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Potassium (K) is one of the most important elements influencing cotton metabolism,

quality, and yield. Due to the characteristics of strong fluidity and fast redistribution of

the K in plants, it leads to rapid transformation of the K lack or abundance in plant

leaves; therefore, rapid and accurate estimation of potassium content in leaves (LKC,

%) is a necessary prerequisite to solve the regulation of plant potassium. In this study,

we concentrated on the LKC of cotton in different growth stages, an estimation model

based on the combined characteristics of wavelet decomposition spectra and image

was proposed, and discussed the potential of different combined features in accurate

estimation of the LKC. We collected hyperspectral imaging data of 60 main-stem leaves

at the budding, flowering, and boll setting stages of cotton, respectively. The original

spectrum (R) is decomposed by continuous wavelet transform (CWT). The competitive

adaptive reweighted sampling (CARS) and random frog (RF) algorithms combined with

partial least squares regression (PLSR) model were used to determine the optimal

decomposition scale and characteristic wavelengths at three growth stages. Based on

the best “CWT spectra” model, the grayscale image databases were constructed, and

the image features were extracted by using color moment and gray level co-occurrence

matrix (GLCM). The results showed that the best decomposition scales of the three

growth stages were CWT-1, 3, and 9. The best growth stage for estimating LKC in cotton

was the boll setting stage, with the feature combination of “CWT-9 spectra + texture,”

and its determination coefficients (R2val) and root mean squared error (RMSEval) values

were 0.90 and 0.20. Compared with the single R model (R2val= 0.66, RMSEval= 0.34),

the R2val increased by 0.24. Different from our hypothesis, the combined feature based

on “CWT spectra+ color+ texture” cannot significantly improve the estimation accuracy

of the model, it means that the performance of the estimation model established with

more feature information is not correspondingly better. Moreover, the texture features

contributed more to the improvement of model performance than color features did.

These results provide a reference for rapid and non-destructive monitoring of the LKC

in cotton.

Keywords: hyperspectral imaging, potassium content in leaves, continuous wavelet transform, gray level

co-occurrence matrix, cotton, growth stage
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INTRODUCTION

Potassium (K) is an essential and favorite nutrient element in
the growth of cotton. The level of K directly affects the growth
and development of cotton and the quality of fiber (Pettigrew,
2008; Lewis et al., 2021). Affected by the parent material of
soil formation, the soil in Xinjiang, China is rich in K. The
content of available K in arable soil tends to be high in the
north and low in the south, but in recent years, cotton fields in
some areas have been deficient in K (Tian et al., 2020; Wang
et al., 2021). Furthermore, Xinjiang has high-quality and high-
yield cotton and a large demand for soil nutrients. Therefore,
an excessive supply of potash fertilizer is usually used to avoid
production reduction due to lack of the K, resulting in an increase
in cotton production costs. However, the accurate method of
element determination is time-consuming and laborious, so it is
of great significance to monitor the potassium content in cotton
leaves (LKC) quickly and without damage for the healthy growth
of cotton, the recommendation of fertilizer application amounts
and the reduction in resource waste.

Proximal hyperspectral remote sensing technology has
become an effective means to evaluate precision agriculture
(Pandey et al., 2017; Li et al., 2019), which can be divided
into imaging spectra and non-imaging spectra. They can
collect hyperspectral reflectance data from the visible, near-
infrared (NIR) and short-wave infrared (SWIR) regions of the
electromagnetic spectrum (Mertens et al., 2021), so that a
wide variety of physiological traits of crops can be studied,
such as crop nutrient deficiency (Furlanetto et al., 2021; Jiang
et al., 2021; Mahajan et al., 2021, photosynthetic efficiency (El-
Hendawy et al., 2017), water stress (Sun et al., 2021; Zhou et al.,
2021), chlorophyll fluorescence (Zhao et al., 2021), heavy metal
pollution (Lin et al., 2021) and early plant disease detection
(El-Hendawy et al., 2017; Barros et al., 2020). On the other
hand, hyperspectral imaging can simultaneously obtain the target
spectrum and image information, and is regarded as a technique
with high-throughput plant phenotype potential (Pandey et al.,
2017). Although there are many studies on nutrition monitoring
using near-end hyperspectral imaging, most of them focus on
quantitative monitoring and diagnosis of crop nitrogen (N), such
as wheat (Mahajan et al., 2014; Jiang et al., 2021), rice (Men
et al., 2021), maize (Furlanetto et al., 2021), cotton (Oliveira
et al., 2020), rape (Liu et al., 2020a), soybean (Chen et al.,
2019), orange (Osco et al., 2019, 2020a), tea (Wang et al., 2020)
and mango (Mahajan et al., 2021). At present, the quantitative
monitoring research on crop K is also gradually carried out, but
more studies often analyze the K together with other elements
(Liu et al., 2020b; Osco et al., 2020a,b; Mahajan et al., 2021),
and there are few studies only on the characteristics of single
the K nutrient element. Indeed, a large group of K+ transporters
and channels has been identified in plants (Gierth and Maser,
2007), and cytoplasmic concentration of K+ is maintained
around 80–150MM (Ahmad and Maathuis, 2014). Preserving
this concentration range is important for many physiological
processes as the enzyme activations, and stabilization of protein
synthesis (Villette et al., 2020). These processes are present in all
tissues and subcellular compartments of cells, which enables the

precise quantification of foliar K attributes of the foliage. It has
been shown that the 550–700 and 1,390–1,880-nanometer (nm)
wavelengths were the best wavelengths to explain the difference
in nutrient levels of N, P, and K in cotton (Oliveira et al.,
2020; Wang et al., 2020). Thus, the research utilizing sensitive
characteristic wavelengths or vegetation indexes to identify and
estimate the K deficiency are common method in rice (Das et al.,
2020), wheat (Hussain et al., 2017), and maize (Furlanetto et al.,
2021). However, to which extent the K can be estimated using
hyperspectral requires further investigations.

Continuous wavelet transform (CWT) has attracted
increasing attention in image and spectral signal decomposition
due to its rich wavelet basis function, multi-resolution, and
time-frequency locality (Chen et al., 2010; Yue et al., 2020).
Because the CWT can perform multi-scale decomposition of
spectrum and has good performance in characteristic wavelength
selection and fine spectral signal extraction (Chen et al., 2019), it
has been widely used in crop biochemical parameter inversion
of hyperspectral data (Zhang et al., 2014), including estimating
the above-ground biomass of wheat (Yao et al., 2018; Yue
et al., 2020), analyzing the relationship between leaf copper
content and spectrum (Lin et al., 2021) and rapidly detecting
the chlorophyll fluorescence parameters of potato leaves (Zhao
et al., 2021). Therefore, it is of great significance to improve
the accuracy of spectral monitoring to construct a quantitative
regression relationship between the wavelet coefficients and
nutrient parameters (Mahajan et al., 2014).

