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Beneficial soil microbes like plant growth-promoting rhizobacteria (PGPR) significantly
contribute to plant growth and development through various mechanisms activated
by plant-PGPR interactions. However, a complete understanding of the biochemistry
of the PGPR and microbial intraspecific interactions within the consortia is still
enigmatic. Such complexities constrain the design and use of PGPR formulations
for sustainable agriculture. Therefore, we report the application of mass spectrometry
(MS)-based untargeted metabolomics and molecular networking (MN) to interrogate
and profile the intracellular chemical space of PGPR Bacillus strains: B. laterosporus,
B. amyloliquefaciens, B. licheniformis 1001, and B. licheniformis M017 and their
consortium. The results revealed differential and diverse chemistries in the four Bacillus
strains when grown separately, and also differing from when grown as a consortium.
MolNetEnhancer networks revealed 11 differential molecular families that are comprised
of lipids and lipid-like molecules, benzenoids, nucleotide-like molecules, and organic
acids and derivatives. Consortium and B. amyloliquefaciens metabolite profiles were
characterized by the high abundance of surfactins, whereas B. licheniformis strains
were characterized by the unique presence of lichenysins. Thus, this work, applying
metabolome mining tools, maps the microbial chemical space of isolates and their
consortium, thus providing valuable insights into molecular information of microbial
systems. Such fundamental knowledge is essential for the innovative design and use
of PGPR-based biostimulants.

Keywords: Bacillus, biostimulants, GNPS platform, metabolomics, molecular networking, lipopeptides

INTRODUCTION

Bacillus spp. are plant growth-promoting rhizobacteria (PGPR)—part of the “core plant root
microbiome” communities that are ubiquitous across a wide range of environments and
host species. The belowground plant-PGPR interactions are established in a highly dynamic,
sophisticated, and controlled manner through a wide range of specialized metabolites and involve
reprogramming of gene expression in either one or both of the interacting partners (Sasse et al.,
2018). This mutual chemical communication alters plant growth, nutrient availability, inhibition
of soil pathogens, enhanced plant defenses, biofilm development, and recruitment of other soil
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microbes (Vandenkoornhuyse et al., 2015). Untangling these
chemical intercommunications is still inscrutable and subject
to ongoing research. One of the approaches is to characterize
metabolic profiles, i.e., chemistries of different partners, such as
Bacillus spp. in this case, or the plant roots (Nguyen et al., 2013;
Korenblum et al., 2020; Shahid et al., 2021; Sun et al., 2022). Such
efforts would reveal not only a global metabolic map, but also
the key chemical repertoires, potential drivers of the plant-PGPR
interactions, contributing also toward an innovative design and
formulation of PGPR-based biostimulants.

Thus, to interrogate the chemical capabilities of PGPR,
this study employs untargeted liquid chromatography-mass
spectrometry (LC-MS)-based metabolomics that generate
tandem mass (MS/MS) spectra, and applies molecular
networking (MN) approaches to decode and characterize the
chemical space of four Bacillus isolates and a consortium
of Bacillus strains. Metabolomics is a multidisciplinary
omics science that allows the quantitative and qualitative
evaluation of all measurable metabolites, constituting a
chemical space (the metabolome) that carries both genetic
and environmental imprints (Tugizimana et al., 2013;
Courant et al., 2014). Compared to other -ome levels (i.e.,
genome, transcriptome, and proteome) in systems biology,
the metabolome is more sensitive to perturbations and
is regarded as the ultimate expression of all activities of
metabolic pathways. Moreover, fluctuations in the metabolome
are amplified relative to changes in the transcriptome and
proteome, and are arguably numerically more tractable
(Kell et al., 2005).

Mass spectral mining strategies such as molecular networking
(MN) and MS2LDA substructure discovery are rapidly
gaining popularity in untargeted metabolomics due to the
advantageous ability to provide a comprehensive visualization
of the chemistries within various biological systems and the
easy link to annotation tools that offer automated mass spectral
annotation (da Silva et al., 2018; Rogers et al., 2019). MN
employs a vector-based computational algorithm to compare
and weigh the degree of spectral similarity of large mass
spectrometry (MS) dataset, on the basis that structurally
related molecules will yield similar fragmentation patterns.
Similar MS/MS spectra are organized and presented in graph-
based spectral networks allowing the global visualization of
all untargeted chemical signatures (known and unknown
chemical repertoires) detected by the mass spectrometer
(Quinn et al., 2017; Fox Ramos et al., 2019; Beniddir et al.,
2021). Furthermore, MN offers unique advantages, such as
the ability to decode the metabolomics “dark matter” (Quinn
et al., 2017). Thus, the work presented herein applies MN
strategies in annotating the metabolome of Bacillus, providing
insights into the molecular space of the bacteria. Our efforts
advance the understanding of Bacillus spp.’s metabolome, both
as isolates and as a consortium, generating thus fundamental
knowledgebase necessary for industries to confidently and
innovatively explore and design PGPR-based formulations.
In turn, this would provide a great impetus in implementing
PGPR-based strategies into agronomic practices for sustainable
agriculture and food production.

MATERIALS AND METHODS

All chemicals for sample analyses (from the pre-analytical
step to the data acquisition stage) were of pure-grade quality
and obtained from various international suppliers. Briefly, the
organic solvents used, methanol and acetonitrile, were LC-
MS grade quality (Romil, SPS, Cambridge, United Kingdom).
Water was purified by a Milli-Q Gradient A10 system (Siemens,
Fahrenburg, Germany). Leucine enkephalin and formic acid
were purchased from Sigma Aldrich, Munich, Germany. Four
bacterial isolates selected for this study belong to the Bacillus
genus, the species included B. licheniformisM017, B. licheniformis
1001, B. amyloliquefaciens, and B. laterosporus strains. The
microbial consortium is a commercial product—Bacstim R© 100,
containing equal volumes of the above-mentioned Bacillus strains
(Omnia Group Ltd., South Africa). The biostimulant activity of
this microbial consortium, Bacstim R© 100, has been tested on
maize plants under greenhouse conditions, where enhanced plant
growth and drought tolerance was demonstrated (Nephali et al.,
2021; Othibeng et al., 2022).

