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The plant microbiome is an increasingly intensive research area, with significance
in agriculture, general plant health, and production of bioactive natural products.
Correlations between the fungal endophytic communities and plant chemistry can
provide insight into these interactions, and suggest key contributors on both the
chemical and fungal side. In this study, roots of various horseradish (Armoracia
rusticana) accessions grown under the same conditions were sampled in two
consecutive years and chemically characterized using a quality controlled, untargeted
metabolomics approach by LC-ESI-MS/MS. Sinigrin, gluconasturtiin, glucoiberin,
and glucobrassicin were also quantified. Thereafter, a subset of roots from eight
accessions (n = 64) with considerable chemical variability was assessed for their
endophytic fungal community, using an ITS2 amplicon-based metagenomic approach
using a custom primer with high coverage on fungi, but no amplification of
host internal transcribed spacer (ITS). A set of 335 chemical features, including
putatively identified flavonoids, phospholipids, peptides, amino acid derivatives,
indolic phytoalexins, a glucosinolate, and a glucosinolate downstream product was
detected. Major taxa in horseradish roots belonged to Cantharellales, Glomerellales,
Hypocreales, Pleosporales, Saccharomycetales, and Sordariales. Most abundant
genera included typical endophytes such as Plectosphaerella, Thanatephorus,
Podospora, Monosporascus, Exophiala, and Setophoma. A surprising dominance of
single taxa was observed for many samples. In summary, 35.23% of reads of the
plant endophytic fungal microbiome correlated with changes in the plant metabolome.
While the concentration of flavonoid kaempferol glycosides positively correlated with the
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abundance of many fungal strains, many compounds showed negative correlations with
fungi including indolic phytoalexins, a putative glucosinolate but not major glucosinolates
and a glutathione isothiocyanate adduct. The latter is likely an in vivo glucosinolate
decomposition product important in fungal arrest. Our results show the potency of
the untargeted metabolomics approach in deciphering plant–microbe interactions and
depicts a complex array of various metabolite classes in shaping the endophytic
fungal community.

Keywords: plant holobiont, fungal endophytes, glucosinolate decomposition, flavonoid glycosides, tryptophan
derivatives

INTRODUCTION

It was recognized long ago that organic compounds of plant
metabolism serve as nutrients for microorganisms and that plants
defend themselves against pathogenic microbes by producing
antimicrobial specialized products. Recent advancements show
that this situation is much more complex in situ (Pang et al.,
2021). Namely, evolutionary selection results in the building
of flexible meta-organisms in which the plant actively feeds
its microbiome (the consortia of various microbes associated
with the plant) and shapes its composition by exudates to
prevent the assembly of a pathogenic microbial community,
while the microbiome members strive to take advantage of
the plant compounds and nutrients in strong competition with
other candidates and defend against plant antimicrobials at the
same time (Sasse et al., 2018; Pang et al., 2021). This results
in a dynamically changing, interacting plant metabolome and
plant microbiome. This interaction was shown to occur with
both primary (e.g., the polysaccharide mucilages and various
organic acids) and specialized plant metabolites concerning
the rhizoplane microbiome. The border cells with more active
specialized and less active primary metabolism suggest the
importance of specialized metabolites (Sasse et al., 2018), but
data on the exact proportion of the contribution of various
compounds are limited. While most of the scientific data is
still exclusively gathered on bacterial interactions, there is some
evidence about the same phenomena in the fungal kingdom.

The interaction between endophytic fungi and the plant
metabolome can take the form of one of two main effects.
First, a fungal challenge typically results in elicitation—the
induction of biosynthesis of specialized metabolites. Several
studies of this approach focus on specialized metabolite
production in tissue cultures, which is triggered to increase
after mimicking fungal challenges with fungal cell wall extracts
(Narayani and Srivastava, 2017). In addition, various models
of plant pathogenesis also showed induction of defensive
components: lots of studies have reported increased production
of various subclasses of glucosinolates (GSLs) in Brassicaceae
plants after fungal challenge (Ishimoto et al., 2004; Robin
et al., 2017; Madloo et al., 2019). The results of such studies
are excellent sources of information on key pathogens of
interest and possible defense mechanisms but cannot be
extrapolated to situations when the plants are challenged
by a mixture of fungal strains: even dual combinations

of fungi can have dramatically different effects on plants
(Hori et al., 2021). One also cannot estimate the relative
importance of metabolite classes with studies focusing on a
single compound class.

The chemical complexity of the same issue is well exemplified
by an NMR metabolomics study which showed an increase
in concentrations of various compound classes, including
phenylpropanoids, flavonoids and GSLs after fungal challenge
(Abdel-Farid et al., 2009). What is more, most studies focus on
the specialized metabolites of plants, but this does not mean
that they are the sole contributors to defense. For example, in
a 1H-NMR study on Combretum lanceolatum (Combretaceae),
colonization by an endophytic fungus significantly changed the
primary metabolism of the plant. Induced compounds included
threonine, malic acid, and N-acetyl-mannosamine, fold-changes
were in the 290- to 740-fold range (Lacerda et al., 2021).
The authors concluded that these compounds might serve as
precursors of special metabolites involved in plant self-defense.

Challenges and colonization by non-pathogenic endophytic
fungi also frequently result in an increase in the biosynthesis of
specialized metabolites in plant tissue cultures and plants under
field conditions as well. Examples include labdane diterpenes
of Coleus forskohlii after colonization with Fusarium redolens,
Phialemoniopsis cornearis, and Macrophomina pseudophaseolina
(Mastan et al., 2019). The same plant can produce different
specialized metabolites in different locations, some of which
are due to the microbes related to different sites of residence.
Microorganisms that adapt to specific locations and are
associated with certain plants may have unique effects on host
plants, like specialized metabolism (Pang et al., 2021).

Studies of another approach reported the selection and
recruitment of various microbes by plants using metabolites.
Results of these studies suggest that specialized metabolites
are the significant factors driving microbes toward plants, as
microbes can recognize their hosts via root exudates, e.g.,
strigolactones and flavonoids serve as signals for arbuscular
mycorrhizal symbioses (Holmer et al., 2017). The importance
of specialized metabolites is also apparent in the microbial
composition of the host plant: studies on bacteria and fungi have
shown that alterations in communities can be induced by several
compound classes, including benzoxazinoids (Hu et al., 2018),
coumarins (Voges et al., 2019), flavonoids (Szoboszlay et al.,
2016), triterpenes (Huang et al., 2019) or GSL decomposition
products (Plaszkó et al., 2021). However, data on complete
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plant metabolomes (which enable studying rank of contribution
strength) are quite limited.

The amount of data on communities of endophytic fungi is
also limited compared to that on soil and rhizosphere fungi or
endophytic bacteria, though endophytic fungi are ubiquitous in
plants (Rodriguez et al., 2009), they also likely show functions
of well-studied mycorrhizae in non-mycorrhizal species (Hiruma
et al., 2018), such as most Brassicaceae (Pongrac et al., 2013). Root
endophytic communities are logically assembled from the highly
variable soil communities. Although the rhizosphere is rich in
carbon sources compared to bulk soil, only a low percentage of
the soil microbes are abundant around plants (DeAngelis et al.,
2009) and only a subset of these fungi have the ability to colonize
the plants’ endosphere (Sasse et al., 2018). This phenomenon
indicates that microbes have to cope with a different chemical
milieu around the rhizosphere, which leads to stronger selection
pressure. It seems that endophytic fungi are more likely to
develop mechanisms to neutralize or tolerate the specialized
metabolome of the host plant (Szűcs et al., 2018).

Data on the assembly of the endophytic community as a
function of plant chemistry are warranted. As most Brassicaceae
plants have no mycorrhizae (Pongrac et al., 2013), they are good
candidates to study the assembly of the endophytic community.
The very high amount of GSLs in horseradish (Armoracia
rusticana) (Agneta et al., 2014; Gonda et al., 2016) makes it an
excellent model to study correlations between abundances of
chemical and endophytic features.

The aim of the current study was to assess the interaction
between the fungal endophyte composition and the metabolome,
using horseradish as a model plant. To obtain these data, a variety
of different horseradish accessions was raised under identical
conditions for two consecutive years to generate a chemically
variable set of roots from the same soil.