As an imaging spectrometer can provide very high spatial
and spectral resolution data (Pandey et al., 2017), it is necessary
to consider the spatial information (e.g., color and texture) in
hyperspectral images in addition to the spectral information
to estimate crop nutrients. Image color can express the color
distribution and range of image, while image texture reflects the
information of uniformity, sharpness and spatial arrangement of
image gray distribution. Although there are few studies on the
role of image features in hyperspectral nutrient monitoring, it
has important application potential in the field of hyperspectral
imaging (Jiang et al., 2021). Zheng et al. (2017) extracted 14
vegetation indices related to color features to segment corn,
and the accuracy rate over 90.19%. Zou et al. (2019) segmented
broccoli seedlings from weeds and soil by extracting GLCM
features and color features, and achieved higher accuracy. In
the existing studies have demonstrated that the K deficiency
causes discoloration of crop leaf tips and edges [such as wheat
(Mahajan et al., 2014), rice (Sun et al., 2018), soybean (Ghosal
et al., 2018), and cotton (Oliveira et al., 2020)], then gradually
spread to the center of the leaf, develop into brown spots, and
finally wither and necrosis, resulting in changes in leaf color and
texture (Laddi et al., 2013). Also, vegetation coverage and NDVI
value are significantly reduced (Severtson et al., 2016). Besides,
through the calculation of crop RGB image, it was found that
the extension rate of the K deficient leaves slowed down and the
wilting rate accelerated (Sun et al., 2018). However, the potential
for the image features of leaf hyperspectral imaging data for
estimating crop nutrients stress (e.g., K) is not well documented.

Hence, using the high-resolution proximal hyperspectral
imaging data of cotton leaves in different growth stages, this study
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proposed an estimation model of the LKC in cotton based on
the combined characteristics of “CWT spectra + image.” The
main objectives of this study were to (1) clarify the characteristics
of hyperspectral response of cotton LKC at different growth
stages, and the effective characteristic wavelengths of the best
decomposition scale was determined combined with CWT and
PLSR, (2) construct a gray image database of characteristic
wavelengths in different growth periods to extract and screen
sensitive image features, and (3) evaluate the potential of different
“CWT spectra + image” combination features to estimate the
LKC of cotton at different growth stages.

MATERIALS AND METHODS

Experimental Design
The research area was located in Erlian (85◦59

′
41

′′
E,

44◦19
′
54

′′
N), the teaching experiment field of Shihezi University.

Sunshine duration is 2,721–2,818 h, ≥ 0◦C active accumulated
temperature is 4,023–4,118◦C, ≥10◦C active accumulated
temperature is 3,570–3,729◦C and frost-free period is 168–
171 days. The soil texture was loam, and the 0–20 cm soil
layer contained 19.06 g·kg−1 organic matter, 12.8 mg·kg−1

total nitrogen, 20.8 mg·kg−1 available phosphorus, and 165.1
mg·kg−1 available potassium. The soil pH is 8.17 and electrical
conductivity (EC) is 0.42 ms·cm−1. During the whole growth
period of cotton, nitrogen, phosphorus, and potassium fertilizer
were applied with water drops. The urea (N, 46%) of 276
kg·hm−2, monoammonium phosphate (P2O5, 61%) of 174
kg·hm−2 and potassium sulfate (K2O, 50%) was used as a
potassium fertilizer. A total of 9-times drips were given during
the whole growth period, and the fertilization ratios of the
three fertilizers (N, P, and K) were 2.5, 7.7, and 0% (June
7), 7.5, 11.7, and 6.7% (June 15), 7.5, 11.7, and 6.7% (June
24), 12.5, 19.2, and 20% (July 2), 20, 19.2, and 20% (July 18),
25, 15.4, and 13.3% (July 26), 15, 15.4, and 13.3% (Aug 5),
10, 0, and 13.3% (Aug 15), 0, 0, and 6.7% (Aug 25). At each
fertilization, the three fertilizers weighed in proportion are
poured into the corresponding differential pressure fertilization
tank to dissolve, and then drip irrigation was applied to
the plot.

The experiment was carried out in the study area from April
to September 2020. The variety Xinluzao 53 was selected for the
experiment. The planting pattern was “one film, three tubes, and
six rows” and the plant spacing was 10 + 66 + 10 cm. Four K
application levels were set, namely, blank (0 kg·hm−2), low K
(75 kg·hm−2), conventional K (225 kg·hm−2), and high K (375
kg·hm−2). We used a random block design with 3 replicates on a
total of 12 plots with a single plot area of 25 m2 (Figure 1). The
sowing date was 18 April 18 2020, the topping date was 9 July
202 and the sampling periods were the budding stage (30 June
2020), flowering stage (12 July 2020) and boll setting stage (30
July 2020). Five pieces of cotton main-stem leaves with similar
growth in the middle and upper parts were randomly collected
from each plot, a total of 60 main-stem leaves were collected
in one growth period, and a total of 180 main-stem leaves were
collected in three growth periods.

Hyperspectral Image Data Acquisition
The SOC710-VP portable visible-near-infrared hyperspectral
imaging spectrometer (Surface Optics Corporation, USA) was
used for data acquisition. The spectral resolution is 5 nm, the
image resolution is 692 × 520 and the spectral range is 376–
1,044 nm, with a total of 128 bands. After removing the front
and rear spectral noises, each hyperspectral image cube selected a
wavelength in the range of 400–950 nm, with a total of 106 image
bands. To reduce the influence of natural light, all images were
captured in a dark box (Figure 2).

Cotton main-stem leaves are the main source organs
providing assimilates to cotton bolls (Pace et al., 1999). Fresh
main-stem leaves at the three key growth stages were selected to
be tiled in a dark box with a low-reflectivity black background
plate according to the order of leaf position. At the same time,
a standard gray plate was placed 5 cm away from the leaf edge to
assist black-and-white correction. To reduce the influence of light
source intensity, exposure time, and dark current in the sensor
during spectral scanning, the instrument should be preheated
for 30min. The scanning parameters of the hyperspectral imager
were as follows: object distance, 88 cm, scanning rate, 150–
200 frames·s−1, aperture, 5.6. The collected spectral data were
digital (DN) and were converted into spectral reflectance through
spectral calibration and radiometric calibration in SRAnal 710
software according to the grayscale reference panel in each
original image. The average spectral reflectance of the whole leaf
was extracted as the original spectral data of this sample (Lin
et al., 2021).