Bacterial Culturing, Harvesting, and
Metabolite Extraction
To monitor the growth rates of bacteria, 100 µL of bacterial
stocks (isolates—B. licheniformis M017, B. licheniformis 1001,
B. amyloliquefaciens, and B. laterosporus and the consortium,
respectively) were inoculated into 20 mL Lysogeny broth (LB)
media under sterile conditions and incubated at 28◦C in a
shaker at 140 rpm for 36 h. The OD600 readings of the
bacterial cultures were taken every 3 h to determine the bacterial
growth curves (Supplementary Figure 1). From the growth
curves, 4-time points were selected for harvesting and metabolite
extraction: 3 h (lag phase), 7.5 h (exponential phase), 24 and
31.5 h (stationary phase) (Supplementary Figure 1). This growth
curve was then used for bacterial cell harvesting. Following the
conditions mentioned above, culturing flasks were prepared in
triplicates for Bacillus isolates and consortium. At the selected
time points (i.e., the determined growth phases), the cells were
harvested by centrifuging the cultures at 5,000 rpm at 28◦C for
15 min. Thereafter, the supernatants were decanted into new
50 mL falcon tubes and the wet weight of pellets was measured.
Pellets were stored at−80◦C until the metabolite extraction. The
intracellular metabolites were extracted by adding 100% LC-MS
grade methanol to the pellet (15 mg: 320 µL). The mixture was
then vortexed, followed by sonication with a probe sonicator at
55% for 1 min. The homogenous mixtures were centrifuged at
3,700 rpm for 30 min at 28◦C. The supernatants (intracellular
metabolites samples) were filtered into pre-labeled HPLC glass
vials fitted with 500 µL inserts (Shimadzu, South Africa) using
0.22 µm nylon filters and 1 mL syringes.

Sample Analysis—Data Acquisition
Intracellular extracts were analyzed on an Acquity UHPLC
system hyphenated with SYNAPT G1 high definition
quadrupole time-of-flight mass spectrometer (HD-Q-TOF-MS)
equipped with an electrospray ionization (ESI) source (Waters
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Corporations, Milford, United States). Chromatographic
separation was performed on an analytical C18 column HSS T3
(150 mm × 2.1 mm, 1.7 µm) with an injection volume of 3 µL.
A binary solvent system was used as mobile phase, solvent (A)
consisting of ultra-clear milli-Q water with 0.1% (v/v) formic
acid; solvent (B) consisting of 100% acetonitrile with 0.1% (v/v)
formic acid. The gradient elution was carried out at a constant
flow rate of 0.4 mL min−1, using the following conditions: initial
conditions of 99% (solvent A) and 1% (solvent B) for 1 min.
Solvent B was then gradually increased to 99% from 1–24 min
and held constant for 3 min. From 27 to 28 min, solvent B was
increased to 100% and held constant until 30 min (end of run).
For mass spectrometry analyses, ionization was carried out in
ESI positive mode with a 50–1,200 Da, and 0.2 s scan range and
scan time, respectively. Other MS parameters were set as follows:
source temperature of 120◦C, desolvation temperature of 450◦C,
2.5 kV capillary voltage, with 17 and 4 V sampling and extraction
cone voltages, respectively, at a desolvation gas flow rate of
550 L/h. Both full-scan (unfragemented) and fragmentation MS
analyses were carried out. A data independent acquisition (DIA)
method, MSE, was applied (with collision energy ramping from
10 to 40 eV) to obtained fragmentation spectral data.

Molecular Networking in the Global
Natural Product Social Platform
The acquired (ESI positive) mass spectral data files (.raw
Waters) were converted to Mass Spectrometry-Data Independent
AnaLysis (MS-DIAL) compatible formats using the Reifys Abf
(analysis base file) converter software.1 The ABF files were then
uploaded onto the MS-DIAL platform for data-processing and
mass spectral deconvolution of data-independent acquisition
(DIA). The data processing parameters used in MS-DIAL were
as follows: mass accuracy (MS1 and MS2 tolerance) was set at
0.05 Da, the minimum peak height was set at 10 amplitude, mass
slice width set at 0.1 Da for peak detection, a sigma window
value set at 0.5 and retention time tolerance set at 0.2 min.
The acquired peak spots (features) after processing were 543,
567, 603, 3,899, and 2,983 for consortium, B. licheniformis 1001,
B. licheniformis M017, B. laterosporus, and B. amyloliquefaciens,
respectively. Post-data-processing, the Global Natural Product
Social (GNPS) export files, i.e., GNPS MGF file and GNPS Sample
Table (feature quantification table) were uploaded into the GNPS
environment2 via the WinSCP server for molecular networking.

Feature-based molecular networks (FBMN) were generated
using the respective workflow in the GNPS ecosystem. The
set parameters used for generating different FBMN were
precursor ion mass tolerance of 0.5 Da and fragment ion mass
tolerance of 0.5 Da for B. laterosporus and B. amyloliquefaciens
B. licheniformis M017, B. licheniformis 1001, and consortium.
The cosine score was set to be above 0.6 and a minimum of
4 matched fragment ions. The resultant molecular networks
were then enhanced with the MolNetEnhancer (Ernst et al.,
2019) to improve the chemical structural annotations by
incorporating in silico tools such as substructure recognition
topic modeling (MS2LDA, MS2 latent Dirichlet allocation

1https://www.reifycs.com/AbfConverter/
2https://gnps.ucsd.edu/

(Van Der Hooft et al., 2016) with MotifDB (Rogers et al.,
2019) for annotated substructure patterns), DEREPLICATOR
(Mohimani et al., 2018) and network annotation propagation
(NAP) (da Silva et al., 2018). All the GNPS job links are provided
in Supplementary Material. The networks were visualized using
the Cytoscape network visualization tool/software (version 3.8.2)
(Shannon et al., 2003; Smoot et al., 2011).