MATERIALS AND METHODS

Horseradish Accessions Cultivation and
Sampling
Different horseradish (A. rusticana G.Gaertn., B.Mey. & Scherb.)
accessions were grown at an agricultural site in Hungary (Site
1, 47◦39′09.8′′N 21◦42′30.5′′E) for maintenance of cultivars,
with the same agricultural methodology described in a previous
publication (Papp et al., 2018). Samples from 13 different
accessions (n ≥ 4 for each accession each year) and bulk soil
samples (n = 4 each year) were collected in November 2018
and 2019. Meteorological data obtained by interpolation of three
official weather stations’ data, nearest to this site can be found
in Supplementary Table 1. As controls, carrots (Daucus carota
L.) from the same site and additional horseradish roots from
a different site with different soil types (Site 2, 47◦32′02.7′′N
21◦49′42.6′′E) were also collected in November of 2019. The
leaves of the carrot and horseradish plants were removed and
the roots were placed in sterile plastic bags. The roots were
transferred to our department for further processing. The roots
were washed with tap water to remove any soil residues, then
immersed for 30 s in 96% ethanol. Subsequently, the roots were

immersed for 10 min in NaOCl solution containing 2.5% active
chlorine and 0.1% Tween 20. The exact NaOCl concentration
was determined by titrimetry. After the surface sterilization, the
samples were washed with autoclaved type II water 5 times in
sterile plastic bags. The sterility of the washing fluids were tested
by a similar methodology described in our previous publication
(Szűcs et al., 2018). A representative vertical piece (∼1/2 to 1/16
part, depending on root size) of the roots was cut out and cut
into pieces approximately 1 × 1 × 1 cm in size, with a sterile
steel knife under a laminar airflow. The samples (∼10 g) were
put in aseptic plastic specimen jars, frozen in liquid nitrogen and
stored in −80◦C until further processing. The bulk soil samples
were collected in specimen jars, frozen in liquid N2 and stored in
−80◦C.

Sample Preparation and Cryogenic
Grinding
The frozen plant materials were loaded into autoclaved 50 mL
stainless steel grinding jars (Retsch GmbH, Haan, Germany)
pre-cooled in liquid N2. The loaded and assembled jars were
immersed in LN2 again to avoid thawing of the plant material.
Samples were homogenized in a Retsch Mixer Mill MM 400, at
30 s−1 frequency for 45–90 s using a 20 mm stainless steel ball.
Homogenized samples were lyophilized prior to genomic DNA
and metabolome extractions and kept in exsiccators over silica
adsorbent at room temperature.

Phytochemical Analysis
A total of 25 mg of the lyophilized horseradish material was
accurately weighed and extracted at 4◦C for 5 min with 1 mL
75% aqueous methanol supplemented with 0.1% formic acid, in
a vortex disruptor. In preliminary examinations, this extractant
showed stability of the extract for 48 h, as well as high
metabolite coverage. Following centrifugation at 4◦C, 24,000 g for
3 min, extracts were diluted 10- or 200-fold with the extraction
solvent for untargeted metabolomics and quantification of
GSLs, respectively. The extracts were filtered (PTFE Syringe
Filter, 0.22 µm pore size, Filter-Bio, Nantong, China) before
instrumental analysis. From accessions that had ≥4 replicates
for both years (n = 13), 10 accessions (n = 10 × 2 × 4) were
selected based on preliminary chemical analysis and subjected to
untargeted metabolomics.

Instrumentation and LC-MS Measuring Parameters
For LC-MS measurements, a UHPLC system (Dionex
Ultimate 3000RS) coupled to a Thermo Q Exactive
Orbitrap mass spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, United States) with an electrospray ionization
source (ESI) was used.

For untargeted metabolomics, the separation column was a
Kinetex Polar C18 100 × 3 mm × 2.6 µm, 100 Å column;
thermostated to operate at 25◦C. A gradient elution method
was used, using mixtures of solvent A (water + 0.1% formic
acid) and solvent B (MeCN + 0.1% formic acid) at a flow
rate of 0.2 mL min−1, as follows: 0–2 min, 0% B; 2–14 min,
0–100% B; 14–15 min, 100% B; 15–16 min, 100–0% B; and
16–25 min, 0% B. From all samples, 1 µL was injected. The
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Orbitrap was operated in full MS mode at m/z range 125–800
and FWHM resolution 35,000, with polarity switching enabled
during all quantitative measurements. The capillary temperature
was 320◦C, the maximum injection time was 100 ms, and
sheath gas and aux flow rates were 32 and 7 arb, respectively.
Spray voltage was 3.8 and 4.0 kV for negative and positive
ion modes, respectively. For quantitative evaluation of the main
GSLs (sinigrin, gluconasturtiin, glucoiberin, and glucobrassicin),
the method described in (Szűcs et al., 2018) was used without
modifications, using the same instrument.

MS/MS of Quality Control-Passed Features
Targeted fragmentation of all features of interest was
accomplished with similar parameters, except that the mass
range was reduced to include the ions of the inclusion list
only and that positive and negative ion mode data were
separately recorded. The list of candidate features was prepared
from features that passed metabolomics quality control (QC)
(see section “False Discovery Rate Adjustments”). The list of
candidates was split into inclusion lists so that at most 5 co-
eluting features were included in a single list, resulting in good
coverage of all list members around their peak tops. Depending
on the inclusion list overlaps, the top 2–5 features were selected
for fragmentation at 30 normalized collision energy (NCE) in a
rotation scheme (loop count = 5, topN = 5). The maximum ion
collection time was set at 250 ms.

Peak Detection
Raw instrument files were converted into mzXML and processed
using XCMSOnline 2.7.2 (XCMS 1.47.3) (Gowda et al., 2014).
The feature detection method was developed from the default
settings suggested for Orbitrap default, with some modifications.
The detailed list of parameters is available as a supplementary in
Supplementary Table 2. For quantitative evaluation of the main
GSLs, four-point calibration curves were used for all GSLs to be
in the linear range of calibration (Szűcs et al., 2018). In this case,
a targeted peak detection was conducted in mzMine 2.53 (Pluskal
et al., 2010). Parameters are available in Supplementary Table 3.

Metabolomics Quality Control, Performance
Assessment, and Adjustments
Quality Control Samples for Untargeted Metabolomics
Metabolomics QC samples were prepared according to the “long-
term reference samples” approach (Dudzik et al., 2018; Evans
et al., 2020) by mixing equal volumes of samples from each
treatment with the expectation to cover the chemical variability.
This meant mixing a concentrated sample from each accession
from Site 1 in 2018 (n = 23) and a concentrated sample from the
roots of all sampling points of Site 2 in 2019 (n = 13). A 50 mL QC
mixture was separated into aliquots and stored under LN2 until
use. For each sequence, 2 mL of QC sample was allowed to thaw
and used to generate the QC sample set for the measurement
sequence by 10-fold dilution.

Run Order Randomization and Measurement Sequence
Design
After a thorough wash, the run LC-MS sequences began with a
solvent blank (Evans et al., 2020), followed by two samples of QC

samples, a 3-point QC linearity sample set (25-, 10-, and 5-fold
dilutions), a four-to-six sample set of QC samples and blocks of
real samples with QCs in every sixth or seventh injection. Real
samples were injected in a randomized order for all applications
(Evans et al., 2020). The leading QC block enables equilibration
with the column presumably by equilibrating with active sites,
stabilizes retention times, and hence prevents the need to discard
the first few injections (Dudzik et al., 2018).

Feature Acceptance Criteria
After discarding isotope and adduct features, the integrated
values from QCs were used to filter features so that only those
are kept that could be measured with sufficient linearity and
precision. Features with a relative standard deviation (SD/mean)
above the cut-off threshold of 30% were discarded from further
analysis (Dunn et al., 2011). Later, the data were also corrected for
minor deviations in sensitivity by a curve-fitting adjustment as
the final step, as explained in section “Adjustments to Sensitivity
Drifts.” An additional, less widely applied filter was also utilized
to ensure a strong linear relationship between signals and the
concentrations for the examined features. This was done by
evaluating the linearity of the response between the concentration
(the inverse of the dilution) and the abundance by Pearson
correlation for all features that passed the former RSD filter.
For this purpose, a QC linearity sample set (serial dilution) and
a blank were used. This approach keeps only those features
that respond linearly within the range of dilution (Broadhurst
et al., 2018). The most concentrated QC sample is twofold more
concentrated than that of the real samples. Only features with
R2 > 0.8 were kept for further analysis. Note that this step
also discards features that are present in significant amounts in
the blank sample.

Adjustments to Sensitivity Drifts
Finally, a low-order non-linear locally estimated smoothing
(LOESS) function was fitted to data from QCs for all features
separately, according to Dunn et al. (2011). The assumed
theoretical sensitivities between known values (QCs) were
calculated by the fitted curve for each metabolite separately,
and the feature intensities of real samples were corrected with
these values. Essentially, this expresses all abundances as fold-
changes where the reference (1.00) is the feature abundance in
a pooled QC sample, enabling the merge of sequences measured
months apart. The amount of extracted dry weight was corrected
after this step.

Identification and Putative Compound Class
Annotation of Unknown Compounds
MS2 spectra were harvested from raw measurement files with
the R package CluMSID (Depke et al., 2019). For each
feature, the 10 most abundant MS2 spectra were used to
generate a consensus spectrum, which was exported from R and
subsequently imported into SIRIUS 4.9.9 (Dührkop et al., 2019)
for annotation. The CSI:FingerID and CANOPUS algorithms of
SIRIUS (Dührkop et al., 2015, 2021; Djoumbou Feunang et al.,
2016) were thereafter used to generate suggested structures and
Classyfire hierarchical classes of organic compounds respectively
(Djoumbou Feunang et al., 2016; Dührkop et al., 2021) for each
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feature separately. Sirius suggestions were manually evaluated by
literature data to reach Metabolomic Standards Initiative (MSI)
level 2 of identification.

