write plot data,” “Write
background predictions,” “randomly sample 10,000 background
points as pseudo-absences,” “Replicated run type crossvalidate,”
“Replicates 5,” and “Output format logistic.” The rest of the
settings were default. The MaxEnt model eventually outputs an
“ASC” file in logistic output format for each grid.

Habitat suitability classification

We used ArcGIS to reclassify and visualize the ASC files.
The maximum training sensitivity plus specificity threshold
(MTSPS) was used to classify the model output results (logistic
output) into unsuitable and suitable for A. variabilis, which is
considered simple and effective (Aidoo et al., 2022). MTSPS
has been shown to be robust for selecting thresholds when
model outputs are based on presence-only data (Liu et al.,
2013). It is less affected by the occurrence:background point
ratio and species prevalence, which reduces omission errors for
low-prevalence species and misclassification errors for high-
prevalence species (Liu et al., 2016). The habitat suitability
of A. variabilis was reclassified into four categories according
to the output logistic value: unsuitable (0–MTSPS), low
suitability (MTSPS–0.4), moderate suitability (0.4–0.6), and
high suitability (0.6–1.0) (Zhang et al., 2018; Mahatara et al.,
2021).

Analysis of livestock poisoning

We compiled a data set of A. variabilis poisoning livestock
incidents by conducting a (1) literature review, (2) searching
various news outlets, and (3) conducting field studies from
2000 to 2022 (Supplementary Table 3). Livestock poisoning has
occurred in the study area for many years, and we recorded
the frequency of poisoning incidents by tallying the number
of years in which poisoning incidents have been reported. For
example, records of animal poisoning were documented in Alxa
Left Banner of Inner Mongolia in 2003, 2004, and 2005; thus,
a value of 3 was recorded in our data set for Alxa Left Banner.
For localities with accurate location descriptions, we used the
Baidu coordinate system5 to obtain latitude and longitude data,
and the logistic output of the location was extracted using the
coordinates. For records with imprecise locality descriptions
(county level and above), we used the average logistic values
over the entire area over which the poisoning incident occurred.
Habitat suitability for each poisoning incident was inferred
according to logistic output values. Finally, SPSS 20.0 was used
to analyze the correlation between habitat suitability and the
frequency of poisoning incidents.

5 http://api.map.baidu.com/lbsapi/getpoint/
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Analysis of changes in the area of
suitable habitat

We used ArcGIS and Microsoft Excel to conduct spatial data
analyses. The SDM toolbox was used to compare differences
in the area of suitable habitat of A. variabilis under current
and future climate conditions (Brown et al., 2017). The model
output results were divided into binary maps using the MTSPS
threshold (logistic output values greater than MTSPS were
assigned a value of 1, and values less than 1 were assigned a
value of 0). Changes were quantified by subtracting the current
binary map from the binary maps of each of the four future
periods. Grid values ranging from 0 to 1 indicate expansions in
the range of suitable habitat; values ranging from 1 to 0 indicate
contractions in the range of suitable habitat; and a value of 1
indicates no change in the area of suitable habitat. A value of
0 indicates that the habitat is not suitable (i.e., no occupancy).
Similarly, the centroid of the area of suitable habitat in each
period was calculated using the SDM toolbox, and the changes
in the area of suitable habitat can be visualized by comparing the
centroids among periods (Cong et al., 2020).

Results

Species occurrence records and
environmental variables

A total of 273 occurrence records of A. variabilis were
obtained through our field investigation, and 9 occurrence
records that met our quality requirements were obtained
from databases (CVH: 9; GBIF: 0). The results of the spatial
autocorrelation analysis and OR10 values of the unfiltered data
and data spatially filtered at three different distances are shown
in Table 2. Unfiltered data were spatially autocorrelated, as the
distribution of these data significantly differed from a random
distribution (p < 0.01, z > 2.58). There were no significant
differences in the distributions of the data spatially filtered at
three different distances and random distributions (p > 0.10, –
1.65 < z < 1.65). Spatial filtering reduces spatial autocorrelation
and sampling bias. We used the data that were spatially filtered
at a distance of 10 km because the OR10 was lowest for these
data. A total of 189 occurrence records were used for modeling.

TABLE 2 Spatial autocorrelation and OR10 of occurrence records that
were spatially filtered at different distances.