Metabolite Annotation
Metabolite annotation was performed using semi-/automated
and manual approaches. Automated metabolite annotation
was carried out by searching the MS-DIAL metabolomics
MSP spectral kits (All public MS/MS libraries)3 using MS-
DIAL software. Further automated metabolite annotation was
performed by searching against GNPS libraries via FBMN,
DEREPLICATOR, and NAP which searched mass spectral
and structural databases such as GNPS, HMDB, SUPNAT,
CHEBI, and DRUGBANK. NAP jobs were run using the fusion
scores and consensus score based on the first 10 candidates.
MS2LDA interface in GNPS was used to explore and annotate
substructures. Annotated MotifSets from MotifDB, such as
MassBank, GNPS, Euphorbia, Streptomyces and Salinisporus,
and Photorhabdus and Xenorhabdus, were included in the
substructure discovery. The advanced MS2LDA parameters were
set at default settings, overlap score threshold of 0.3, probability
score of 0.1 and TopX of 5. Further details including which
MotifDB annotated MotifSets were used for positive ionisation
mode and the number of free motifs used can be found in the
GNPS job links provided in the Supplementary Material.

To validate and improve the semi-/automated annotations,
manual spectral annotation was performed using a multistep
workflow consisting of (i) the calculation of molecular
formula (MF) of a selected m/z, rt feature using Masslynx
software (ii) searching of the MF candidates against databases
and bioinformatics tools such Chemspider4 and KEGG,5

(iii) structural confirmation through careful inspection of
fragmentation patterns by examining the MS1 and MSE spectra
of the selected metabolite candidate and (iv) comparative
assessment against annotation information of metabolites
reported in the literature. Metabolites were annotated to levels
2 and 3 as classified by the Metabolomics Standard Initiative
(MSI; (Sumner et al., 2007). All validated metabolites are listed in
Supplementary Tables 1, 2.

RESULTS AND DISCUSSION

Differentiation and Metabolome
Annotation of Bacillus Strains
Decoding and knowing metabolite structures are pivotal to
unraveling and understanding the functions of metabolites in
(biological) systems (Beniddir et al., 2021). This study employed
mass spectrometry, an indispensable MS fragmentation approach
that results in MS/MS spectra, which could be regarded

3http://prime.psc.riken.jp/compms/msdial/main.html#MSP
4www.chemspider.com
5www.genome.jp/kegg/
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as metabolite structural fingerprints (Beniddir et al., 2021).
The spectral data collected from all the selected time points
(3, 7.5, 24, and 31.5 h growth incubation, Supplementary
Figure 1) of Bacillus isolates and consortium were used
to generate feature-based molecular networks (FBMNs)—the
sizes of the resulting FBMNs varied across the different
strains and consortium (Supplementary Figure 2). The most
extensive network belonged to B. laterosporus (3898 spectral
nodes, 496 spectral families, Supplementary Figure 2), followed
by B. amyloliquefaciens (2,985 spectral nodes, 405 spectral
families, Supplementary Figure 2), B. licheniformis M017 (602
spectral nodes, 55 spectral families, Supplementary Figure 2),
B. licheniformis 1001 (566 spectral nodes, 48 spectral families,
Supplementary Figure 2), and consortium (542 spectral nodes,
53 spectral families, Supplementary Figure 2). FBMN captured
the structural diversity (represented as arranged mass spectra)
existing within the chemical space of the four Bacillus isolates and
the consortium (Supplementary Figure 2). The varying network
sizes of the four Bacillus isolates and the consortium are suspected
to be due to sample complexity and/or analytical variations.

The computed FBMNs also revealed putative annotations
through an automated library spectral matching against the
GNPS public spectral libraries, which found a match for 54
out of 3,898 spectral nodes of B. laterosporus, 127 out of
2,985 spectral nodes of B. amyloliquefaciens, 40 out of 602
spectral nodes of B. licheniformis M017, 26 out of 566 spectral
nodes of B. licheniformis 1001, and 22 out of 542 spectral
nodes of consortium (Supplementary Figure 2; GNPS job links
provided in Supplementary Material). These library matches
were scrutinized and the validated metabolite classes included
amino acids and peptides, lipids, organic acids, nucleotides,
vitamins and sugar (Supplementary Table 1). Although still very
useful, FBMN in combination with spectral library matching
enabled the annotation of only a small fraction of microbial
MS/MS spectra, thus highlighting one of the major limitations
in untargeted metabolomics. Furthermore, this demonstrates
that current spectral libraries are still limited; and despite
the development of computational tools, the vast majority
of chemical signatures remain uncharacterized, and not all
experimental spectra have a direct, exact match to the existing
spectra libraries. However, even without fully identical spectral
matches in the current libraries, the exploration of scaffolds
or substructures (as inferred from the fragmentome) can still
provide structural information of metabolites in a sample
(Beniddir et al., 2021).