Metagenomic Analysis of the Fungal
Communities
DNA Extraction
Eight accessions covering the chemical variability of the
wider dataset, with 2 years × 4 replicates of each accession
(n = 8 × 2 × 4) were selected for evaluation of their fungal
endophytic communities. These accessions were selected to cover
most of the range of the PCs of the chemical space of the samples.

Genomic DNA extracts were prepared with E.Z.N.A. Plant
DNA DS Mini Kit (Omega Bio-Tek Inc., Norcross, GA,
United States) and E.Z.N.A. Soil DNA Kit (Omega Bio-Tek
Inc.) according to the manufacturer’s instructions, using∼10 mg
lyophilized plant material or ∼100 mg soil sample respectively.
The DNA extraction protocol on empty microcentrifuge tubes
and specimen jars was also carried out with both the plant
and soil extraction kits for negative controls. An equimolar
mixture of all horseradish DNA extract was also prepared as
an average sample, similar to that used in QC of metabolomics,
for the assessment of sequencing bias between identical samples.
The DNA concentration of the extracts was quantified using
a Nabi UV/Vis Nano Spectrophotometer (MicroDigital Co.,
Seongnam, South Korea).

Control of Universal Fungal Internal Transcribed
Spacer Barcode Primers for Horseradish
Already available internal transcribed spacer (ITS) barcode
primers (Toju et al., 2012) were shown to be suitable for testing
fungal communities from different plant samples (Toju et al.,
2019). To identify fungi from horseradish, we had to verify
the extent to which the ITS region of the horseradish plant is
amplified with these primers. As described in that publication,
we amplified the entire ITS region of a horseradish clone using
ITS1-F_KYO2 (Toju et al., 2012) and ITS4 (White et al., 1990),
the ITS1 region is represented by ITS1-F_KYO2 and ITS2_KYO2
(Toju et al., 2012) primers, and the ITS2 region with ITS3_KYO2
(Toju et al., 2012) and ITS4 primers.

Primer Design and Evaluation of Performance
To have a specific primer pair that does not bind to the
ITS2 region of the horseradish plant, but is specific to as
many Ascomycota, Basidiomycota and “non-Dikarya” taxa as
possible, we designed a new forward primer to complement
the existing ITS4_KYO3 (5′–CTB TTV CCK CTT CAC TCG–
3′) (Toju et al., 2012) reverse primer. An alignment of ITS
sequences from previously described and studied fungal taxa
from horseradish (e.g., Fusarium, Macrophomina, Phoma, etc.)
(Szűcs et al., 2018; Plaszkó et al., 2020) and relevant plants (e.g.,
Armoracia, Daucus, etc.) was prepared with DECIPHER (Wright,
2020), and the consensus sequences were manually checked for
prominent primer candidates. Primers with meaningful melting
temperatures were considered for further in silico analyses. The
forward primers designed by us and ITS4_KYO3 reverse primers
were tested on horseradish clones and various fungal templates

in vitro using the PCR protocol described by Toju et al. (2012),
with 50◦C annealing temperature. According to the analyses, the
best performing candidate was ITS3_NOHR (5′–TTT CAA CAA
CGG ATC TCT T–3′). The performance of the primer was also
assessed with a more comprehensive in silico analysis using the
UNITE 8.3 fungi ITS database (Abarenkov et al., 2021a), and a
preliminary sequencing experiment, the results can be found in
Supplementary Table 4 and section “Amplicon Sequencing.”

Library Preparation and Sequencing
For both the plant, soil and “QC” samples the ITS2 region
was amplified, with primers ITS3_NOHR and ITS4_KYO3.
The primer pairs contained the appropriate Illumina adapter
sequences: 5′–TCG TCG GCA GCG TCA GAT GTG TAT
AAG AGA CAG–3′ (forward), 5′–GTC TCG TGG GCT CGG
AGA TGT GTA TAA GAG ACA G–3′ (reverse). Primer
oligonucleotides were synthesized by Generi Biotech (Hradec
Králové, Czechia). PCR reaction mixture for one sample
contained the following: 5 µL genomic DNA (5 ng µL−1

concentration), 5-5 µL of each primer (1 µM), and 12.5 µL 2X
KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland). The
DNA was amplified using a ProFlex PCR System (Thermo Fisher
Scientific Inc.), and the following thermal program: denaturation
at 95◦C for 10 min, 35 amplification cycles (94◦C for 20 s, 50◦C
for 30 sec, and 72◦C for 20 s) and a final extension step at 72◦C
for 7 min. The second, indexing PCR reaction was prepared
using Nextera XT Index Primer 1 (Illumina Inc., San Diego, CA,
United States) and the following thermal program: denaturation
at 95◦C for 3 min, 8 amplification cycles (95◦C for 30 s, 55◦C
for 30 s, and 72◦C for 30 s) and finally 72◦C for 5 min. PCR
clean-up after both reactions were performed using AMPure XP
beads (Beckman Coulter Inc., Brea, CA, United States). The DNA
quantity of the libraries was assessed using a Qubit Fluorometer
(Thermo Fisher Scientific Inc.), and quality analysis was carried
out by BioAnalyzer DNA 1000 Chip (Agilent Technologies Inc.,
Santa Clara, CA, United States). An equimolar mixture of the
libraries was sequenced with an Illumina MiSeq instrument
using a MiSeq Reagent Kit v3 (600 cycles, 2 × 300 bp paired-
end reads, Illumina) or a Miseq Reagent Nano v2 (150 cycles,
150 bp paired-end reads, Illumina) for the primer performance
tests. Library preparation and sequencing were performed by
Genomic Medicine and Bioinformatics Core Facility, University
of Debrecen, Hungary. As most of the laboratory materials
and surfaces may be contaminated with DNA and even the
DNA purification kits have a unique microbiome or “kitome”
(Hornung et al., 2019), we included 2-2 process controls using
the plant DNA extraction kit and the soil DNA extraction kit.

Analysis of Metagenomic Data
Sequences were demultiplexed and FASTQ files were generated
using the Illumina BaseSpace Sequence Hub service. Further
sequence analyses were carried out using the DADA2 (Callahan
et al., 2016) package in R (R Core Team, 2021). After optimization
of the values, the first 19, 18 and the last 15, 60 nucleotides
were trimmed from the forward and reverse reads (respectively)
with the filterAndTrim function to remove primers and low-
quality tails. Reads with more than 2 expected errors or
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containing ambiguous N nucleotides were removed during the
filtering step (filterAndTrim parameters: maxEE = 2, maxN = 0,
trimLeft = c(19, 18), trimRight = c(15, 60), truncQ = 2). After
filtering, error models were created with randomized sampling
(randomize = TRUE), then reads were dereplicated and DADA2
sample inference was performed using the default parameters.
The filtered, denoised paired-end reads were merged if there
was a minimum of 20 nucleotide overlap. The forward reads of
the unmergeable pairs were also kept for downstream analysis,
as some fungal genera have longer ITS2 sequences (Pauvert
et al., 2019). As proposed by the authors of DADA2, we worked
with ASVs rather than OTUs as (1) it is more beneficial if
the merging of sequencing data of different sequencing runs is
considered (Callahan et al., 2017) and (2) it is easier to distinguish
unique contaminant sequences identified in the control samples.
Discarding every single ASV detected in different negative
controls would not be preferable, as it might result in the
removal of ecologically valid sequences, making the biological
interpretation harder (Nguyen et al., 2015). Therefore, only ASVs
that were present in negative controls at a minimum of 0.5%,
with at least 25 reads were discarded. Taxonomy assignment
was carried out by the Naive Bayesian classifier (Wang et al.,
2007) implemented in DADA2, using the UNITE 8.3 fungi
ITS database (Abarenkov et al., 2021a). Taxonomy assignments
were filtered by an 80% bootstrap confidence, and ASVs only
assigned to the Kingdom level were discarded from further
analysis. ASVs present in negative controls at 0.5% of all reads
and >25 reads were considered artifacts and also excluded from
further work. Taxonomic identifications in certain cases were
validated by BLASTn searches in the RefSeq database using an
E-value = 1E−70 threshold. Associated taxonomic levels for
the RefSeq data were obtained from the Taxonomy Browser of
the NCBI database.

Structural Diversity Measures of Metagenomic Data
Alpha and beta diversity of the samples was characterized
and compared concerning the “type” set (Site1 horseradish,
Site2 horseradish, Site1 carrot, and Site1 soil samples) and
the “accession” set (horseradish samples from Site1). The
taxonomic richness of the samples was estimated with the
ACE index. The diversity of the samples was measured with
Shannon, Dominance (1-Simpson) and Buzas and Gibson’s
evenness indices. Kruskal–Wallis tests were used for the statistical
comparisons of the taxonomic richness and diversity of the
above-mentioned groups. Beta diversity was estimated with
Bray–Curtis similarity, Whittaker diversity, and unweighted
UniFrac distance. Principal Coordinates Analysis (PCoA) based
on the similarities or distances was performed to visualize
beta diversity. One-way analysis of similarity (ANOSIM) was
performed to determine the differences within sets and between
sets. In the cases of significantly dissimilar sets, SIMPER (Clarke,
1993) was used to determine the taxonomic units responsible
for the dissimilarity. All diversity analyses were executed in
Past v4.09 (Hammer et al., 2001) except the unweighted
UniFrac analysis.