Determination of Total Potassium Content
in Plants
The total potassium content in leaves was determined using a
H2SO4-H2O2 flame photometer (Bao, 2000). Fresh leaves were
dried at 85◦C for 30min and then at 105◦C until reaching a
constant weight. The dried leaf samples were ground, weighed
and then digested with H2O2-H2SO4, and the K was determined
using a laboratory flame photometer (FP640, Yidian Co., Ltd,
Shanghai, China). The total LKC was calculated according to the
following formula:

K(%) = ρ × V × ts× 10−4

m
(1)

where ρ is the mass concentration of K obtained from the
standard curve (ug·mL−1), V is the measuring liquid volume
(ml), ts is the separation multiple, and m is the dry sample
mass (g).

Data Processing
Continuous Wavelet Transform
Continuous wavelet transform (CWT) is an effective signal
processing tool to decompose an original signal into
multidimensional signals, mainly including discrete wavelet
transform and continuous wavelet transform (Liu et al., 2020b).
In the CWT, the algorithm uses the selected mother wavelet
to decompose the hyperspectral data into a series of wavelet
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FIGURE 1 | The study site and the location of the experiments.

coefficients of different scales, which is a linear transformation.
Its transformation formula is as follows:

Wf

(

a, b
)

=
∫ ∞

−∞
f (λ)ψa,bdλ (2)

ψa,b (λ) =
1√
a
ψ(
λ− b

a
) (3)

where f (λ) is the leaf hyperspectral reflectance, λ is the
wavelength within 400–950 nm,ψa,b is the wavelet basis function,

a is the scale factor, b is the translocation factor, and Wf (a, b) is
a two-dimensional matrix, including i and j, where i represents
the decomposition scale (i = 1, 2, 3, . . . , m) and j represents the
band range of the spectrum (j = 1, 2, 3, . . . , n), forming an m
by n matrix. In this study, the spectral data of cotton leaves at
three growth stages were obtained, and each leaf sample included
106 bands. As the setting of the decomposition scale has a certain
influence on spectral feature recognition (Liu et al., 2020; Lin
et al., 2021), the decomposition scale in this study was set as
21, 22, 23, . . . , 210, scales 1–10. Among them, the decomposition
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FIGURE 2 | Hyperspectral image acquisition system. System consisting of a hyperspectral imager, dark box, lighting system, lifting platform, and a computer.

scales 1–3 and 4–7 belong to low frequency and middle
frequency, respectively, and the rest belong to high frequency.
Sym2 was selected as the wavelet basis function, and then, a
PLSR model was used to quantitatively analyze the relationship
between the wavelet coefficients of each decomposition scale and
the LKC so as to determine the optimal decomposition scale and
effective wavelength.

Selection Method of Characteristic Variables
Different feature selection methods lead to different features
being selected. To select spectral and image features sensitive and
stable to the LKC in cotton, the competitive adaptive reweighted
sampling (CARS), and random frog (RF) algorithms were used in
this study to screen features.

Competitive adaptive reweighted sampling selects
wavelength points with a large coefficient absolute value in
the model through the Monte Carlo strategy and removes
wavelength points with a low weight (Sun et al., 2021).
The subset with the lowest root mean squared error
of cross validation (RMSECV) value is retained as the

feature selection result by cross-validation. In this study,
the Monte Carlo strategy was set to run 50 times, using
5-fold cross-validation.

Random frog is an algorithm to measure the importance
of variables (El-Hendawy et al., 2017). The main steps are
as follows: (1) a subset of initial variables containing m
variables is randomly initialized, (2) variables in the initial
variable subset are continuously selected into the candidate
subset, and the number of variables in the candidate subset
increases and decreases with the number of iterations, (3)
the selection probability of each variable is calculated as
a measure of the importance of the variable, and (4) the
characteristic wavelength is selected according to the probability
of the occurrence of recorded variables in each iteration.
In this study, the selection probability of each wavelength
was used to screen the feature information, and the running
results are presented in descending order. The number of
iterations was set as 10,000, and the selection probability
thresholds of the three growth periods were 0.40, 0.21, and
0.23, respectively.
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TABLE 1 | The calculation equations for the characteristics of the GLCM.

Feature Equation

ENE ENE =
k

∑

i=0

k
∑

j=0

P(i, j)2

ENT ENT = −
k

∑

i=0

k
∑

j=0

P(i, j) · lnP(i.j)

CON CON =
k

∑

i=0

k
∑

j=0

P(i, j) · (i, j)2

COR COR =
k

∑

i=0

k
∑

j=0

P(i, j) (i−MEA)·(j−MEA)√
VARi·VARj

MEA MEA =
k

∑

i=0

k
∑

j=0

P(i, j) · i

VAR VAR =
k

∑

i=0

k
∑

j=0

P(i, j) · (i −MEA)2

Image Feature Extraction
The most common gray level co-occurrence matrix (GLCM)
algorithm was adopted to extract texture features (Yang et al.,
2021). In this study, the energy (ENE), entropy (ENT), contrast
(CON), correlation (COR), and their mean (MEA) and variance
(VAR) in four directions were calculated by using the gray
comatrix function. The calculation equation is shown in Table 1,
where the P(i, j) is the value of the GLCM in the ith row and
jth column, k is the number of gray levels in the GLCM. The
gray level is 256, the step size is 1, the angle is 0◦, 45◦, 90◦, and
135◦. Finally, each characteristic wavelength grayscale image will
eventually produce 24 (4× 4+ 8) texture features.

Color moments are used to represent the color distribution in
the image (Ge et al., 2021). Since the color information is mainly
distributed in low-order moments, first-order moments (mean,
MEA), second-order moments (variance, VAR), and third-order
moments (skewness, SKE) are sufficient to express the color
distribution of the image. Its formula is as follows:

MEA =
n

∑

j=1

1

n
Pij (4)

VAR =

√

√

√

√

1

n

n
∑

j=1

(Pij−MEAi)2 (5)

SKE = 3

√

√

√

√(
1

n

n
∑

j=1

P(Pij−MEAi)3 (6)

where Pij is the color value of the jth pixel on the ith color
channel, i is the number of color channels of the image. The
image in this study is grayscale image, so i = 1; MEAi is the
color mean of the ith color channel of all pixels. Finally, each
characteristic wavelength grayscale image will eventually produce
three color features.