Thus, to further explore the chemical space of the Bacillus
(isolates and consortium), in silico annotation tools such as
substructure recognition topic modeling (MS2LDA, MS2 Latent
Dirichlet Allocation), and the NAP were performed for all
spectral datasets from all four bacterial strains and a consortium,
respectively. To illustrate the contribution of these tools to
the microbial metabolite annotation and identification at a
scaffold diversity level, the outputs obtained from B. laterosporus
dataset are reported herein (Figure 1 and Supplementary
Figure 3). MS2LDA is a machine learning method that performs
an unsupervised decomposition of fragment spectra, revealing
patterns of co-occurring fragments and neutral losses (termed
“Mass2Motifs,” or shortly “m2m”) from multiple MS/MS spectra

to extract information on substructural diversity within each
class of metabolites (Van Der Hooft et al., 2016; Rogers et al.,
2019). Five hundred and forty-one (541) Mass2Motif entries
(chemical substructures) were learned and extracted from the
B. laterosporus dataset with MS2LDA in GNPS—of which 168
were annotated and visualized via ms2lda.org (Wandy et al.,
2018) into CytoScape (Supplementary Figure 3). Infographics
shown in Figure 1 highlight some MotifDB-annotated motifs
that were found in our LC-MS/MS data: m2m_42, related to
adenine, m2m_4, related to proline, mb motif 4, related to loss
of methyl group and m2m_33, which is indicative of guanine
(Figure 1A), m2m_59, which is indicative of phenylalanine
(Figure 1B) and m2m_3 and m2m_218 which are indicative of
leucine (Figure 1C). The identification of motif m2m_3 helped
with the annotation of the previously unidentified (unmatched
via FBMN) features such as m/z 279, m/z 366 and m/z 577,
which are within the molecular family cluster of leucine-related
compounds (Figure 1C), m/z 279 was annotated as leucyl-
phenylalanine (Figure 1C), m/z 366 as leucyl-phenylalanyl-serine
and m/z 577 as glycine-glycine-serine-aspartic acid-leucine-
glutamic acid, using the knowledge of m2m_3 from the MS2LDA.
These annotations are recorded in Supplementary Table 1.

The NAP tool exploits the network topology to rearrange
candidate structure lists based on neighboring matches within
molecular families (Ernst et al., 2019). To obtain candidate
structures, NAP uses in silico fragmentation performed with
MetFrag, which searches for metabolites in structure databases
such as GNPS, DNP (Dictionary of Natural Products), ChEBI
(Chemical Entities of Biological Interest) and SUPER NATURAL
II (Ernst et al., 2019). Then, NAP uses two scoring methods
to re-rank the candidates: (i) fusion scoring—utilization of
MetFrag in silico prediction with the MetFusion when there
is a spectral library match within a molecular family of the
molecular network and (ii) consensus scoring—which exploits
the structural similarity from in silico candidates across the
spectral nodes of a molecular family. Thus, NAP is also
useful when there are no or very few spectral library matches,
allowing the propagation of annotations even without the
spectral matches to reference MS/MS data. In this study,
we employed NAP onto the FBMN of B.laterosporus to
search against the above-mentioned structure databases—using
both the scoring methods. After manual validation using the
fragmentation patterns and molecular formula prediction in
MarkerLynx and literature, we found that NAP was able to
come up with reliable annotations for nine (9) molecular
entities (out of 1,258 features), i.e., metabolites such as
tyrosine, phenylalanine, tryptophan, L-prolyl-L-isoleucine and
guanosine,2’-deoxy (Supplementary Table 2).

The FBMN workflow was further integrated with in silico
annotation tools such as MS2LDA, NAP, and DEREPLICATOR,
generating enhanced (MolNetEnhancer) molecular networks.
The latter reveals molecular families, subfamilies, and subtle
structural differences between family members (Ernst et al.,
2019), thus allowing increased confidence in the class annotation
and level of biochemical interpretation. MolNetEnhancer
networks provided more comprehensive chemical insights into
each Bacillus strain’s measured metabolomes and the consortium,
respectively (Figure 2 and Supplementary Figures 4, 5).
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FIGURE 1 | MS2LDA-driven metabolite annotation. Subnetworks extracted from an MS2LDA-enhanced molecular network of positive electrospray ionization (ESI+)
MS/MS spectra obtained from B. laterosporus methanolic extracts (Supplementary Figure 3). Colored nodes represent the recognized substructures related to
Mass2Motifs (m2m), (A) m2m_33: related to guanine, m2m_42: related to adenine, m2m_4: related to proline and mb motif4: loss of methyl group, (B) m2m_59:
related to phenylalanine, (C) m2m_3 and m2m_218 related to leucine. The mass spectral network views were obtained via the MolNetEnhancer workflow.

To explore the chemical diversity of the Bacillus metabolome,
we looked at the class ontology level, which revealed various
metabolite classes to be present, as shown in Figure 2.
For example, when looking at lipid and lipid-like molecules,
metabolite classes such as lipopeptides, peptidomimetrics, prenol

lipids, sphingolipids, glycerolipids, etc. were shown in the
consortium (Figure 2). However, we note that some of these
metabolite classes are hardly recorded before in Bacillus species.
For instance, there are limited studies reporting on sphingolipids
in Bacillus species. Currently, there is only one existing
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study reporting the presence of sphingolipids (sphinganine
and phytosphingosine) in Bacillus spp.—sphinganine and
phytosphingosine were identified using Accurate-Mass Q-TOF
LC-MS, the detected masses and retrieved chemical formulae
were further compared with the standard compounds in the
Metlin database (Gao et al., 2016). The latter reported that
B. cereus exhibited high nematicidal activity against Meloidogyne
incognita by producing sphingosine (Gao et al., 2016). Moreover,
the sphingolipid metabolism pathway in B. subtilis exists in
KEGG database6; however, these pathways lack the identification
of enzymes that are directly responsible for the synthesis of
sphingolipids in B. subtilis. Nonetheless, such findings suggest
the possibility of sphingolipids being synthesized by Bacillus
species. As is true for all in silico approaches, further confirmatory
studies are required to validate the existence of metabolite
superclasses and classes annotated by the MolNetEnhancer
strategy (Figure 2 and Supplementary Figures 4, 5). Thus, our
findings provide, for the first time, a global metabolic landscape
that describes the chemotypes of agriculturally important
Bacillus strains. Furthermore, evaluating the chemical space
of different Bacillus strains, i.e., their metabolic potentials
in regards to the biosynthesis of certain metabolites (e.g.,
lipopeptides and sphingosines) can innovatively contribute
toward the design of a novel combination of Bacillus strains
for a biostimulant consortium formulation. For instance, with
the primer knowledge generated from our study regarding
the possibility of the biosynthesis of sphingolipids in Bacillus
species, more studies will build on such insights to further
establish mechanistically the sphingolipids biosynthesis pathways
in Bacillus spp. Such actionable knowledge is a necessary step
toward the design of novel specific biostimulant formulations
containing the sphingolipids-producing Bacillus, which would
exhibit maximum nematocidal activity.