Since the occurrences of phylogenetically diverse species
were expected in the samples, random sample sets of 200

ASVs were chosen to test the reliability of the tree building.
A phylogenetic workflow consisting of MUSCLE (Edgar, 2004)
for alignments, GBLOCKS (Castresana, 2000) for the curation
of the alignments and PhyML (Guindon and Gascuel, 2003) for
the phylogenies was constructed using the Phylogeny.fr platform
(Dereeper et al., 2008) for preliminary tests. Substitution model
selection was done by SMS (Lefort et al., 2017). According to
Akaike Information Criterion (18516, 25156) the best model
was GTR + G + I. Reliability of the created trees was estimated
with aLRT (SH-like) (Anisimova and Gascuel, 2006). Unweighted
UniFrac analysis was performed in R (R Core Team, 2021) with
phyloseq (McMurdie and Holmes, 2013) using a GTR + G + I
substitution model for the phylogenetic tree constructed with
phangorn (Schliep, 2011) based on an alignment made with the
algorithm provided by DECIPHER (Wright, 2020).

Data-Mining for Correlations Between
Metagenomic and Metabolomic Features
All additional calculations were implemented in R 4.1 (R
Core Team, 2021). For downstream analysis, the ASVs with
identical taxonomic assignments were pooled and the number
of ASVs within each pool was not dealt with later on.
Data were evaluated at four levels: abundances pooled at
phylum, order and genus levels as well as diversity indices
(previously calculated from raw non-pooled ASVs). When the
identification was not available at the genus level, the deepest
reliable identification level was used instead, resulting in mixed
identification levels for each pooled ASV at order and genus
examination levels. Correlation analysis of metagenomic and
metabolomic features was only examined within the “accessions”
dataset (horseradish accessions from Site 1, n = 8× 2× 4), while
community differences among sample groups was examined
using both the “accession” dataset and the “type” dataset (also
containing Site 2 horseradish samples, carrot samples and soil
samples). Site 2 horseradish samples were included to show
that we are not doing any examination on a very distinct
microbial community.

To be able to carry out the log-ratio transformation in order to
remove the compositional nature of the obtained dataset (Gloor
et al., 2017), inputting of zeroes was optimized and carried out.
The percentage of zeroes was 71.7, 79.3, and 90.8% in the raw data
at levels phylum, order, and genus, respectively. For comparison
of sample types, and accessions, different inputting parameters
were used, summarized in Supplementary Table 5. Optimal
parameters were chosen to result in the highest retention of reads,
and the highest retention of unique features, assuming the ratio
of zeroes is smaller than 0.5. Thereafter, a Bayesian-multiplicative
replacement of count zeroes was carried out with clr function
of the zCompositions package (Palarea-Albaladejo and Martín-
Fernández, 2015), followed by normalization by ilr according
to Gloor et al. (2017) with the compositions package (van den
Boogaart et al., 2022) in R.

Significant differences among sample types and samples of
accessions were sought in a principal component (PC) regression
approach. In brief, either the log-ratio transformed fungal
abundance dataset or the autoscaled (van den Berg et al., 2006)
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chemical dataset was subjected to sparse principal component
analysis (sPCA) of the mixOmics package (Rohart et al., 2017)
in R. The maximum number of PCs was 6 and 12 for fungal and
chemical data, respectively. Statistical tests were only conducted
for PCs accounting for more than 2.5% SD of the total variance
of the underlying dataset. The PC values were subjected to
ANOVA models in R.

Spearman correlations were calculated in R using the cor.test
function, between either sPCA scores or properly scaled data.
The four approaches were as follows: “rawcordf,” correlation
between fungal abundance and chemical feature abundance
data; “p2cordf,” correlation between fungal sPCA scores and
chemical sPCA scores; “p1cordf_f,” correlation between fungal
sPCA scores and chemical feature abundance data; “p1cordf_c,”
correlation between fungal abundance and chemical sPCA scores.
All meaningful combinations were tested. Correlations were
sought at all three levels for fungal data (phylum-aggregated,
order-aggregated, and genus level). Diversity data were only
subjected to the “rawcordf” approach. At n = 250, a confidence
interval for all correlation values were also calculated. Raw
correlations in the “rawcordf” approach were restricted to
compounds with putative annotations or an RSD > 0.66.

False Discovery Rate Adjustments
All p-values from any statistical tests were subjected together
to a Benjamini–Hochberg procedure (n = 18004). All p-values
presented in the paper are adjusted values.

RESULTS

Glucosinolate Content of Horseradish
Root Accessions
Major GSLs were sinigrin and gluconasturtiin, while
glucobrassicin and glucoiberin were present in smaller amounts:
Sinigrin and gluconasturtiin concentrations spanned the
range 1.14 ± 0.66 to 3.43 ± 0.65%DW, and 0.36 ± 0.18 to
0.67 ± 0.31%DW, respectively. Glucoiberin and glucobrassicin
were present at around 0.03 and 0.07%DW, respectively. The
relative standard deviation within an accession was relatively
high (Supplementary Table 6): 26.9 and 19.8% for sinigrin
and gluconasturtiin respectively, while variability among
accessions was relatively low compared to expectations. Data
on the GSL amounts of the eight accessions (selected later for
fungal community assessment) is available in Supplementary
Table 6. For sinigrin, gluconasturtiin, glucobrassicin, and
glucoiberin, the difference between the highest and lowest
average values was 3.33, 1.99, 20.5, and 2.81-fold, respectively.
The aliphatic sinigrin and glucoiberin were more influenced
by accession (punadj = 0.0008 and 0.0049, respectively) than
glucobrassicin and gluconasturtiin (punadj = 0.6510 and 0.0227,
respectively). Overall, the year 2019 resulted in fewer aliphatic
GSLs (sinigrin and glucoiberin) and the benzenic gluconasturtiin
(punadj = 5.21E−7, 0.0019, and 0.0024, respectively), while
the indolic glucobrassicin seemed to be unaffected by the
year of harvest (punadj = 0.2465). Additional GSLs were

assessed for their relative abundance among samples using
untargeted metabolomics.

Untargeted Metabolomics of
Horseradish Roots
An automated peak detection by XCMS online resulted in
2,576 features (positive and negative ion mode combined).
After removing isotopes and adducts, a set of 1,310 was
subjected to assessment of reliability via calculating linearity and
relative standard deviation using a serial dilution of QCs and
reproducibility of in-sequence QCs respectively. At a maximal
RSD threshold of 30% and minimal linearity of 0.8, 355 features
could be kept for submission to further analysis. The complete list
of features is available in Supplementary Table 7.

Of the above sample-derived features, compounds of a highly
variable subset (n = 233) were subjected to MS/MS fragmentation
and the putative structures suggested from the MS/MS spectra
by Sirius were manually verified using literature data (MSI
level 2 identification); structures that could not be verified
are referred to by their putative compound class using the
Classyfire hierarchy (Djoumbou Feunang et al., 2016) (MSI
level 3 identification) throughout the paper or their m/z –
retention time value pairs (no identification). The compounds
with MSI level 2 identification are shown in Table 1. The
list includes specialized metabolites like flavonoid glycosides
(kaempferol aglycon) and other polyphenolic compounds such
as a phenylpropanoid glycoside and a coumarin glycoside, as well
as indole derivatives and primary metabolites like phospholipids,
amino acid derivatives and peptides.

Metabolomic Standards Initiative level 3 identification added
features from several putative compound classes: 2 cyanogenic
glycosides, a flavonoid glycoside, a glucosinolate, 3 lipids (or
lipid-like structures), 9 amino acids derivatives and derivatives
as well as 14 glycosides and 19 other apparently aromatic
compounds (Supplementary Table 7).

As some accessions turned out to be chemically quite
similar, we selected a subset that could serve as a chemically
variable model set to search for chemical compound – fungal
feature correlations. Based on PCA plots of the chemical
data, and by manual evaluation of the covered range of
abundance of putatively identified and high RSD compounds,
eight accessions (with four samples from each year) were selected
for further study.