Notably, the named representation of combined features is
as follows: (1) The characteristic wavelength-texture feature-
direction, such as 400 nm-ENE-0◦, which means the texture
feature is ENE in the 0◦ direction of the 400-nm grayscale image
and (2) characteristic wavelength-color feature, such as 400-nm

MEA, which means the color feature is MEA of the 400-nm
grayscale image.

Modeling and Analysis Methods
Partial least squares regression (PLSR) is one of the most widely
used modeling methods in spectral analysis, which can be used
for dimensionality reduction and comprehensive screening of
spectral data, with high modeling stability and reliability. The
PLSR is widely favored in hyperspectral analysis (Lin et al.,
2021; Zhao et al., 2021) because it can solve the collinearity and
overfitting characteristics of hyperspectral data compared with
other multivariate models.

The determination coefficients (R2) and RMSE values were
used to evaluate the performance of the model. In general, better
performing models have higher R2 and lower RMSE values.
Original hyperspectral data were extracted by ENVI5 3. The
CWT, PLSR, and GLCM analyses of leaf spectral data were
carried out by Matlab R2018a (The MathWorks, Inc., Natick
MA, USA). Origin 2020 was used for creating graphs (OriginLab
Corporation, Northampton, MA, USA).

R2 = 1−

n
∑

i=1

(

yi − ŷi
)2

n
∑

i=1

(

yi − y
)2

(7)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

(8)

where R2cal is expressed as the determination coefficient
of calibration sets, R2val is expressed as the determination
coefficient of validation sets, n is the number of samples, yi and
ŷi, are, respectively, the measured and estimated values of sample
i in the corresponding sample set, ȳ is the average value of yi.

RESULTS

Analysis of Spectral Characteristics
Statistical Data of Cotton Leaf Sample Set
The total LKC in three key growth stages of cotton was measured
(Table 2). The concentration gradient method (Liu et al., 2015)
was used to divide the total samples into 40 calibration sets and 20
validation sets in a ratio of 2:1. The range of the K content in the
calibration set including the validation set was 3.56–0.51, 2.80–
0.57, and 2.30–0.40% in the three growth stages, respectively,
indicating that the calibration set could well represent the entire
datasets. The coefficients of variation in the calibration sets
and validation sets were both between 37 and 50%, show that
the LKC in cotton studied had a wide range and had good
representativeness and coverage.

Spectral Reflectance Analysis
The single-band threshold segmentation method (Figure 3) was
used to extract the average spectrum of the whole cotton leaves
from hyperspectral images as the original spectrum (R) and a
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TABLE 2 | Statistical results of calibration and validation sets.

Growth Stage Sets Size Max. (%) Min. (%) Mean (%) SDa (%) CVb (%)

Budding stage All sets 60 3.56 0.51 1.63 0.81 49.47

Calibration sets 40 3.56 0.51 1.63 0.81 49.78

Validation sets 20 3.51 0.51 1.64 0.82 50.12

Flowering stage All sets 60 2.80 0.57 1.18 0.44 37.47

Calibration sets 40 2.80 0.57 1.18 0.45 38.20

Validation sets 20 2.43 0.57 1.18 0.43 36.93

Boll setting stage All sets 60 2.30 0.40 1.25 0.56 44.67

Calibration sets 40 2.30 0.40 1.25 0.56 44.88

Validation sets 20 2.30 0.46 1.25 0.57 45.42

aSD, standard deviation.
bCV (%), coefficient of variation.

FIGURE 3 | ROI extraction process by single band threshold segmentation. (A–D) Budding stage. (E–H) Flowering stage. (I–L) Boll setting stage. (A,E,I) The true color

picture synthesized by ENVI cannot completely represent the true color of leaf. (B,F,J) The grayscale image of 800 nm. This grayscale image can display the outline of

cotton leaves more completely in terms of brightness and clarity, so 800 nm is selected as the segmentation band. (C,G,K) Mask image. (D,H,L) Gray histogram.
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FIGURE 4 | R spectral curves of the LKC in cotton at different growth stages.

region of interest (ROI). The threshold was set to 0.25–0.3098,
and the sample area lower than 0.25 was the background plate.

The spectral curves of cotton leaves at the three growth
stages were consistent with the spectral characteristics of green
plants (Figure 4). There were strong absorption peaks at 450
and 680 nm and a strong reflection peak at 550 nm. Due to the
many cavities in the mesophyll sponge structure, the reflectance
increases sharply near the red edge region (690–760 nm), and
a highly reflective platform appears in the NIR region (760–
950 nm). Among them, the spectral reflectance of cotton leaves
at different growth stages differed significantly in the NIR region,
which showed as boll setting stage > flowering stage > budding
stage. This may be because after mid-July, the redistribution and
utilization of the K nutrients during fruit development and the
fluidity of potassium make the K in leaves gradually transfer to
cotton bolls at the flowering and boll setting stages (Singh et al.,
2019), leading to the decrease in LKC, while the lack of the K in
leaves increases the thickness of leaves, and the palisade tissue and
parenchymal cells shrink and partially break (Zhao et al., 2001;
Ramírez-Soler et al., 2021). Finally, the spectral reflectance of the
boll setting stage was higher than that of the budding stage in the
NIR region.

Correlation Analysis Between CWT Spectra and the

LKC
The R spectrum of cotton leaves was decomposed by the CWT
at 10 scales. Correlation analysis was performed between the
wavelet coefficients generated under each decomposition scale
and the LKC, and the results were expressed as the absolute value

of the correlation coefficient (|R|). The correlation between the
wavelet coefficient and the LKC was relatively high, especially
at the flowering stage of cotton growth (Figure 5). Under the
calculation of different scales and movement factors, the regions
with high correlation at the budding stage are mainly focused
in the range of 500–550 and 640–660 nm on the mesoscales 3–
5 and 7, with the highest correlation |R| = 0.74 (Figure 5A). The
flowering stage showed obvious regional distribution, with a high
correlation in the low dimension on scale 3, with the highest
correlation |R| = 0.86 (Figure 5B). At the boll setting stage, the
high-correlation area was mainly distributed in mesoscales 3–6,
and the highest correlation |R| = 0.70 (Figure 5C). In addition,
the wavelengths of 500–530, 640–660, and 740–760 nm showed
higher correlation in the three growth stages.