Lipid and Lipid-Like
Molecules—Lipopeptides: A Bioactive
Molecular Family of Interest in
Bacillus-Plant Interaction
As revealed by the generated MolNetEnhancer networks of
the Bacillus isolates and the consortium (Figure 2 and
Supplementary Figures 4, 5), the lipid and lipid-like molecules
were the most predominant superclass (e.g., 25 out of 53
spectral families in the consortium (Figure 2). Within this
superclass, the lipopeptide class can be found (Figure 2)—these
latter are cyclic compounds known to be present in Bacillus
strains, including members of the surfactin, lichenysin, iturin,
and fengycin families (Bernat et al., 2016). Interestingly, we
observed several lipopeptide molecular families with differential
abundance between the various strains and consortium. The
surfactin family cluster was more apparent in the consortium
(Figure 3) whereas, the lichenysin family cluster was more
apparent in the B. licheniformis strains (Figure 3). The
consortium revealed three surfactins with mass-to-charge ratio
(m/z) 1008.7 [M + H]+, m/z 1044.7 [M + Na]+ and m/z
1058.7 [M + Na]+, which were manually annotated [based on
fragmentation fingerprints and available literature (Nguyen et al.,

2013), see methodology] as surfactin A, surfactin B, and surfactin
C, respectively (Figure 3). The B. licheniformis 1001 network
revealed three (3) lichenysins, with m/z 1007.7 [M + H]+, m/z
1021.7 [M + H]+ and m/z 1057.7 [M + Na]+, which were
manually annotated (based on fragmentation fingerprints and
available literature, see methodology) as lichenysin 2, lichenysin
3, and lichenysin 4, respectively (Figure 3). The B. licheniformis
M017 network showed lichenysin 4 only (Figure 3). Surfactins
and lichenysins were not detected at all in B. laterosporus
strain (Figure 4).

Further investigation of surfactins across isolates and
consortium showed that the signal at m/z 1008.7/1030.6
(annotated as ion species of surfactin A—Figure 3) had a higher
ion intensity in the consortium vs. in isolates (Figures 4A,C).
Inversely, the signal at m/z 282.3 showed a higher ion intensity
in the isolates compared to the consortium (Figure 4). m/z
282.3 was determined to be a lipopeptidic fragment of surfactin
A (Figure 4B). Moreover, the increased levels of surfactin B
(m/z 1022.7/1044.7) and surfactin C (m/z 1036.66/1058.66) was
also observed in the consortium vs. in isolates (Figures 4D,E).
Such observations suggest that the combination/co-culture of
Bacillus strains encourages increased biosynthesis of surfactins.
Coincidingly, similar results were found in the study by Zhi
et al. (2017), where co-culturing of two B. amyloliquefaciens
strains, MT45 and X82 yielded 50% increase of surfactin
production. Surfactins can function as signaling molecules
in the intraspecific intercommunication of Bacillus cells—
these lipopeptides can interact with the cell membranes—
and their presence influences biofilm formation (López et al.,
2009; Zhi et al., 2017; Chen et al., 2020). Interestingly, a
study by Zhi et al. (2017) showed that biofilm formation is
negatively correlated to increased surfactin synthesis, indicating
a complex interplay between molecular factors. Moreover, the
authors speculated that biofilm formation interferes with the
interaction between pheromone ComX and histidine kinase
ComP, thereby directly suppressing the transcription of surfactin
synthetase gene (Zhi et al., 2017). Supported by the findings
of Zhi et al. (2017), our results suggest that the selected
Bacillus strains (B. licheniformis M017, B. licheniformis 1001,
B. amyloliquefaciens, and B. laterosporus) are perfect co-culture
partners to promote surfactin synthesis that in turn can promote
the formation of protective biofilms and can also hamper the
growth of pathogenic microbes by penetrating their membranes.
Thus, such information (i.e., microbial intraspecific interactions)
can be harnessed and utilized to develop commercially valuable
formulations for the agricultural, bioremediation, cosmetics, or
pharmaceutical industries.

In contrast to surfactins, lichenysin 2, 3, and 4 were only found
in the monocultures of B. licheniformis 1001 and B. licheniformis
M017, respectively, and were not reflected in the consortium
(Figures 4F–H). These results suggest that co-culturing of
B. licheniformis M017, B. licheniformis 1001, B. amyloliquefaciens,
and B. laterosporus does not support the synthesis of lichenysins
(Figures 4F–H). Moreover, lichenysin 2, 3, and 4 were found
in higher levels in B. licheniformis 1001 than B. licheniformis
M017, suggesting that B. licheniformis 1001 is a better lichenysins
producer (Figures 4F–H).
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FIGURE 2 | Representative MolNetEnhancer mass spectral feature-based network of consortium showing the chemical superclasses (written in colors
corresponding to the nodes) and classes (written in black) that were putatively annotated based GNPS library matches and enhanced with substructure annotations
(MS2LDA), network annotation propagation (NAP), and DEREPLICATOR outputs. The MolNetEnhancer networks of Bacillus isolates are shown in
Supplementary Figures 4, 5.