Filter distance Moran’s I p-value z-score OR10

Unfiltered 0.1310 0.0000 47.5329 0.1596 ± 0.0552

5 km –0.0017 0.5264 –0.6351 0.1542 ± 0.0406

10 km –0.0014 0.6175 –0.4994 0.1481 ± 0.0756

20 km –0.0009 0.7418 –0.3295 0.1911 ± 0.0457

After reducing the multicollinearity among environmental
variables, a total of 10 environmental variables (elev, bio7,
bio15, bio19, prec6, tmax2, t_oc, t_teb, t_ph, and t_tex) were
retained for modeling. Correlations among the environmental
variables used in the final model were all less than 0.7
(Supplementary Figure 1).

Model optimization and evaluation

The MaxEnt model uses all feature types by default when
there are more than 80 training samples, and the regularization
constant is 1 (FC = LQHPT, RM = 1) (Phillips et al., 2006;
Phillips and Dudik, 2008). Optimization using the ENMeval
package revealed that the AICc value of the model was lowest
(delta AICc = 0) when FC = H and RM = 0.5. The avg.AUC,
avg.CBI, and avg.TSS were higher and the avg.OR10 was lower
for the optimized model compared with the default model
(Table 3). These findings indicate that FC = H and RM = 0.5
reduced the overfitting and complexity of the MaxEnt model
and enhanced the transferability of the model. In addition,
AUC > 0.9, TSS > 0.75, and CBI was close to 1 for the optimized
model. This indicates that the performance and transferability
of the model were high. We also added the occurrence points
removed by spatially filtering that were not used for modeling
into the current suitable habitat simulation map to evaluate
their overlap with the predicted suitable area (Supplementary
Figure 2). A total of 92 of the 93 occurrence records (98.92%)
were located in suitable habitat, and one occurrence record
was located in unsuitable habitat but was close to an area with
suitable habitat. Thus, this model was sufficiently robust for
modeling the potential distribution of A. variabilis.

Key environmental variables affecting
the distribution of Astragalus variabilis

The contribution rates of 10 environmental variables are
shown in Table 4. The variables with the highest contribution
rates to the model were tmax2, bio7, and prec6, which had a
cumulative contribution rate of 64.1%. The results of jackknife
tests of variable importance are shown in Figure 3. The
environmental variable with the highest training gain when
used in isolation was tmax2, followed by t_oc and prec6; thus,
tmax2, t_oc, and prec6 were the most informative variables. The
environmental variable that decreased the gain the most when
it was omitted was also tmax2; tmax2 thus provided the most
information that was not provided by the other variables. In
sum, the key environmental factors affecting the distribution of
A. variabilis were tmax2, prec6, and t_oc.

The environmental variable response curves indicate the
degree to which each environmental variable affects the model
output result (logistic output) and thus the habitat suitability
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TABLE 3 Comparison of metrics before and after model optimization.

Model Model parameter Avg. AUC Avg. CBI Avg. OR10 Delta.AICc Avg. TSS

Default FC = LQPH, RM = 1 0.9551 ± 0.0099 0.8734 ± 0.0508 0.1539 ± 0.0533 28.9002 0.8219 ± 0.0085

Optimized FC = H, RM = 0.5 0.9582 ± 0.0075 0.9016 ± 0.0446 0.1427 ± 0.0508 0.0000 0.8227 ± 0.0127

TABLE 4 Details of environmental variables used for modeling.

Environmental
variables

Description Percent
contribution

Suitable ranges Most suitable
environmental

values

Highest habitat
suitability (logistic

value)

bio7 Annual
temperature

range

13.9% 37.47–66.46◦C 45.76◦C 0.62

bio15 Precipitation
seasonality

3.1% 30.58–111.49 100.04 0.67

bio19 Precipitation of
coldest quarter

10.1% 0–12.54 mm 4.08 mm 0.56

prec6 June total
precipitation

10.6% 2.06–37.33 mm 11.88 mm 0.66

tmax2 February
average

maximum
temperature

39.6% –2.12–5.34◦C 1.69◦C 0.66

elev Elevation 4.2% 542.64–3525.91 m 1362.65 m 0.66

t_oc Topsoil organic
carbon

0.7% 0.36–0.69% weight 0.50% weight 0.65

t_teb Topsoil total
exchangeable

bases

9.4 0–50.67 cmol/kg 38.03 cmol/kg 0.93

t_ph Topsoil pH
(H2O)