A PC score value of the chemical space of these accessions was
statistically significantly different among the selected accessions
(p = 0.0332, Supplementary Table 8), telling us that the
accessions show significant differences in chemistry. The changes
in the metabolome are perhaps best shown by examination of
the distribution of effect size values when comparing the 2 years
or different accessions. By calculating the difference between
the accessions containing the lowest and highest amount of a
compound, and expressing this difference in the absolute value
of standard deviations, effect size values were obtained for all
chemical features. A median of 1.289 shows that a high amount
of chemical variability of the accessions is present. On the other
hand, by comparing the effect size of the year factor, it turned
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TABLE 1 | Compounds identified at MSI level 2 from horseradish samples.

m/z Pol. Rt Name MS/MS fragments References

166.0684 Positive 12.18 N,N-(Dimethyl)thiobenzamide 120.081, 149.042, 103.0545 Holmes and Benoit, 1971

247.1451 Positive 12.3 Indol-3-ylmethyl amino derivative 167.1067, 149.0962, 139.1119,
121.1016, 116.0709

Takasugi et al., 1988

251.0857 Positive 12.44 Indol-3-ylmethyl cysteine 205.0794, 187.0756, 162.0597,
130.0653

Takasugi et al., 1988

295.1299 Positive 11.82 γ-Glu-Phe 278.1016, 232.0966, 186.0914,
166.0863, 120.081

Lee et al., 2017

308.114 Positive 10.35 1-Hexosyl-indole-3-carboxaldehyde 146.06005 Takasugi et al., 1988

353.1066 Positive 13.49 Methoxy-coumarin hexoside 249.0757, 207.06532, 189.0545 Szűcs et al., 2019

357.1299 Positive 2.88 1-OH-indole-3-carboxylic acid Gly
derivative

325.2126, 255.1705, 202.0487,
178.05, 160.0393, 145.0496,
134.0603, 127.0393, 109.0288

Takasugi et al., 1988

369.1195 Positive 12.81 5-O-Feruloylquinic acid 193.0862 Szűcs et al., 2019

423.1370 Positive 12.51 Cys-Cys-Pro-Thr 277.06765, 191.0672, 179.04861,
162.02196, 116.05315, 76.02218

Smith et al., 2005

454.2942 Positive 17.75 1-16:0-lysoPE 313.2736, 282.2781, 239.23677,
155.01043

Godzien et al., 2015

471.1042 Positive 11.02 3-Methylsulfinyl-propyl isothiocyanate
glutathione conjugate

308.0918, 199.0714, 162.02189,
179.04857, 122.06358

Szűcs et al., 2019

480.31 Positive 18.06 1-18:0-lysoPE 339.28943, 308.29481, 265.2537,
155.01046

Godzien et al., 2015

518.3259 Positive 16.79 1-18:3-lysoPC 184.07345 Godzien et al., 2015

535.1106 Positive 13.49 Kaempferol derivative 282.705519 Szűcs et al., 2019

160.0394 Negative 11.19 Indole-3-carboxylic acid 132.0444 Takasugi et al., 1988

208.0612 Negative 10.38 Formyl tyrosine 191.0344, 164.0707, 146.0602 Blasiak and Clardy, 2010

247.0723 Negative 11.89 5-OH-indole-acetic acid hexoside 218.9611, 200.9504, 160.0394,
116.0492

Takasugi et al., 1988

388.0748 Negative 11.52 Pentyl GSL 274.9911, 259.0126, 195.0331,
146.0635

Mellon et al., 2002; Bell et al., 2015

447.0938 Negative 12.86 Kaempferol hexoside 285.041, 284.0331, 255.03, 227.0347,
151.0023

Szűcs et al., 2019

617.1502 Negative 12.98 Kaempferol dihexoside 493.1205, 285.041, 284.0332,
255.0302, 227.0341, 151.003

Szűcs et al., 2019

549.1256 Negative 13.13 Kaempferol dipentoside 285.04095, 284.03318, 255.02927,
178.99794

Szűcs et al., 2019

Pol., polarity; Rt, retention time (min).

out that the median was as high as 0.4678, meaning a relatively
high year-to-year variability of the chemistry of the roots. What
is more, 59 of 359 chemical features had an absolute effect
size above 1 for the year factor, likely due to differences in the
weather of the years 2018 and 2019 (Supplementary Table 1).
As we did not intend to assess chemical differences of various
accessions, data were fed into further analysis models without
grouping along accessions or years. As we will see later, this
chemical variability enabled us to find direct positive and negative
correlations between the abundance of chemical entities and
endophytic fungi.

Amplicon Sequencing
The use of the ITS2 subregion within the ITS region as a fungal
barcode has its advantages (length variation could be lower, with
more universal primer sites than the ITS1 subregion) and is
accepted when using second-generation sequencing platforms
(Ihrmark et al., 2012; Toju et al., 2012; Nilsson et al., 2019). Where
living plant tissue is used as a source for fungal metabarcoding,

it is appropriate to use at least one primer that amplifies
the fungi over the plants (Toju et al., 2012). In an in silico
preliminary pilot, previously designed universal primers were
found to be ineffective in the horseradish-endophytic system
due to amplification of host DNA (data not shown). Therefore,
we designed a primer that does not amplify the ITS2 region of
horseradish, but amplifies the ITS2 region of fungal community
members using an existing reverse primer. A pilot sequencing
experiment was conducted on Illumina which showed that >99
and >40% of the amplicons were assigned to the Viridiplantae
ITS according to the UNITE 8.3 eukaryote database (Abarenkov
et al., 2021b) in the case of ITS3_KYO2/ITS4_KYO3 and
fITS7/ITS4_KYO3, respectively. With the proposed forward
ITS3_NOHR/ITS4_KYO3 primer pair, the number of plant-
associated ITS reads was less than 0.2%. Both the in silico and
preliminary experimental sequencing results were convincing
enough for the usage of this primer pair in later experiments.

The proposed forward primer showed affinity to 95.3% of
Ascomycota and 85.8% of Basidiomycota unique ITS sequences
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in the UNITE 8.3 database (Abarenkov et al., 2021a), allowing one
mismatch (which was most prevalent at bp 6 from the 5′ primer
end). These results are comparable to the coverage achieved by
ITS3_KYO2 and fITS7 (Ihrmark et al., 2012) in these phyla.

The filtering step discarding abundant ASVs also present in
negative controls affected about 0.7% of unique ASVs, including
human dermatophytes like Malassezia. The exclusion of ASVs
with neither meaningful UNITE assignment nor NCBI RefSeq
(fungal ITS) assignment had much more impact on the dataset
as it resulted in discarding 78.5% of unique ASVs (and 26.35% of
reads). By checking the 50 most abundant of these sequences in
BLAST manually, all of these sequences turned out to belong to
various non-ITS plant genes. The filtration steps resulted in 2,673
ASVs in total, and a median of 26,116 reads per sample.

The inclusion of the QC samples in the sequencing was quite
valuable for the optimization of the filtering parameters, as all
four aliquots of the QC samples have shown the same ASV
composition with negligible deviation in abundances (data not
shown). By this property it also seems to be sufficient to monitor
sequencing errors, although this requires further research.

Diversity Structures of the Metagenomes
Diversity of the samples was characterized with the consideration
of the 2,673 ASVs that passed the main filters. Observed
ASV richness (number of ASVs in each sample) among the
horseradish samples of Site1, those of Site2 and carrots from
Site1 had a 45.2, 45.4, and 39.5 mean values, with ranges
27–94, 24–109, and 29–48, respectively. In contrast, the soil
samples from Site1 exhibited a 383.6 mean value (range 109–609).
The estimated ACE (Supplementary Figure 1A) and Shannon
(Supplementary Figure 1B) indices confirmed the observed
tendencies. Investigation of the Dominance index (1-Simpson)
indicated that some species were more abundant than others in
the horseradish samples (Supplementary Figure 1C). Although
the overall dominance was quite low in the samples, the carrot
and soil samples exhibited a more even abundance compared
to the horseradish samples (Supplementary Figure 1C).
Independently from the estimated Dominance values, the Buzas
and Gibson indexes indicated a low level of evenness within the
samples, except the carrot samples (Supplementary Figure 1D).
Thorough examination of the diversity indices indicated that the
horseradish samples showed a substantial variety within their
values (Supplementary Figures 1B–D).

To examine beta diversity among the type sets, Bray–Curtis
similarity was used to assess differences in the ASV abundance,
moreover Whittaker distances were calculated to estimate species
turnover in the sample sets (Supplementary Figures 2A,B).
Both beta diversity measures represented by PCoA showed that
soil samples are extremely different from other sample types
(Supplementary Figures 2A,B). Besides, the figures showed that
the beta diversities exhibited higher values within the horseradish
sets, than in other sample sets. The low R values in the ANOSIM
tests (Supplementary Figures 2A,B) also supported this finding.
Although the differences between type sets were greater than
the differences within sets (because of the distance of the soil
sample set), the horseradish sets had a wide variety for both beta
diversity metrics.

For a more sophisticated approach, unweighted UniFrac
analysis was performed. Since UniFrac analysis depends on a
robust phylogenetic tree, several preliminary trees were built to
test their reliability. As the curation of the multiple alignments
showed that at least 100 well-aligned nucleotide sites could
be used and the branch supports of the created trees (aLRT)
exceeded an admissible level of 0.7 on average, the UniFrac
analysis could be performed with confidence. PCoA plotting
of the UniFrac distances showed a disposition similar to the
previous results (Supplementary Figure 2C). ANOSIM tests of
the UniFrac distances were also in agreement with the other
ANOSIM test results, albeit with a higher variety within the soil
samples (Supplementary Figure 2C).