FIGURE 3 | Lipopeptide clusters extracted from the networks of isolates and the consortium (full networks in Supplementary Figure 2). Different node colors
represent different strains, orange (consortium), pink (B. amyloliquefaciens), green (B. licheniformis 1001), and purple (B. licheniformis M017). Feng, fengycin.
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FIGURE 4 | Full MS scans of m/z 1008.7/1030.6 (surfactin A) and relative quantification of surfactins and lichenysins. (A) Full MS scans of m/z 1008.7/1030.6
(surfactin A) in Bacillus consortium and Bacillus isolates, B. amyloliquefaciens, B. licheniformis 1001, B. licheniformis M017, and B. laterosporus. Increased ion
intensity of m/z 1008.7/1030.6 is observed in the consortium whereas its fragment (m/z 282.3) is decreased (highlighted in red boxes). (B) Structure of surfactin A.
(C–H) Boxplots showing the relative quantification of surfactins A–C and lichenysins 2, 3, and 4 in the Bacillus strains and the consortium.

The network clusters in which surfactins and lichenysins
(in consortium and B. licheniformis strains, respectively) were
annotated showed nodes representing the m/z 739.45, 753.45,
and 767.47 (Figure 3), suggesting a spectral similarity between
the mentioned spectral nodes and surfactin and lichenysin
family. Thus, this information was used to further explore
the identity of these three nodes (m/z 739.45, m/z 753.45,
and m/z 767.47). The study of Nasfi et al. (2018) revealed
that these three nodes are doubly charged ion species that

represent C15 fengycin B2 (m/z 1477.83), C17 fengycin B
(m/z 1505.85), and fengycin C, respectively. The putative
annotation of fengycins nicely illustrates that FBMN allows
the annotation of unknown spectral nodes through spectral
similarity. Furthermore, our findings suggest that the other
unannotated nodes within these clusters (Figure 3) are
structurally related to lipopeptides, and such information can
help assign names to more unannotated nodes. Moreover,
another family of lipopeptides that was putatively annotated in
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FIGURE 5 | Molecular networking of positive electrospray ionization (ESI+) MS/MS spectra obtained from consortium over time. The zoom-in snaps show that the
presence of lipopeptides (surfactins) varies depending on the bacterial growth phase. The nodes are colored based on the acquired mass range (m/z 50–1,200 Da)
of the precursor ions: light pink nodes represent the smallest masses whereas the dark purple nodes represent the largest masses.

the metabolome of Bacillus strains is the iturin family—notably,
correctly subclassified as dipepsipeptides by MolNetEnhancer
(distinct from the surfactin, lichenysin and fengycin cluster)
(Figure 2). The application of MolNetEnhancer aided in
assigning names to two nodes (within the iturin dipepsipeptides
cluster), annotating m/z 1101.6 and m/z 1030.5 annotated as
iturin F1/F2 and iturin A1, respectively, in all isolates and the
consortium networks (Figure 3). Overall, with the assistance
of molecular networking tools, we could annotate several
lipopeptides from Bacillus isolates and the consortium: three
variants of surfactins (surfactin A, surfactin B, and surfactin
C), three variants of lichenycins (lichenycin 2, lichenycin 3 and
lichenycin 4), three variants of fengycins (fengycin B2, fengycin
B, and fengycin C) and two variants of iturins (iturin F1/F2 and
iturin A1) (Figure 3).

The pursuit of discovering and exploring Bacillus lipopeptides
has long been an attractive undertaking for scientists and industry
researchers due to its various applications such as interference
with flagella development, affecting the bacterial adhesion,
inhibition of biofilm formation and disruption of pre-formed
biofilms (Hu et al., 2019; Englerová et al., 2021). Moreover,
the bioactivity of lipopeptides comes from the capability of
these cyclic compounds to disrupt the structures and functions
of bio-membranes, which improves membrane permeability—
one of the key factors important in Bacillus-plant chemical
intercommunication (Bernat et al., 2016). For example, surfactins
represent a class of lipopeptides that have been extensively

studied. A recent study by Andrić et al. (2021) demonstrated that
Bacillus mobilizes its surfactin to improve motility and reduce
the toxicity of Pseudomonas by acting as chemical deactivators
of Pseudomonas lipopeptides, sessilins and tolaasins.

Moreover, Bacillus surfactins have also been shown to
promote a symbiotic relationship with other beneficial bacterial
species, thus shaping the plant microbiome. For example,
the study by Luzzatto-Knaan et al. (2019), demonstrated
the role of surfactins as interspecies recruitment factor—
where surfactins recruited Paenibacillus dendritiformis to its
ecological niche. In this study, the authors applied imaging
mass spectrometry (IMS) and molecular networking to elucidate
the exact molecular mechanisms involved in the chemotaxis of
P. dendritiformis toward B. subtilis. One of the exact mechanisms
demonstrated was that, P. dendritiformis actively breaks down
B. subtilis-produced surfactins. Moreover, the degradation
products (lipopeptidic fragment m/z 636.42 [M + Na]+ and
peptidic fragment m/z 459.28 [M + H]+) of surfactin C
were demonstrated to serve as territorial markers and also
indicated the metabolic exchange between the interacting
partners (Luzzatto-Knaan et al., 2019). In other words,
characterizing the intracellular metabolome of the bacteria
(PGPR in this case), provides insights necessary for the
biostimulant industry. In the same philosophy, interrogating
the metabolome of the biostimulant consortium (reported in
our study) indicated differential metabolic profiles compared
to Bacillus isolates/individual strains. Such inisghts pave a way
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FIGURE 6 | Qualitative and relative quantification of surfactins in the consortium over time (bacterial growth phases). Surfactin A, B, and C are present in large
amounts in the late growth stages (24 and 31.5 h, stationary phase) compared to the early growth stages (lag, 3 h and log, 7.5 h).

to possibilities of designing and formulating different Bacillus
combinations, novel microbial biostimulants.