Characteristic Wavelength Screening of R Spectrum

and CWT Spectra
To further screen out characteristic wavelengths for the rapid
estimation of the LKC in cotton, reduce the analytical dimension
of spectral data and highlight the timeliness and convenience of
spectral monitoring, the CARS and RF algorithms were selected
to screen the R spectra and the CWT spectra (scales 1–10)
of the three growth periods, and the selected characteristic
wavelengths did not exceed 10. In the whole spectrum, the
selected characteristic wavelengths of the three growth stages
were similar, but there are significant differences in the
screening methods of different characteristic wavelengths. The
characteristic wavelengths selected based on the CARS algorithm
were evenly distributed in the range of 400–950 nm, mainly
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FIGURE 5 | Correlation analysis between the LKC and CWT coefficient. (A) Budding stage. (B) Flowering stage. (C) Boll setting stage.

located in the visible (500 nm), red edge (700 nm), and NIR
regions (900 nm) (Figures 6A–C). The characteristic wavelengths
screened by the RF algorithm were mainly concentrated in
the visible and NIR regions in the whole spectrum, but
more characteristic wavelengths appear in the visible region
(Figures 6D–F). The characteristic wavelengths located in the
visible region reflect the information of leaf pigment, especially
the characteristic bands distributed near the strong absorption
and reflection of chlorophyll. Red edge is closely related to the
physical and chemical parameters of plants, is generally used to
describe the health status of plants and is affected by leaf pigment
and leaf area index. The characteristic wavelengths were in the
range of 800–950 nm, reflecting the structure of cotton leaves and
some water absorption.

The PLSR Model Based on R Spectrum and CWT

Spectra
To explore the quantitative regression relationship between
cotton leaf spectral data and the LKC, a quantitative estimation
model was established to realize the quantification of spectral
monitoring. Using the R spectrum and CWT spectra composed
of characteristic wavelengths screened by CARS and RF as
independent variables and the LKC as a dependent variable,
PLSR estimation models of the LKC at different growth stages
were established (Table 3). The calibration and validation sets
perform differently in estimating the effect of the LKC model
at different growth stages and decomposition scales. At the
budding stage, the model R2cal and R2val both were >0.6136
(RF-CWT-7) and 0.2675 (CARS-CWT-4). At the flowering stage,
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FIGURE 6 | Characteristic wavelengths of the R spectrum and CWT spectra screened by CARS and RF algorithms. The red and blue dots represent the

characteristic wavelengths of CWT spectra and R spectrum, respectively. (A) Budding stage, CARS. (B) Flowering stage, CARS. (C) Boll setting stage, CARS. (D)

Budding stage, RF. (E) Flowering stage, RF. (F) Boll setting stage, RF.

the model R2cal and R2val were >0.7311 (RF-CWT-10) and
0.6158 (CARS-CWT-2). In the boll setting period, the model
R2cal and R2val were both>0.5717 (RF-CWT-3) and 0.5430 (RF-
CWT-6).

The all model R2val and RMSEval results are shown in
Figure 7. The results showed that compared with the R spectrum,
the CWT spectra could significantly improve the prediction
performance of the LKC (Figures 7D–F). The optimal estimation
model of the R spectrum at the budding, flowering and
boll growth stages was constructed using the characteristic
wavelengths selected by the CARS algorithm, indicating that
CARS had a better estimation performance than the RF
algorithm, this is similar to previous studies (Sun et al., 2021).
The R2val values were 0.6613, 0.753, and 0.6643 and the
RMSEval values were 0.5292, 0.2202, and 0.3405, respectively.

Using the multi-decomposition scale CWT method, the best
decomposition scales of the three growth stages were found
to be CWT-1, CWT-3 and CWT-9 spectrum (Table 3). The
best estimation models for the LKC were CARS-CWT-1 at the
budding stage, RF-CWT-3 at the flowering stage and CARS-
CWT-9 at the boll setting stage. The R2val values were 0.7918,
0.79, and 0.808 and the RMSEval values were 0.368, 0.1987 and
0.2508, respectively (Figures 7A–C). Compared with the single
R spectrum model, the improved R2 values at the three growth
stages were 0.13, 0.04, and 0.15, respectively. Higher R2val values
and lower RMSEval values indicate that these models have a
good fitting degree and accuracy, and the decomposed CWT
spectra can effectively extract weak information, but there are
significant differences in the prediction accuracy of the CWT
spectra at different decomposition scales, and the screening
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TABLE 3 | CARS and RF algorithms are used to screen the characteristic wavelengths of the wavelet coefficient spectra, the PLSR estimation model of cotton LKC in

different growth stages is established, and emphasize the relatively better performances of these the wavelet coefficient spectra in LKC estimation.