0.4 0–9.79 –log(H +) 7.85 –log(H +) 0.76

t_tex Topsoil USDA
texture

8.1 2, 3, 4, 5, 7, 9, 10, 11, 12,
13

12 0.78

FIGURE 3

The relative importance of environmental variables in determining the potential distribution of A. variabilis according to jackknife tests.
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of A. variabilis (Figure 4). The logistic value ranges from 0
to 1, and values closer to 1 indicate higher habitat suitability.
Values of the environmental variables are considered suitable for
A. variabilis when the logistic output exceeds the MTSPS. The
suitable ranges, most suitable values of environmental variables,
and highest habitat suitability values are shown in Table 4.
With the exception of t_ph and t_tex, the response curves of
all variables were unimodal or nearly unimodal; however, the
response curve for t_ph was approximately bimodal (two higher
peaks at ph = 7.85 and 8.54). The suitable topsoil USDA textures
(t_tex) included silty clay (code 2), clay (code 3), silty clay loam
(code 4), clay loam (code 5), silt loam (code 7), loam (code 9),
sandy clay loam (code 10), sandy loam (code 11), loamy sand
(code 12), and sand (code 13). Habitat suitability was highest
when the soil type was loamy sand, followed by sand, silty clay,
and clay loam.

Current suitable habitat and livestock
poisoning incidents of Astragalus
variabilis

The suitable habitat of A. variabilis under current climate
conditions is shown in Figure 5. The area of suitable habitat
was approximately 1.04 × 106 km2, which is 12.72% of the
study area. The area of low, moderate, and high suitability
habitats was 6.31 × 105, 2.88 × 105, and 1.26 × 105 km2,
which comprises approximately 7.70, 3.49, and 1.52% of the
study area, respectively. Suitable habitats were mainly observed
in Central and Western Inner Mongolia, including Alxa League,
Bayannaoer, and Ordos; the center and edge of the Tarim
Basin, around the Tianshan Mountains, the southeastern part
of Junggar Basin, Turpan Basin, Hami Basin, and the northern
part of Barkun Grassland in Xinjiang; Central and Northwest
Gansu including Jiuquan City, Zhangye City, Jinchang City,
Wuwei City, Baiyin City, and Zhongwei City; Central and
Northwest Qinghai (Haixi Mongolian Autonomous Prefecture);

and Ningxia Province. Suitable habitats were also observed in
Shaanxi, Shanxi, Hebei, Sichuan, and Xizang Provinces.

We determined the frequency of livestock poisoning
incidents caused by A. variabilis in areas varying in habitat
suitability across the study period (Table 5 and Supplementary
Table 4). The locations of livestock poisoning incidents are
marked in Figure 5. Pearson correlation analysis showed
that the frequency of poisoning was significantly positively
correlated with habitat suitability (logistic output) (Pearson
correlation coefficient = 0.96, p < 0.05).

Suitable habitat of Astragalus variabilis
under future climate conditions

The distribution of the suitable habitat of A. variabilis
under different future climate scenarios is shown in Figure 6.
To compare the distribution of suitable habitat in the future
with the current distribution of suitable habitat, we analyzed
changes in the geographical distribution of suitable habitats,
including the expansion and contraction of suitable habitats
(Figure 7) and the movement of the centroid of suitable
habitats over the study period (Figure 8). The area of suitable
habitat was predicted to be reduced to varying degrees in the
south, including the Tarim Basin, Turpan Basin, and Hami
Basin in Xinjiang; Wuwei City and Baiyin City in Gansu; and
southern Haixi Mongolian Autonomous Prefecture in Qinghai;
central Ningxia; and northern Shaanxi. The area of suitable
habitat was predicted to expand to varying degrees in the
north, including the Ili River Valley and the Junggar Basin in
Xinjiang; northern Bayannaoer, northern Baotou, and northern
Ulanqab in Inner Mongolia; and Harwusu Lake and South Gobi
Province in Mongolia. Under SSP126 and SSP245, the centroid
of suitable habitat first migrated to the northeast and then
returned to the southwest; under SSP370, the centroid migrated
to the northeast; and under SSP585, the centroid first migrated
northeast and then to the northwest. We also characterized

FIGURE 4

Logistic output of the final model of A. variabilis vs. the environmental variables used in the model.
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FIGURE 5

Distribution of the suitable habitat of A. variabilis in China under current climate conditions and the locations of livestock poisoning incidents.

changes in the proportion of habitats varying in suitability in
the study area and the average elevation in areas with suitable
habitat (Figure 9). Under SSP126, the area of suitable habitat
first increased and then decreased; under SSP245, SSP370, and
SSP585, the area of suitable habitat decreased. The average
elevation of suitable habitat generally increased under the
different climate scenarios. The relative proportions of habitats
varying in suitability are shown in Supplementary Figure 3.