Differential Metabolic Charts of Bacillus
Strains at Different Growth Stages and
Longitudinal Lipopeptide Profiles
The timing of production and the distribution of metabolites
within microbial populations can provide valuable insight into
the function of specific molecules (Watrous et al., 2012).
Thus, in this study, Bacillus strains were cultured in an LB
media (experimental section) and the growth progression was
monitored over time (Supplementary Figure 1). The cells were
harvested at different time points, corresponding to a bacterial
growth stage (Supplementary Figure 1). The 3-h (3 h) extract
represents the lag phase (Supplementary Figure 1), described
as a “delayed” growth stage whereby the cells are preparing to

adapt and exploit new environmental conditions. This growth
stage is assumed to include the process of restoring damaged
macromolecules and the biosynthesis of cellular components
necessary for cell differentiation and growth (Rolfe et al., 2012).
The 7.5 h extract represents the log phase also known as
the exponential phase (Supplementary Figure 1)—a stage in
which the microbial cells are rapidly dividing, thus being more
energy-demanding (Rolfe et al., 2012; Aliashkevich et al., 2018).
Lastly, the 24 and 31.5 h extracts represent the stationary phase
(Supplementary Figure 1)—a bacterial growth stage whereby
cells are both actively dividing as well as dying (Raad et al., 2021).

To examine the temporal changes of the metabolic
features in Bacillus strains, FBMN was applied (Figure 5
and Supplementary Figures 7–9). The generated MNs
showed differential network topology at each time point,
reflecting a reprogramming of the bacterial metabolism
at various growth stages (Figure 5 and Supplementary
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Figures 7–9). As shown above (Figure 4), the surfactins
are predominantly present in the consortium, followed
by B. amyloliquefaciens (Figure 4), thus time-dependent
FBMN was applied to qualitatively evaluate the presence of
surfactins at different growth stages of cells in the consortium
and B. amyloliquefaciens (Figure 5 and Supplementary
Figure 7). Time-dependent FBMNs clearly showed that the
surfactin variant with a longer lipid chain (Surfactin C, m/z
1036.69/1058.67) was present in the consortium (Figures 5, 6)
and B. amyloliquefaciens (Supplementary Figure 7) across
the whole-time course, from the lag- to stationary phase
(Supplementary Figure 1). Moreover, surfactin C is the most
abundant surfactin variant in the consortium, as depicted
by the peak area (Figures 4C–E, 6). The surfactin with the
second-longest lipid chain, surfactin B (m/z 1022.68/1044.66),
was also present throughout the bacterial growth time course
(3, 7.5, 24, and 31.5 h) in B. amyloliquefaciens (Supplementary
Figure 7), whereas in the consortium, surfactin B was present
at log phase (7.5 h) and stationary phase (24 and 31.5 h)
only (Figure 5). Corresponding findings were obtained in the
study by Watrous et al. (2012), where surfactin variants with
longer lipid chains were found throughout the growth stages of
B. subtilis.

The surfactin with a shorter lipid chain (surfactin A, m/z
1008.6/1030.6), in contrast, only appeared in the consortium at
the stationary phase, at 24 and 31.5 h (Figures 5, 6), whereas in
B. amyloliquefaciens, surfactin A appeared after 7.5 h incubation
(log phase) and remained present at the stationary phase (24 and
31.5 h) (Supplementary Figure 7). The relative quantification
evaluation of surfactins in the consortium showed that all
surfactin variants, surfactin A, B, and C levels are higher at the
stationary phase (24 and 31.5 h) compared to the lag (3 h) and
log phase (7.5 h) (Figure 6 and Supplementary Figure 6).

B. licheniformis 1001 and B. licheniformis M017 were
characterized by lichenysin variants and surfactins were
not observed (Figure 3). However, upon performing time-
dependent FBMN, surfactins were found in B. licheniformis
1001 and B. licheniformis M017 (Supplementary Figures 8, 9).
All three surfactin variants, surfactin A, B, and C were
detected in B. licheniformis 1001 at the stationary phase
(24 h) (Supplementary Figure 8), whereas in B. licheniformis
M017, only surfactin C was present at the lag phase (3 h)
(Supplementary Figure 9). Lichenysin 2, 3, and 4 (m/z 1007.7,
m/z 1021.7/1043.7, m/z 1035.7/1057.7, respectively) were
present in B. licheniformis 1001 at the log (7.5 h) and stationary
phase (24 and 31.5 h) (Supplementary Figure 8), whereas
no lichenysins nor surfactins were found at the lag phase
(3 h) in B. licheniformis 1001 (Supplementary Figure 8).
B. licheniformis M017 showed only lichenysin 2, 3, and 4 at the
stationary phase (24 h) (Supplementary Figure 9). Moreover,
B. licheniformis M017 showed only lichenysin 4 at the log
phase (7.5 h) and only lichenysin 2 at the stationary phase
(31.5 h) (Supplementary Figure 9). Similar to the surfactins
in the consortium (Figure 5), lichenysin variant of a shorter
lipid chain (lichenysin 2, m/z 1007.6/1029.6) was observed
in B. licheniformis M017 at the late bacterial growth stages,
stationary phase (24 and 31.5 h) (Supplementary Figure 9).

These results show that time-dependent FBMN provides unique
access into molecular information about microbial systems,
such as the production of different lipopeptide variants in
Bacillus.