Growth Stage Scales CARS RF

R2

cal

RMSE

cal

R2

val

RMSE

val

R2

cal

RMSE

cal

R2

val

RMSE

val

Budding stage R 0.8003 0.3578 0.6613 0.5292 0.7225 0.4217 0.4978 0.6141

CWT-1 0.8104 0.3485 0.7918 0.3680 0.7537 0.3973 0.7306 0.4421

CWT-2 0.7568 0.3947 0.5333 0.5737 0.8168 0.3426 0.7157 0.4298

CWT-3 0.8325 0.3277 0.5471 0.5514 0.7269 0.4183 0.6853 0.4816

CWT-4 0.6616 0.4657 0.2675 0.7251 0.6257 0.4898 0.3837 0.6761

CWT-5 0.7274 0.4180 0.5457 0.5823 0.6871 0.4478 0.6176 0.5225

CWT-6 0.7507 0.3997 0.5647 0.5565 0.6415 0.4793 0.4836 0.6198

CWT-7 0.7503 0.4000 0.5755 0.5539 0.6136 0.4976 0.5314 0.5943

CWT-8 0.7545 0.3966 0.5205 0.5722 0.7395 0.4086 0.5549 0.5479

CWT-9 0.7648 0.3882 0.5200 0.5779 0.6585 0.4678 0.6487 0.4892

CWT-10 0.7289 0.4168 0.5888 0.5232 0.7333 0.4134 0.5557 0.5549

Flowering stage R 0.8397 0.1789 0.7530 0.2202 0.8183 0.1905 0.7377 0.2227

CWT-1 0.8688 0.1619 0.6942 0.2388 0.8017 0.1990 0.7395 0.2190

CWT-2 0.8585 0.1681 0.6158 0.2627 0.8673 0.1628 0.6757 0.2413

CWT-3 0.8141 0.1927 0.6598 0.2480 0.8405 0.1785 0.7900 0.1987

CWT-4 0.8429 0.1771 0.7566 0.2094 0.7571 0.2202 0.6882 0.2444

CWT-5 0.8007 0.1995 0.7473 0.2187 0.7679 0.2153 0.6279 0.2629

CWT-6 0.8064 0.1966 0.6772 0.2432 0.7829 0.2082 0.6098 0.2674

CWT-7 0.8155 0.1919 0.7500 0.2176 0.7453 0.2255 0.5956 0.2708

CWT-8 0.8074 0.1961 0.7905 0.2070 0.7405 0.2276 0.6960 0.2381

CWT-9 0.8104 0.1946 0.7710 0.2118 0.7952 0.2022 0.7121 0.2309

CWT-10 0.8174 0.1910 0.7360 0.2227 0.7311 0.2317 0.6704 0.2477

Boll setting stage R 0.6487 0.3274 0.6643 0.3405 0.6471 0.3281 0.5476 0.3993

CWT-1 0.7217 0.2914 0.6441 0.3474 0.8070 0.2426 0.5499 0.4049

CWT-2 0.7323 0.2858 0.6736 0.3564 0.7493 0.2766 0.6722 0.4169

CWT-3 0.6212 0.3400 0.6598 0.3229 0.5717 0.3615 0.7481 0.2795

CWT-4 0.6433 0.3299 0.6869 0.3173 0.6093 0.3453 0.6802 0.3146

CWT-5 0.5966 0.3508 0.7610 0.2793 0.6182 0.3413 0.6635 0.3301

CWT-6 0.6380 0.3323 0.7581 0.2820 0.4192 0.4210 0.5430 0.3771

CWT-7 0.6200 0.3405 0.7254 0.3042 0.5955 0.3513 0.5573 0.3697

CWT-8 0.6162 0.3422 0.7157 0.3047 0.5794 0.3582 0.7972 0.2734

CWT-9 0.6310 0.3356 0.8080 0.2508 0.5983 0.3501 0.6917 0.3238

CWT-10 0.7118 0.2965 0.6867 0.4988 0.6031 0.3480 0.6973 0.3076

results of the CARS and RF algorithms also show different
model effects.

Image Feature Analysis
Leaf Grayscale Image Database
To find image features that could optimize the estimation model
of the LKC in cotton, gray image databases of leaves at the
budding, flowering, and boll setting stages were constructed
according to the selected characteristic wavelengths (Figure 8).
Among them, the number of effective characteristic wavelengths
in the three growth stages are 10, 10, and 9, respectively.
Therefore, the total number of grayscale images in budding,
flowering, and boll setting stages are 60 × 10, 60 × 10 and 60
× 9, respectively.

Image Feature Extraction and Determination
After the mask processing for all images, three color features
and 24 texture features of each characteristic wavelength
grayscale image were successively calculated. Finally, the color
and texture data extracted from the three growth periods
were stored in 3 × 30 and 3 × 240 matrices, and a
correlation analysis was performed with the LKC, respectively.
The results are shown in Figure 10, where a square represents
a feature.

For color features, the correlation between MEA and VAR
was higher than that with SKE at the budding, flowering, and
boll setting stages. The highest correlations of color features in
the three growth stages were obtained for 532 nm-VAR (R =
0.39, p < 0.01), which reached extremely significant correlation,
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FIGURE 7 | PLSR estimation model of the LKC in cotton based on R and CWT spectra (validation sets). (A) CARS-Budding stage. (B) CARS-Flowering stage. (C)

CARS-Boll setting stage. (D) RF-Budding stage. (E) RF-Flowering stage. (F) RF-Boll setting stage.

461 nm-MEA (R = 0.18, p < 0.05) and 522 nm-MEA (R =
−0.33, p < 0.05). The results showed that the overall brightness
and color distribution of images were closely related to the
LKC. The texture features with a high correlation between the
budding, flowering, and boll setting stage were different. The high
correlation at the budding stage was mainly the CON of 471, 512,
and 641 nm grayscale images in the 90◦ and 135◦ directions, and
the highest correlation was 641 nm-CON-135◦ (R=−0.48). The
results showed that the furrow depth of the cotton leaf surface

at the budding stage was negatively correlated with K content.
The texture features with high correlation at the flowering stage
was mainly the COR of the characteristic wavelength of visible
light (e.g., 476 nm) in the direction of 135◦, especially 476 nm-
COR-135◦ (R = −0.38). During the boll setting stage, highly
correlated texture features were concentrated in the CON at the
characteristic wavelength of NIR (e.g., 799 nm), and the highest
correlation was obtained at 799 nm-VAR (CON) (R = −0.44),
indicating that the uniformity of the leaf surface texture was
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FIGURE 8 | Characteristic wavelength grayscale image databases based on CWT-1, CWT-3, and CWT-9 wavelet coefficients.

significantly negatively correlated with the K at the flowering and
boll setting stages.

As can be seen from Figure 9, the color and texture feature
dimensions of each growth period have higher dimensions
and contain a large amount of invalid information. Therefore,
we choose the CARS algorithm with better performance and
combined correlation analysis to determine the effective image
features. The screening results are shown in Table 4.

Model Establishment and Validation
Estimation Model of the LKC Based on Combination

Feature
Table 5 shows the results of the PLSR estimation model of the
LKC in cotton at different growth stages was created based on the
combined characteristics of “CWT spectra + image.” Compared
with the R spectrum and CWT spectra models, the fusion of
image features can improve the accuracy of the K estimation
model at the three growth stages, but the performance of models
constructed based on CWT spectra fusion with either “color” or
“texture” or with “color + texture” features is different. Among
them, the best estimation model was “CWT-1 + texture” for
the budding stage, “CWT-3 + color” for the flowering stage
and “CWT-9 + texture” for the boll setting stage. Based on the
“spectra + image” combination, the best estimation models of

the LKC in cotton at the budding, flowering, and boll setting
stages had 16, 14, and 12 features, respectively. Moreover,
texture features contribute more to the model performance
improvement than color features do. These results provide a
reference for rapid and non-destructive monitoring of the K.