Discussion

Astragalus variabilis is one of the main locoweeds that
induces significant losses to the animal husbandry industry in
northwest China. In this study, we used optimized MaxEnt
models to (1) predict the distribution of suitable habitat of
A. variabilis under current and future climate conditions;
(2) analyze the key environmental variables affecting the
distribution of A. variabilis; and (3) analyze the correlation
between the occurrence of animal poisoning and habitat
suitability for A. variabilis. The findings of this study

TABLE 5 Frequency of livestock poisoning incidents caused by
A. variabilis by the degree of habitat suitability.

Habitat suitability Logistic output interval Frequency

Unsuitable 0–0.1388 0

Low suitable 0.1388–0.4 12

Medium suitable 0.4–0.6 30

High suitable 0.6–1.0 35

provide valuable information that will aid the management of
A. variabilis.

Interpretation of experimental results

In studies aimed at predicting the area of suitable habitat
of species, only models with good performance have high
confidence. The main methods currently used for evaluating the
robustness of MaxEnt models include threshold-independent
measurement, threshold-dependent measurement, model
transfer performance, and visual evaluation (Kong et al., 2019).
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FIGURE 6

The suitable habitat of A. variabilis in China under current climate conditions.

The use of multiple evaluation metrics as opposed to a single
evaluation metric is becoming increasingly common for
evaluating the performance of SDMs (Lei et al., 2015). We
used AUC, TSS, CBI, visual evaluation, and other metrics to
comprehensively evaluate the robustness of our model, and all
of these metrics indicated that our model was reliable.

Environmental factors affect plant growth and development
and also restrict the distribution of plant species (Thuiller, 2007).
Previous studies have shown that A. variabilis is highly adaptable
to arid environments with low temperatures and barren soils
(Dong et al., 2003; Yao et al., 2013; Wang Q. H. et al., 2021). In
this study, the response curves indicated that A. variabilis is well
adapted to environments with low precipitation (bio19, prec6),
cold (tmax2), and nutrient-poor soils (t_oc, t_teb). According
to the Flora of China, A. variabilis grows on dry riverbeds or
Gobi sandy soils in desert areas ranging from 900 to 3,100 m
in elevation (Editorial Committee of Chinese Flora, C.A.O.S.,
2006). This is generally consistent with our suitable ranges
for altitude and soil type. The overall response curve of t_ph
was above the MTSPS threshold, which might stem from the
fact that the contribution rate of t_ph to the model was low;
consequently, the response curve may not consistent with actual
observations. However, this also indicated that A. variabilis is
tolerant of soil acidity and alkalinity. In addition, the response
curves of bio7 and bio15 revealed that A. variabilis is highly
tolerant of high annual mean temperature differences and

precipitation seasonality. No studies to date have evaluated the
effects of soil pH, annual mean temperature difference, and
precipitation seasonality on A. variabilis; thus, additional studies
are needed to confirm these possibilities.

Suitable habitat of A. variabilis under current climate
conditions was mainly distributed in central and western Inner
Mongolia, Ningxia, central and northwestern Gansu, central
and northwestern Qinghai, and the four basins around the
Tianshan Mountains in Xinjiang. These findings are consistent
with the known geographical distribution of A. variabilis (Zhou
et al., 2013; Guo et al., 2021). Global climate change (including
changes in temperature and precipitation patterns) has induced
major changes in the growth, morphological characteristics,
distribution, and area of global vegetation (Rosenzweig et al.,
2008). Several studies have examined the impact of climate
change on species distributions. More than half of Europe’s
1,350 plant species are expected to be vulnerable or threatened
by the 2080s due to climate change (Thuiller et al., 2005). In
recent decades, a northward expansion of various plant species
has been observed in Europe, including an increase in the
abundance of thermophilic plant species compared with 30
years ago and a marked decrease in hardy plant species, which
most likely stems from warmer temperatures (Woldearegay,
2020). In Vermont, United States, the limits of the northern
hardwood–boreal forest ecotone moved 91–115 m upslope
between 1962 and 2005 (Beckage et al., 2008). In Canada, the
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FIGURE 7

Changes in the area of suitable habitat of A. variabilis in China under different future climate conditions relative to that under current climate
conditions.