Both the alpha and the beta diversity metrics suggested a
substantial variety among and within the horseradish samples,
which might be in context with the metabolome changes of the
horseradish accessions.

Fungal Community Differences Among
Sample Types
The taxonomic assignments of the most abundant ASVs are
summarized on Figure 1 and Supplementary Figures 3, 4.
ANOVA of the fungal community among sample types has
also shown significant differences at phylum, family and genus
levels (p = 10−18, Supplementary Table 8), in concordance with
PCoA results (Supplementary Figures 2A,B). In the case of
Site 1 horseradish samples the most abundant ASVs belonged
to Cantharellales, Glomerellales, Hypocreales, Pleosporales,
Saccharomycetales and Sordariales, orders comprising numerous
plant related genera (typical endophytes, epiphytes, pathogens,
etc.), e.g., Claviceps, Colletotrichum, Epichloë, Fusarium, and
Rhizoctonia. Almost the same composition was observed in the
carrot and Site 2 horseradish samples. In addition, taxonomically
less resolved mixtures of ASVs were from Ceratobasidiaceae,
Nectriaceae, Pezizaceae, Sordariomycetes, and Ascomycota.

In contrast, the soil samples from Site 1 had a much
different fungal community, mostly composed of Filobasidiales,
Mortierellales, Hypocreales, Sordariales, Thelebolales, and
Umbelopsidales orders. Typical abundant genera were
Mortierella, Pseudogymnoascus, Umbelopsis, Solicoccozyma,
Metarhizium, Humicola, Penicillium, Trichoderma and
unidentified members of the Chaetomiaceae family and
other Ascomycota – to mention the major ones only (Figure 1
and Supplementary Figures 3, 4). It is also important to
note that soil communities in 2018 and 2019 showed only
minor differences (Figure 1). This means that differences
in the endophytic community of plant samples from
different years are not the results of an altered fungal pool
to recruit the fungi from.

Interestingly, in several cases, one or two taxa of
endophytic fungi showed to be an extremely dominant feature
(Supplementary Figure 4). What is more, this phenomenon
was typical for horseradish samples of both sites, but not carrots
from Site 1. This, though, might have been merely caused by
differences in sampling depth (n = 64 + 12 vs. n = 4, respectively)
but is apparent from differences in carrot and horseradish
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FIGURE 1 | Bar plot showing relative mean proportion of fungal taxa in the endophytic fungal community in all sample groups (n = 4 per group). The top 25% of
filtered, fungal reads are included and aggregated at order level (if not available, the lowest possible taxonomic level). Fungal taxa prefixes follow UNITE notation
(“c__,” class; “o__,” order; “p__,” phylum). “Other” means a pool of ASVs from all other taxa. Sample codes: year_sample, where sample type is either “soil,” “carr”
(soil or carrot both from site 1), 1,037 or 326 or 112 (site 2 horseradish samples from three soil types) or A-W (accession codes from site 1). Additional fungal
composition data can be found on Supplementary Figures 3, 4 and Supplementary Tables 10–13.

Dominance indices as well (Supplementary Figure 1C). Typical
proportion of the most dominant strain to all reads was between
20 and 40% with a median of 33.57%, but in one sample,
95.9% was found (at genus level resolution) (Supplementary
Figure 3). Soil samples showed considerably lower values, with a
median of 21.61%.

As the soil–plant difference was much stronger compared
to the variability among horseradish samples of Site 1,
data from Site 1 horseradish samples was examined in
further work separately. Several fungal groups showed a
high variance among accessions, raising hopes to be able to
build good correlation models later. Examples include taxa
from Agaricomycetes (ranging 0.01–6.5%), Morosphaeriaceae

and Melanoleuca (both ranging from n.d. to around 10%),
Monosporascus (ranging from 0.04 to 17.1%) and Setophoma
(ranging from <0.01 to 6.3%). As we will see later on,
several of these differences correlated with chemical feature
abundances. In some cases, considerable within-accession
variability of the fungal endophytic community was detected
at order level (Supplementary Figure 4). The average patterns
were stable between the 2 years for accessions C, K, and
M; accessions G and I showed very similar year-to-year
changes at genus level, while a different year-to-year variability
patterns can be observed for accessions A, U, and W
(Supplementary Figure 3). A significant variance of taxa,
later found to correlate with chemical features was also noted
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(including orders Xylariales, Sordariales, Pleosporales, Eurotiales,
Capnoidales, and others).

Chemical Feature – Fungal Abundance
Correlations
The PCs of the family-level and genus-level aggregated fungal
data set showed statistically significant Spearman correlation
with various chemical features in 37 and 41 cases, respectively
(p < 0.05, Supplementary Table 8). This high number
encouraged us that instead of trying to interpret the loadings
(the contributions to PCs) we should seek direct (Spearman)
correlation between logratio-transformed fungal abundance data
and chemical abundance data which is becoming a more
widespread approach (Quinn and Erb, 2021). The advantage of
this approach is that (1) it will not miss compounds that are not
correlated with any other (and therefore would be present in an
unexamined PC) and (2) interpretation is more straightforward.
Disadvantages include the need to run a very high number of
statistical tests, therefore corrections are needed to reduce the
chance of false discoveries to an acceptable level (see section
“False Discovery Rate Adjustments”). As the fungal dataset is
not compositional [due to transformations (Gloor et al., 2017)],
and the metabolome dataset is not compositional either (as
data were expressed either as real concentrations or fold-change
versus QCs for all features), no negative correlation artifacts are
assumed (Morton et al., 2019), enabling usage of the approach.
Though the family-level and the genus-level data clearly show
some overlap if a family has a dominant genus, altogether 99 and
72 significant correlation phenomena could be found (p < 0.05,
Supplementary Table 8, set = “rawcordf”) with this approach.

Order-level examination has revealed that the most impacted
fungi include strains from the orders Xylariales, Capnodiales,
Sordariales, and Saccharomycetales (median effect sizes for
correlations being 1.60, 1.47, 1.29, and 1.26 standard deviations

(n = 51, 15, 7, and 21) (Figure 2A). These taxonomic groups cover
6.14, 0.25, 8.34, and 4.45% of meaningful fungus-related reads in
the whole accession dataset. It is important to note however that
in some samples, as high as 73.4, 15.7, 74.2, and 38.4% of total
reads were reached, respectively. A few additional taxa from other
groups were found to be correlated with some chemical features,
including taxa from Laboulbeniomycetes, Agaricomycetes, and
Eurotiales (n = 1, 2, and 2, respectively). These all accounted for
<1% of reads on average, however.

At the genus level, the abundance of Monosporascus,
Setophoma, and Tetracladium as well as fungi from
Morosphaeriaceae and Agaricomycetes were the most affected by
changes in plant chemistry – median effect sizes for correlation
phenomena being 1.49, 1.47, 1.45, 1.44, and 1.33 standard
deviations (n = 10, 24, 2, 13, and 7), respectively (Figure 2B).
These taxa accounted for 5.6, 1.3, 0.3, 1.5, and 0.8% of all reads,
with their maximal proportion in the sample set being 73.4,
32.1, 28.6, 59.2, and 21.7%, respectively. Clearly, in several of the
samples a single endophyte became dominant (Supplementary
Figure 4). Additional fungal taxa also showed to be influenced,
with less effect size (Fusarium, Melanoleuca, Brachyphoris,
and Thanatephorus as well as fungi from Pezizaceae and
Pleosporales), accounting for 4.0, 5.4, 0.4, 4.9, 2.4, and 3.2%.
Overall, ASVs accounting for 35.23% of total reads were found
to be significantly correlated with one or more chemical features
in the accession dataset.

The list of influential compounds includes natural products
of many biosynthetic classes. Surprisingly, major GSLs did
not result in any raw correlation with any fungal group,
despite being present at high concentrations in the plant.
Though there can be overlaps, order and genus level data
were examined separately. The comparison of the effect size
values of significant correlations between fungal orders and
chemical correlations shows the following (Figure 3A): there
is no single most influential compound group, though there

FIGURE 2 | Effect size comparison of various fungal taxa, obtained from statistically significant correlations between logratio-transformed fungal abundance
(proportion) data and core chemical feature abundance data. Phenomena were considered significant at p < 0.05 after Benjamini–Hochberg adjustment of p-values
for all statistical tests. Effect size is defined as the difference of the fungal abundance data between the first and fourth quartile of the chemical data, expressed as
absolute value of standard deviations. Subplots: (A) phenomena at order level resolution; (B) phenomena at genus level resolution. cAga, class Agaricomycetes;
cLab, class Laboulbeniomycetes; fMor, family Morosphaeriaceae; fPez, family Pezizaceae; gBra, genus Brachyphoris; gDeb, genus Debaryomyces; gFus, genus
Fusarium; gMel, genus Melanoleuca; gMon, genus Monosporascus; gSet, genus Setophoma; gTet, genus Tetracladium; gTha, genus Thanatephorus; oCap, order
Capnodiales; oEur, order Eurotiales; oPle, order Pleosporales; oSac, order Saccharomycetales; oSor, order Sordariales; oXyl, order Xylariales; pAsc, phylum
Ascomycota.
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FIGURE 3 | Effect size comparison of various metabolite classes, obtained from statistically significant correlations between logratio-transformed fungal abundance
(proportion) data and core chemical feature abundance data. Phenomena were considered significant at p < 0.05 after Benjamini–Hochberg adjustment of p-values
for all statistical tests. Effect size is defined as the difference of the fungal abundance data between the first and fourth quartile of the chemical data, expressed as
absolute value of standard deviations. Subplots: (A) phenomena at order level resolution; (B) phenomena at genus level resolution. aad, amino acids and derivatives;
flv, flavonoid glycosides; gly, glycosides; gsl, glucosinolates; ind, indole derivatives; l, lipids and lipid-like compounds; nuc, nucleotide derivatives; o, other
compounds (unknown or non-annotated); oAr, other aromatic/polyphenolic compounds; pep, peptides; sac, saccharides.