Comparison of Model Between Single Spectrum and

“Spectrum + Image” Feature
Figure 10 shows the best inversion model of the LKC in cotton
at three growth stages. The optimal LKC estimation model
constructed based on the characteristic wavelengths of R spectra
at budding, flowering, and boll setting stages had R2val s of
0.6613, 0.7530, and 0.6643; and RMSEvals of 0.5292, 0.2202,
and 0.3405, respectively (Figures 10A–C). Based on the “CWT
spectra + image” feature, the accuracy R2val values of the best
LKC estimation model for the three growth stages had R2val
s of 0.8652, 0.8261, and 0.8952 and the RMSEval of 0.3009,
0.1821, and 0.2019, respectively (Figures 10D,F). Compared with
the single R spectrum, the model accuracy R2 increased by 0.2,
0.08, and 0.23, respectively, indicating the feasibility of estimating
the LKC in cotton based on CWT analysis and image feature
fusion and achieving high-precision and rapid monitoring. The
best estimation of the LKC in cotton was at the boll setting
stage. Furthermore, because the fusion image features at the
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FIGURE 9 | Correlation analysis of the LKC with grayscale image features. (A) Color features. There were 10 × 3, 10 × 3 and 9 × 3 color features in three growth

stages, respectively. (B) Texture features. There were 10 × 24, 10 × 24, and 9 × 24 texture features in three growth stages, respectively.

flowering stage contributed little to the improvement of the
model accuracy, it indicated that the quantitative inversion of the

K in the growth stage could be satisfied only by R spectral data,
and the model had high stability.
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FIGURE 10 | Optimal PLSR estimation model of the LKC in cotton at different growth stages. (A) Budding stage, R spectrum. (B) Flowering stage, R spectrum. (C)

Boll setting stage, R spectrum. (D) Budding stage, CWT-1 + texture. (E) Flowering stage, CWT-3 + color. (F) Boll setting stage, CWT-9 + texture.
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DISCUSSION

Selection of Characteristic Wavelength
In our study, there was a high correlation between CWT spectra
with the LKC at the three key growth stages of cotton. However,
it should be noted that LKC in cotton is not highly correlated
with wavelet coefficients in the whole band of 400–950 nm but
only in some important spectral regions (Figure 5). Therefore,
to reduce collinearity between spectral data dimensions and
adjacent wavelengths, screening several effective wavelengths

TABLE 4 | Grayscale image feature extraction results.

Growth Stage Image Number Combined Feature Name

Feature

Budding Color 1 548 nm-MEA

stage 471 nm-CON-90◦,

471 nm-CON-0◦,

Texture 6 934 nm-ENT-45◦,

471 nm-COR-135◦,

641 nm-CON-135◦,

512 nm-ENT-135◦

Flowering Color 4 461 nm-MEA, 532 nm-SKE, 589

stage nm-MEA, 599 nm-SKE

532 nm-ENE-135◦,

568 nm-COR-135◦,

Texture 8 912 nm-VAR (COR), 594 nm-MEA (CON),

532 nm-MRA (CON), 599 nm-ENT-0◦,

604 nm-ENE-90◦,

461 nm-MEA (COR)

Boll setting Color 2 667 nm-VAR, 532 nm-VAR

stage Texture 3 799 nm-ENE-135◦,

522 nm-ENT-90◦,

890 nm-ENT-135◦

containing maximum spectral information plays an important
role in reducing model complexity and improving estimation
ability (Lu et al., 2019b; Ruffing et al., 2021). In this study,
characteristic wavelengths of the R spectrum and CWT spectra
at three growth periods were screened based on the CARS
and RF algorithms (Table 3). In general, the characteristic
wavelengths were mainly concentrated in the visible and NIR
regions in the whole spectrum. The research found that the
characteristic wavelengths of the LKC of six degraded vegetation
types in the green, red and NIR regions (Peng et al., 2020).
Studies have shown that the K deficiency in leaves has a
significant impact on the content of photosynthetic pigments
(e.g., chlorophyll, carotenoid, and lutein), and the cell structure
of leaves (e.g., leaf area, leaf thickness, and cell space) (Curran,
1989; Hu et al., 2020a,b), which is a key factor affecting the
light absorption and utilization of plant leaves, leading to the
change in reflectance (Peuelas and Filella, 1998). When crops
are subjected to the K stress, the spectral reflectance of the
visible and near-infrared regions increases, while chlorophyll
concentration decreases (Zhao et al., 2001). At the same time, the
chlorophyll ultrastructure is significantly damaged, leaf thickness
increases, palisade tissue and parenchyma cells contract, and local
rupture occurs (Lu et al., 2019a). In conclusion, the K deficiency
symptoms can significantly affect the absorption and reflection
of light by cotton leaves, change the path of light reflection
and refraction and produce different spectral reflectance curves.
In addition, studies have shown that the spectral reflectance
of the SWIR (1,300–2,000 nm) band of rice was sensitive to
K level and significantly correlated with the LKC in rice (Lu
et al., 2019a). Pimstein et al. (2011) pointed out that the SWIR
(1,450 nm) reflectance was significantly correlated with LKC
in wheat. Sibanda et al. (2015) also showed that the SWIR
spectroscopy can be used to determineK value defense on steppe.

TABLE 5 | PLSR estimation models of the LKC with different combinations of features.