FIGURE 8

Migration of the centroid of suitable habitat of A. variabilis in China.

suitable habitats for four tree species are predicted to shift
significantly to higher latitudes and altitudes (Flower et al.,
2013). Leymus racemosus is distributed in the Junggar Basin,
Xinjiang, China. The area of suitable habitat of this species
is expected to decrease in the future, and its distribution is

expected to move northwest and to higher altitudes (Zhang R.
et al., 2022). A decrease in suitable habitat in China over the
next 80 years and a northward shift in the area of suitable habitat
have also been predicted for Astragali radix, a plant distributed
in arid and semi-arid areas of China and with similar growth
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FIGURE 9

Changes in the relative proportions and average elevation of suitable habitat of A. variabilis in China.

characteristics to A. variabilis (Peng and Guo, 2017). Our results
show that the suitable habitat of A. variabilis will move to
high latitudes and high altitudes under various future climate
scenarios. This is consistent with previous research suggesting
that the distributions of most species will shift to higher latitudes
and elevations as global warming intensifies (Lenoir et al.,
2008). Temperature is the most important environmental factor
affecting the distribution of A. variabilis (Figure 3 and Table 4).
Under future global warming, the distribution of A. variabilis
is predicted to migrate to high latitudes and high altitudes
because the temperatures in these regions are lower compared
with regions at low latitude and low alitutude. The area of
suitable habitat of A. variabilis is predicted to decrease under all
scenarios with the exception of SSP126. This might stem from
variation in the magnitude of climate change under different SSP
scenarios. Carbon emissions are lowest under SSP126 among
all scenarios, and the magnitude of change in precipitation
patterns was relatively insignificant. The increase in temperature
and precipitation in northwest China due to climate change
(Wang C. H. et al., 2021) likely explains the decrease in suitable
habitat, as A. variabilis prefers dry environments and cooler
temperatures. The reduction in the area of suitable habitat for
A. variabilis could be a benefit to the livestock industry, as this
would result in fewer livestock poisoning incidents. However,
this would only provide a benefit if other suitable forages could
replace A. variabilis in areas where it is expected to disappear.
Indeed, an absence of ecologically equivalent species to replace
A. variabilis in such areas might exacerbate the desertification of
desert steppe.

Practical implications

Locoweed is one of the main poisonous weeds impeding
the development of the animal husbandry industry, especially

in developing countries, as livestock poisoning incidents have
been frequently reported in recent years (Cook et al., 2017;
Martinez et al., 2019; Reis et al., 2019). This might stem at
least in part from the lack of investment by local governments
in the control of poisonous weeds. The US livestock industry
lost hundreds of millions of dollars to livestock poisoning
caused by poisonous weeds in the 1980s (Panter et al., 2007).
Subsequently, the United States government invested heavily
in campaigns aimed at the control of poisonous weeds and
established the Institute of Poisonous Plants, which specializes
in the study of poisonous weed species in natural grasslands,
assessment of toxic disasters, and research on technology for
the diagnosis and control of poisoning diseases (Welch et al.,
2012; Fu et al., 2019). As a consequence of these efforts, there
are now few reports of livestock poisoning incidents in the
United States. For countries with less capital for investment,
controlling high-risk areas could be a cost-effective approach.
Historical records and field investigations are the only tools
available in China for the identification of priority areas for
focused control efforts. MaxEnt models have been widely used
in recent years for rare species requiring protection (Cao
et al., 2020), the control of pests and diseases (Wakie et al.,
2020), and the control of invasive species (Herrando-Moraira
et al., 2020). These models, which can be developed using
freely available software, require only occurrence records and
environmental data to make predictions. This software is
relatively user-friendly. Recently, the habitat suitability output
of the MaxEnt model was confirmed to be related to the
alkaloid content in medicinal plants, and this information
can be used to enhance the quality of medicinal plants (Li
et al., 2020). We hoped to use the MaxEnt model to prevent
livestock poisoning incidents caused by A. variabilis. This
hypothesis predicts a correlation between animal poisoning
and habitat suitability. The results of the correlation analysis
supported this hypothesis, as the frequency of livestock
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poisoning incidents was higher in areas with higher habitat
suitability.