Thus, the application of mass spectrometry and molecular
networking tools allowed the decoding of Bacillus intracellular
chemical space, revealing a metabolic landscape characterized
by various chemical classes. Furthermore, investigating the
chemical classification of the lipopeptide clusters (within the
lipids and lipid-like molecules), led to the putative annotation
of four (4) lipopeptides classes: lichenysins, surfactins, iturins,
and fengycins. Based on the results of this study, it appears
that surfactins are present in larger quantities in the consortium
compared to the other annotated lipopeptides such as lichenysins
iturins and fengycins (Figure 4). Furthermore, surfactins were
present in high levels in the consortium compared to the
isolates (Figures 4C–E). Surfactins have been proven to be
involved in recruiting other organisms to their ecological
niche (Luzzatto-Knaan et al., 2019) —such metabolic interplay
suggests that plant inoculation with the consortium may
be advantageous to establish a favorable mixed microbial
community, thus, reinforcing synergistic collaborations in the
plant microbiota.

Further interrogation of the lipopeptide clusters revealed that
lichenysins were unique to B. licheniformis strains. Moreover,
performing time-dependent MN revealed that surfactins are also
present in B. licheniformis strains (Supplementary Figures 7, 8),
which were not shown in the network with combined time points
(Figure 3). Time-dependent MN also showed an increasing
number of lipopeptides in all the isolates and the consortium
over time, and the stationary phase (24 and 31.5 h) was identified
as the bacterial growth phase whereby lipopeptides are present
in large amounts in the cells (Figure 5 and Supplementary
Figures 7–9). Such information can help lipopeptide production
companies to achieve a commercial scale by reducing the high
production and time costs, as those are identified as the main
obstacles to the large-scale industrial application (Zhi et al., 2017).
Furthermore, time course studies (Supplementary Figures 6–9),
can help determine the overturn of functional metabolites in the
bacterial formulations as well as the shelf-life of the products,
thereby contributing to the development and commercialization
of effective microbial formulations (Aamir et al., 2020).

We do recognize that our study includes several limitations: (i)
since untargeted metabolomics approach was applied to perform
a wide-screen study, relative quantification was performed; and
a targeted metabolomics study is recommended for validation
and absolute quantification of selected subset of metabolites
(e.g., lipopeptides); moreover, other complementary omics
approaches such as gene expression could be integrated to gain
further insights in molecular mechanisms; (ii) metabolite feature
recognition and metabolites annotated via automated library
matching still require substantial manual expert intervention; (iii)
some of the chemical classes identified through MolNetEnhancer
still require further confirmation; (iv) microbial databases are
still in the developmental phase [we recognize increasing efforts
to collect and share curated microbial data, i.e., such as in the
NP Atlas database, (Van Santen et al., 2019)], and submission
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of high-quality Bacillus annotated spectra to existing libraries
(such as those present in GNPS) is crucial to obtaining the
fully annotated map of the Bacillus metabolism—the latter
could translate into a significant knowledge contribution to the
science community and to commercial sectors, i.e., companies
formulating Bacillus-based biostimulants; (v) the functions of
annotated metabolites (e.g., lipopeptides) still require further
investigation under real-world conditions (i.e., plant-Bacillus
interactions). Some studies support that indeed plant-associated-
Bacillus strains secrete the annotated lipopeptides (surfactins,
iturins, and fengycins) to the rhizosphere. For example, the study
by Nihorimbere et al. (2012) demonstrated that lipopeptides
secreted by root-adhering Bacillus cells bind with high affinity
to plant cell membrane and remain tightly associated with
the membrane structure of plant cells. Another study by
Chowdhury et al. (2015) demonstrated that surfactins and
other lipopeptides produced by B. amyloliquefaciens were
secreted to the lettuce rhizosphere and were proven to be
involved in the disease suppression by regulating the plant
defense genes toward Bottom Rot pathogen, Rhizoctonia solani.
Despite these limitations, our study has provided unique
insights into the microbial chemical space of plant-associated
bacteria that will pave the way for future studies that further
confirm and assess our current findings. Future studies could
include (i) identifying the exact mechanisms (i.e., impacted
pathways) involved in enhancing surfactin biosynthesis in the
consortium due to synergistic interaction of isolates and (ii)
investigating the correlation between the enhanced surfactin
biosynthesis and the surfactin secretion to the extracellular
space. Such studies will contribute toward understanding
the chemical intercommunication between the PGPR-secreted
surfactins and the plant.

The lack of high-throughput annotation tools has been
one of the constraining factors in untargeted metabolomics,
limiting the chemotyping of agricultural plant growth-promoting
rhizobacteria (PGPR) and mechanistic understanding of the
belowground microbe-plant interactions. In this study, the
application of metabolome mining tools found in the GNPS
environment enabled putative annotation and classification
of metabolites in Bacillus strains and consortium. Further
interrogation of lipopeptides revealed that co-culturing of
Bacillus strains (B. licheniformis M017, B. licheniformis 1001,
B. amyloliquefaciens, and B. laterosporus) are suitable co-culture
partners to promote surfactin synthesis. Deeper understanding
of the bacterial metabolome and metabolic pathways (i.e.,
surfactin biosynthesis pathway) that are activated during
the interaction of isolates in the consortium can contribute
to the elucidation of the exact plant growth-promoting
properties. Moreover, the molecular networking approaches
allowed the visualization of the metabolic snapshots of the
bacteria at different time points, facilitating the characterization
of the bacterial growth stages, which informatively and

descriptively points out intracellular molecular circuits and
processes occurring in the bacterial strains under study.
This fundamental and actionable knowledge—metabolic
profiles of Bacillus strains and consortium—contributes to
understanding the chemical space of PGPR, which can
inform on the bacterial strain resistance/persistence and
also predict the performance of the formulated product
under field conditions Ultimately, such efforts would help in
designing the effective Bacillus-based formulations, eliminating
chances of inconsistence and inadequate performance (Aamir
et al., 2020). Moreover, our acquired knowledge of the
bacterial chemical space and the described methodology
can be used in various economic sectors such as the
cosmetic, pharmaceutical, and food industries, apart from
agricultural applications.
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