are minor differences. A similar observation is apparent from
the genus-level boxplot of significant correlations (Figure 3B).
At first glance, the prejudicative assumption that GSLs are
key contributors to shaping the fungal community does not
seem to be evidenced in the data: GSL–fungal abundance
correlations do not seem to be stronger than those of
flavonoid glycosides or other putative glycosides. In addition,
the contributions of lipids and lipid-like molecules seem to
be similarly important, not to mention that of the peptides.
In the latter case, however, a very high relative standard
deviation is also present. The strongest effects (absolute
effect size >2) seem to be related to peptide-like molecules,
belonging to gamma-glutamyl amino acid derivatives and
peptides according to the Canopus algorithm. The next
group of correlations (absolute effect size >1.5) contain both
specialized and primary metabolite classes as well: many
flavonoid glycosides, a putative GSL and other putative glycosides
show strong correlations with an abundance of some fungal
taxa. In addition, several peptides, phospholipids and N,N-
(dimethyl)thiobenzamide are also present in this group. The
strongest impacts were shown for Xylariales, Capnodiales,
and Saccharomycetales at the order level, while at the
genus level, Setophoma, Monosporascus, and Tetracladium are
worth mentioning.

DISCUSSION

Identified Compounds
In addition to GSLs, horseradish roots were shown to contain
kaempferol glycosides and phospholipids as well (Herz et al.,
2017), supporting our findings summarized in Table 1. Isomers
of the putative GSL identified were described from horseradish
as breakdown products as isothiocyanate breakdown products
(Blažević et al., 2020), though pentyl GSL (or methylbutyl GSL)
were not found in A. rusticana samples (Agneta et al., 2012). Both

the suggestions from the Canopus algorithm and the presence
of the GSL characteristic fragment m/z 259.0126 (Rochfort
et al., 2008) convinced us that it is a GSL. Other compounds
include a coumarin glycoside, not specifically described from
A. rusticana roots before, yet, known to be an important
constituent of the Brassicaceae family member exudates (Sarashgi
et al., 2021), so its presence is not a surprise. Indole-3-
carboxaldehyde and other Trp-derived downstream products
are also frequently encountered in research on Brassicaceae
plants and were detected from various species of this plant
family (Bednarek et al., 2011). Altogether, the suggestions
generated by CSI:FingerID and Canopus significantly shortened
the time required for annotation, though not all of these
suggestions were found to be totally accurate on a closer
look. In addition to the 21 compounds in Table 1 and
Supplementary Table 7 contains a list of 69 compounds that
could be classified into a compound class (“canopus_class” in
Supplementary Table 7).

Variability of Glucosinolate Content and
Chemical Composition
Glucosinolates are precursors of antifungal components (Plaszkó
et al., 2021) and are of primary importance, due to their role
in the prevention of plant pathogenesis (Agee et al., 2010;
Frerigmann et al., 2016; Kuhn et al., 2017). A comparison
study on six Italian horseradish accessions reported similar
ratios of sinigrin, gluconasturtiin, glucobrassicin, and glucoiberin
as found in our dataset (Agneta et al., 2014). Year-to-year
variability was likely due to the major differences in rainfall
during the vegetation period, as temperature and rainfall are
important for the production of this crop (Nguyen et al., 2013).
Of more importance, the 2- to 20-fold differences between
the major GSL concentrations among accessions were deemed
enough to test these concentration data in Spearman correlations
after autoscaling.
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Fungal Community Composition and
Diversity
At genus resolution, plant samples showed a high abundance
of genera that have been already described as endophytes:
Exophiala (Yu et al., 2021), Monosporascus (Guo and Zou,
2020), Paraphoma (Kang et al., 2021), Plectospherella (Feng
et al., 2021; Wei et al., 2021), Podospora (Penner and Sapir,
2021). Some of these genera were even identified in Brassicaceae
plant endospheres, including Exophiala (Maciá-Vicente et al.,
2016), Plectosphaerella (Plaszkó et al., 2020; Ważny et al., 2021),
Setophoma (Szűcs et al., 2018; Poveda et al., 2020), or as a
common pathogen: Thanatephorus (teleomorph of Rhizoctonia)
(Dean et al., 2012).

All the alpha and beta diversity metrics used in this
study unequivocally revealed substantial differences among the
different sample types. As was expected, the soil samples
exhibited the highest richness and almost a twofold diversity
compared to the other samples. This is unsurprising, as many
soil inhabitant fungi are not able to successfully colonize plant
tissues, thus the plant microbiome is usually less diverse (Sasse
et al., 2018). The lack of ability of saprotrophs to survive in planta
conditions is a very powerful filter which is likely behind the
similarity of carrot and horseradish samples – this surprising
similarity of various root endophyte communities in distinct
plant families has been reported by Toju et al. (2019).

On the other hand, indices of dominance and evenness besides
the beta diversity measures revealed that the horseradish samples
(from both sites) showed higher variety within their values than
the soil samples. This is similar to the findings of Seabloom
et al. (2019), who concluded that fungal endophyte communities
differ within a single site, but are not consistently affected by the
nutrient supply of hosts (which was manipulated as a treatment).
Despite this, we will show later that given sufficient numbers
of replicates of a single species, it is possible to successfully
build models that show correlations between plant chemistry
on fungal colonization. The relatively high dominances of a
few strains (Figure 1) in most horseradish samples were also
shown for several plant families (Toju et al., 2019). However,
the extent is still striking and suggests that pioneers or fast-
growing opportunists might occupy a significant portion of the
plant niche. This also raises interesting questions regarding the
number of replicates that should be included in such a study.

Correlations Between Fungal Abundance
and Chemical Abundance Data
Figure 4 shows that there are several correlations between fungal
and chemical features. What is more, several specialized and
primary metabolite classes were shown to be involved in these
interactions, including lipids, indolic compounds, glycosides, and
peptides as well. Compounds showing high correlation with
one or more fungal taxon are spread across various clusters
(Figure 4), meaning that the results cannot be explained by
multi-correlation of compounds only.

This shows the superiority of using a complex chemical
evaluation strategy for plant-microbe interactions, such as
untargeted metabolomics. Though this approach does not

substitute knock-out mutant studies that can prove the
contribution of a single compound in changing the plant
microbiome (Voges et al., 2019), it shows that about a third of
the plant endophytic fungal microbiome correlates with changes
in the plant metabolome.

Our experimental design allowed searching for correlations,
which should not be misinterpreted as causal relationships
directly as there are several possible explanations behind them.
Positive correlations between chemical features and fungal
abundance can be the result of a recruitment – elicitation
positive feedback loop. In these scenarios, the fungus attempts
colonization by following chemical signals, produced by the
plants (Sasse et al., 2018), followed by a plant response to
limit fungal colonization. The biosynthesis of the compound
stabilizes at a rate that the fungus can tolerate, but no additional
plant reactions are triggered, resulting in a balanced antagonism
(Schulz et al., 2015) between the fungus and the plant. If this
rate of biosynthesis is higher than the basal rate, we possibly
see a positive correlation between fungal abundance and the
concentration of the metabolite. As we are seeing a snapshot
of a dynamic, it is also possible though, that the concentration
of a chemical feature increases due to increased penetration of
the fungus, resulting in the release of for example amino acids
or short peptides from proteins, or cell wall monomers. Note
that during colonization of living tissue, special sets of cell wall
degradation enzymes are used (Zuccaro et al., 2011). Anyway, due
to various strategies, invasion by different fungal taxa results in
a different mixture of plant biosynthetic compounds for defense
(Narayani and Srivastava, 2017; You et al., 2021).

We will likely see negative correlations between chemical
and fungal abundance features if the fungal entry attempt
triggers the biosynthesis of a compound that successfully reduces
fungal colonization: plants that are unable to biosynthesize
such compounds will more likely end up being colonized
by the strain of interest as shown for various GSL-derived
products (Bednarek et al., 2009; Hiruma et al., 2010; Lipka
et al., 2010; Sanchez-Vallet et al., 2010). As these networks are
complex, this phenomenon is only assumed for compounds
with known antifungal activity. Otherwise, seeing negative
correlations between fungal colonization rate and compounds
could also be explained by the depletion of monomers from plant
tissues by the colonization of cells and the apoplastic space.