Many studies have investigated approaches to prevent the
poisoning of livestock by A. variabilis. For example, physical
and chemical approaches can be used to eliminate A. variabilis;
however, these control methods can have deleterious effects
on the environment (Yao et al., 2013). Biological methods that
involve facilitating the colonization of other plants to replace
A. variabilis have also been explored; however, this approach
is difficult to implement, and it can often take a long time
before positive effects are observed (Ralphs et al., 2007). The
administration of preventive medicine for livestock in high-risk
areas is a simple and effective strategy (Zhao et al., 2010). We
used the next 20 years (2030s) as an example for discussing
the prevention and control of livestock poisoning. Changes in
the area of suitable habitat of A. variabilis were observed in
the 2030s under all four SSP scenarios, as indicated by the
green marked boxes in Figures 6, 7. The least favorable scenario
was SSP124; under this scenario, suitable habitats expanded
greatly in the Jungar Basin in Xinjiang and Bayannaoer, Baotou,
and Ulanqab in Inner Mongolia. Highly suitable habitats were
widely distributed in the Jungar Basin of Xinjiang and Alxa
Left Banner and Bayannaoer City in Inner Mongolia. More
preventive measures will need to be implemented in the pastoral
areas of the Jungar Basin in Xinjiang and Bayannaoer City in
Inner Mongolia in the 2030s. The prevention and control of
livestock poisoning has always been a major focus in the Alxa
Zuoqi area of Inner Mongolia. We propose that a locoweed
detoxification site be established in the Alxa Zuoqi area because
this area has long had abundant Astragalus resources, and
pasture is often lacking due to drought. A. variabilis can be
harvested for detoxification and used as feed, whereas other
drought-tolerant plants can be artificially planted to improve the
grassland environment.

Limitations and prospects

MaxEnt models can predict the suitable distribution of
species under future climate change scenarios; it is thus an
important tool for simulating the distribution of suitable
habitats of species (Zhao et al., 2021). Although MaxEnt
models have high accuracy, this does not mean that the
predicted suitable area is always completely consistent with the
actual distribution of species (Gebrewahid et al., 2020). The
distribution of poisonous weeds is not only affected by climate,
topography, and soil factors but also by other factors such as
reproduction and pollination type, interactions between species,
social development, and human activities. With our current
technology, some of these factors are difficult to quantify; others
cannot be forecasted and thus incorporated into models. In
addition, predictions of future events are always vulnerable to
some degree of uncertainty, and the error in predictions is
related to how far in the future predictions are made. Changes

in suitable habitat merit increased attention in habitat modeling
studies. Despite their many assumptions and uncertainties,
SDMs are a key tool for predicting the area of suitable habitat
of species under future conditions (Wiens et al., 2009).

In future studies, a greater number of environmental
factors lacking future data, such as the normalized vegetation
index (NDVI), solar radiation, wind speed, and water vapor
pressure, can be used to build models to predict the current
distribution of suitable habitat and evaluate the consistency
between the predicted and actual distribution of species. How
the distributions of other locoweed species in natural grasslands
might be altered under future climate change remains unclear.
The similarity in the ecological niches of these locoweed plants
also requires clarification.

Conclusion

Our optimized MaxEnt model made robust predictions of
the suitable habitat of A. variabilis. The average maximum
temperature of February (tmax 2), precipitation of June (prec
6), and topsoil organic carbon (t_oc) were the most important
environmental variables affecting the area of suitable habitat,
which is consistent with its cold resistance, drought tolerance,
and tolerance for barren soils. The area of suitable habitat of
A. variabilis was predicted to decrease under all scenarios with
the exception of SSP126. Under the four SSP climate scenarios,
the suitable habitat of A. variabilis is predicted to shift to
higher latitudes and altitudes. Our findings have implications
for the prevention and control of poisonous plants as well as the
maintenance of the ecological balance of grassland ecosystems.
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