Flavonoid glycosides seem to be one of the most influential
groups of compounds that correlate with fungal abundances
(Figure 4). Lots of flavonoids including the detected kaempferol
derivatives were shown to be antifungal agents in vitro (Jin,
2019; Al Aboody and Mickymaray, 2020) and there is also
in vivo evidence of playing a role in fungal defense. Beyond
studies that show an increased biosynthesis of flavonoids or
downstream products after fungal challenge (Förster et al.,
2022), increased accumulation at the fungal penetration site
was also described in Cucumis sativus (McNally et al.,
2003). As all correlations (with Setophoma, and members of
Xylariales, Agaricomycetes, and Morosphaeriaceae) are positive,
flavonoids likely play a role as agents in the establishment of
beneficial interactions via the above-hypothesized colonization –
elicitation feedback loop.
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FIGURE 4 | Heatmap of Spearman correlation values between logratio-transformed fungal abundance data (proportion) and core chemical feature abundance data.
Both fungi and metabolic features are sorted by hierarchical clustering. Color is proportional to Spearman correlation values. Fungal taxa prefixes follow UNITE
notation (“p__,” phylum; “o__,” order; “c__,” class; “f__,” family; and “g__,” genus). Chemical features marked with an arrow include: amino acid derivatives (red): 15,
22, 35, 36, 52, 58, 71, 87, 115, 145; indole derivatives (green): 11, 18, 24, 90, 111, 114; lipids (black): 62, 76, 106, 159-161; peptides (magenta): 105, 113, 89, 55;
GSLs (blue): 9, 49, 51, 77, 108, 110; and flavonoid glycosides (orange): 34, 40, 41, 44, 75. For a complete list, see Supplementary Table 9. The
Benjamini–Hochberg adjusted p-values of each correlation can be found on Supplementary Figure 5.

Fungal inhibition by GSL decomposition products has a large
literature, but as they do not have antifungal effect in their native
form, decomposition products are thought to be the actual agents
required for fungal arrest (Plaszkó et al., 2022). Effects of GSLs on
fungi seem to be mixed in the current dataset (Supplementary
Table 8): while the abundance of Saccharomycetales negatively
correlates with the putative GSL (Table 1), members of Xylariales
and Morosphaeriaceae positively do. The major GSLs do not
seem to show any correlation, but this might merely be because
of the extreme amount of GSLs in horseradish compared to other
Brassicaceae vegetables (Gonda et al., 2016), meaning that only
downstream product generation is a prerequisite of fungal arrest,
and no increase in the GSL biosynthesis is required (or possible).

Typical phytoalexin-like compounds unsurprisingly show
negative correlations with fungal abundance (Supplementary
Table 8): various ASVs pooled into unidentified Ascomycota
were negatively correlated with an indole-3-carboxylic acid
derivative. An indol-3-ylmethyl amino derivative and indol-
3-ylmethyl cysteine were also active. Close relatives of these
compounds are typical antifungal agents frequently encountered
in Arabidopsis thaliana fungal challenge models where they are
thought to play significant roles in restricting fungal growth
in planta (Sanchez-Vallet et al., 2010; Bednarek et al., 2011;
Gamir et al., 2014; Fukunaga et al., 2017; Kuhn et al., 2017).

Therefore, we believe higher levels contribute to the inhibition
of fungal colonization.

Typical peptides do not have significant antifungal activities,
though there are known special peptides with antifungal activities
(Chu et al., 2005), these are much larger than the ones found with
a few amino acids only. Interestingly, the correlation of peptides
423.1387 at 12.58 and 471.1058 at 11.06 was massively negative:
higher concentration resulted in less abundance of members
of Xylariales, Capnodiales, Saccharomycetales, Sordariales, and
Agaricomycetes as well as fungi from the genera Setophoma,
Monosporascus, and Melanoleuca. What is more, one of
these peptides was successfully identified as a glutathione –
isothiocyanate adduct (Table 1), a product of isothiocyanate
detoxification generated during fungal biotransformation of
GSLs (Szűcs et al., 2018). A targeted search for the data in mzMine
revealed the presence of 407.1071 at 11.86 and 471.1388 at 13.35,
which are likely glutathione adducts of the isothiocyanates of
sinigrin and gluconasturtiin, respectively, as well as and traces of
the glucobrassicin-derived derivative as well. Interestingly, while
in case of glucoiberin, the adduct showed a 0.709 correlation with
the amount of glucoiberin, this value was below 0.35 for both
the sinigrin-, and gluconasturtiin derived putative isothiocyanate
adducts. This on one hand is reassuring, as it suggests that
we are not seeing any artifact – myrosinase reaction products
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that arose during imperfections of homogenization at cryogenic
temperature. On the other hand, it raises questions to be
answered in further studies.

As isothiocyanate derivatives or adducts are known to be
involved in defense using GSL decomposition products (Hiruma
et al., 2013; Piślewska-Bednarek et al., 2018), this suggests that
GSL decomposition is taking place without apparent change in
GSL amounts. As mentioned above, this might be the result of
the very high amount of the GSL pool in horseradish (Gonda
et al., 2016), compared to other Brassicaceae plants. This also
suggests that examining GSL downstream products instead of the
precursors themselves can shed light on phenomena otherwise
remaining hidden, when studying plant – endophytic fungus
interactions. A wide range of downstream products are examined
in A. thaliana studies (Bednarek et al., 2011), that fit this
approach. The importance of glutathione in the generation of
downstream products from GSL-derived isothiocyanates (and
perhaps the prevention of autotoxicity) (Hiruma et al., 2013;
Piślewska-Bednarek et al., 2018; Hématy et al., 2020) is hence
further supported by our findings. The ability to biosynthesize
various GSL downstream products is known to be a prerequisite
of fungal colonization arrest (Bednarek et al., 2009; Hiruma et al.,
2010; Lipka et al., 2010; Sanchez-Vallet et al., 2010; Fuchs et al.,
2016), but the list of actual downstream products is incomplete
(Frerigmann et al., 2016; Kuhn et al., 2017). Our findings strongly
suggest that glutathione conjugates of the GSL decomposition
product isothiocyanates can be such compounds and are likely
good candidates for further study in plant-microbe interactions.

On the other hand, correlations with amino acid derivatives
(typically smaller than the previously mentioned peptides)
showed rather positive correlations, supporting the fungal
recruitment theory, which is more likely for primary
metabolites – an example of unsurprising usage as nutrients. It
is also possible that increased fungal diversity results in a higher
abundance of proteolytic enzymes in the apoplast, resulting
in higher amounts of amino acids and derivatives for fungal
uptake. Other primary metabolites (nucleotide derivatives,
phospholipids, and other lipid-like molecules showed mixed
correlations with fungal groups, Supplementary Table 8).
Though there are special antifungal phospholipids reported (Cho
et al., 1999), direct antifungal effects cannot be typically shown.
Therefore, the reduction of the amounts might be simply the
consequence of the usage of these compounds by fungi as sources
of carbon and phosphorus.

CONCLUSION

Altogether, metabolome changes in horseradish roots show
correlations with the relative abundance of various endophytic
fungi. Taxa giving about a third of fungal abundance was
significantly correlated with one or more metabolomic
features, showing the power of the untargeted metabolomics
approach, but on the other hand, suggests the importance
of inclusion of proteomic data and information from other
domains in future studies. The correlation between chemical
features could not explain all the observed phenomena:

an example of success for using linear correlation mining
between metabolomic and metagenomic data after proper data
preparation steps were taken.

The high intra-species variability of the root endophytic
community was suitable to detect correlations with chemical
features, but it also raises questions about the optimal sampling
depth of such studies. Note that in a few instances, the dominant
taxon accounted for as high as >75% of fungal reads in a sample.

The untargeted metabolomics approach has resulted in lots
of readily interpretable fungal abundance – chemical feature
correlations. Interestingly, several specialized metabolite classes
with known antifungal activity seem to be rather involved in
the recruitment of fungal endophytes: flavonoid glycosides for
instance showed positive correlations with many of the taxa.
This could hypothetically be explained by a recruitment –
elicitation feedback loop that stabilizes plant biosynthesis at a
higher level that is still well tolerated by a small subset of
potential colonizers.

On the other hand, several compounds showed negative
correlations with fungal abundance, these include indolic
phytoalexin-like molecules, a putative glucosinolate but
not major glucosinolates and a glucosinolate downstream
product. Literature data suggest that the phenomenon
behind negative correlations is that these compounds are
important contributors to restricting fungal colonization.
An interesting finding is the lack of correlations with major
GSLs. Our data suggested that GSLs are indeed used in
fungal restriction in the form of downstream products, but
perhaps their level is so high that no significant change in
the GSL pool can be observed. We suggest glutathione –
isothiocyanate adducts for monitoring GSL – ITC conversion
in planta, one of which was putatively identified and
showed a relatively strong negative correlation with the
abundance of many fungi. These compounds definitely
warrant further study.
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