Growth Stage Method Feature Combination Calibration sets Validation sets

R2cal RMSEcal R2val RMSEval

Budding stage CARS R spectrum 0.8003 0.3578 0.6613 0.5292

CWT-1 0.8104 0.3485 0.7918 0.3680

CWT-1 + color 0.8124 0.3467 0.8127 0.3488

CWT-1 + texture 0.8017 0.3564 0.8652 0.3009

CWT-1+ color + texture 0.8344 0.3258 0.7980 0.3602

Flowering stage CARS R spectrum 0.8397 0.1789 0.7530 0.2202

RF CWT-3 0.8405 0.1785 0.7900 0.1987

CARS CWT-3 + color 0.8530 0.1714 0.8261 0.1821

CWT-3 + texture 0.8400 0.1788 0.8012 0.1952

CWT-3 + color + texture 0.8621 0.1660 0.7960 0.2007

Boll setting stage R spectrum 0.6487 0.3274 0.6643 0.3405

CWT-9 0.6310 0.3356 0.8080 0.2508

CARS CWT-9 + color 0.6333 0.3345 0.8111 0.2463

CWT-9 + texture 0.6948 0.3052 0.8952 0.2019

CWT-9 + color + texture 0.7603 0.2704 0.8272 0.2450
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Estimation of the LKC Based on CWT
Algorithm
The CWT can decompose hyperspectral data in the time
domain and frequency domain simultaneously and estimate
the physiological and biochemical components of plants by
looking for the best signals at different decomposition scales. The
estimation model of the LKC in cotton constructed in this study
using CTW spectral data has good prediction accuracy. Based
on spectral data, the accuracy R2 value of the best CWT spectral
models constructed for the three growth stages was 0.13, 0.04,
and 0.15 higher, than that of the R spectral data model (Figure 7).
Since CWT can further continuously decompose spectral data,
the decomposed wavelet coefficients can correspond to the R
spectrum so as to extract subtle signals in spectral data more
effectively and improve spectral monitoring accuracy (Li et al.,
2019). However, it should be noted that when using the CWT
method, the mother wavelet function should be selected first,
rather than the commonly used mother wavelet function (Sun
et al., 2021; Zhao et al., 2021). A large number of studies have
shown that spectral data transformed by CWT have achieved
a high accuracy in the inversion of crop nutrients, chlorophyll,
and agronomic traits that is superior to models obtained by
traditional conversion methods (Yue et al., 2020; Lin et al.,
2021; Zhao et al., 2021). Therefore, when crops are under
nutrient stress, CWT can effectively mine more complete spectral
information, which has great potential in feature selection, noise
elimination and weak information extraction.

Estimation Model of the LKC in Cotton
The single feature extracted from the hyperspectral image has
limited abilities to estimate nutrient content. Our comparison
of the model performance evaluation resulting from different
feature combinations (Table 5) showed that the estimation of the
LKC in cotton based on “CWT spectra + image” features had
high accuracy and stability at the three key growth stages, but
there were differences in the modeling results of different feature
combinations. Contrary to our hypothesis, it was not the case
that more feature information led to better model performance.
In this study, the estimation model constructed based on the
features of “CWT spectra + color + texture” did not show
significantly improved accuracy. Instead, the performance of
models based on “CWT spectra + color” or “CWT spectra +
texture” features is improved. It indicates that when constructing
the model based on the feature information of “CWT spectra
+ color + texture,” some invalid information is added, which
is interference for improving the accuracy and stability of the
predictionmodel (Li et al., 2019). It should be noted that although
the combination feature of the best estimation model of the LKC
at the flowering stage is “cwt-3 + color,” and the model accuracy
R2val and RMSEval are 0.8261 and 0.1821, the absolute values of
the difference between R2val R2val and RMSEval based on the
“CWT-3 + color” and “CWT-3 + texture” models are 0.0249
and 0.0131 (Table 5). This slight difference may be influenced
by the feature parameter selection algorithm, as can be seen
from Table 4, the number of color features selected by CARS
during the flowering stage is relatively a little more than in

other growth periods. On the other hand, statistically speaking,
the difference between the two models is negligible. Therefore,
it cannot be fully stated that the combined characteristics of
the best estimation model for the LKC at the flowering stage
is “CWT-3 + color.” Moreover, this study aimed at extracting
image features of grayscale images with feature wavelengths, and
different feature selection methods may obtain different feature
wavelengths (Sun et al., 2021), which will lead to extracting
different image feature values. Therefore, future studies will
further explore the relationship between the selection of feature
wavelengths and image features.

Compared with texture, color features did not contribute
significantly to the estimation of the LKC. This is similar to the
results of the Jamil et al. (2015) study, which showed that in
the taxonomic identification of 455 Chinese herbal medicines,
single texture features were superior to color or shape features,
with a recognition rate of 92%. In our study, the reason for
this discrepancy may be that the image we studied was a single-
band grayscale image that contained different information about
color and texture characteristics. For color features, we use low-
dimensional color moments composed of mean, variance, and
skewness to represent the color characteristics of single-band
grayscale images, and because the number of channels is 1, the
number of color features obtained by calculation is relatively
small. In addition, for the color features we extracted, it can
also be considered as another expression of spectral information,
because each grayscale image has a corresponding wavelength,
and perhaps there is interference information between them,
reducing the additional effect of color features. However, further
investigation needs to be done to positively confirmed the
claim. For texture features, we used the GLCM algorithm to
extract 240, 240, and 216 high-dimensional texture features from
three reproductive periods, including 4 texture features in 4
directions, and its advantage may be that a larger number of
feature parameters are conducive to the selection of sensitive
parameters. Further, images of different wavelengths of grayscale
can clearly show the veins and mesophyll parts of cotton leaves
and their degree of brightness and shade (Figure 8), while texture
is another feature that can be used in plant identification to
describe the vein structure or leaf ’s surface, and it is considered
as an additional feature to better describe properties of the leaves
(Jamil et al., 2015). These reasons explain, as far as possible,
why when we build cotton LKC estimation models, the texture
features are better than the color features, and the mechanism of
the relationship between LKC and texture features needs further
study. Therefore, near-range hyperspectral images with high
spatial and hyperspectral resolution can provide more details
(Pandey et al., 2017), the model based on “CWT spectra +
image” features provide a potential method for estimating the
LKC in cotton.

Previous studies mainly focused on using hyperspectral data
(Das et al., 2020; Furlanetto et al., 2021) or RGB images
(Ghosal et al., 2018; Sun et al., 2018) for analytical modeling
of the estimation of the LKC in crop. Ge et al. (2019)
constructed a low-cost, non-destructive, and high-throughput
maize multiphysiological parameter (including K) estimation
model based on the full spectrum band (VIS-NIR-SWIR) through
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PLSR and SVM methods. The results for K nutrients show that
the modeling results of PLSR are similar to those of SVM, and the
and themodel accuracyR2val is 0.586 and 0.543, respectively. The
performance of the model largely depends on the sensitivity of
input parameters. Compared with their research, we established
the model based on the characteristic wavelength sensitive to
the LKC in cotton, rather than the full wavelength, but we
do not have the SWIR region, which is a deficiency. Although
our study used a PLSR model to estimate the LKC with good
robustness, the analysis of hyperspectral image data for large
samples needs to be further explored, especially as the continuous
optimization of deep learning algorithms may be beneficial to
LKC estimation (Mahajan et al., 2021; Mertens et al., 2021).
Das et al. (2020) studied the content changes of eight nutrient
elements (K, Na, Ca, Mg, Fe, Mn, Zn, and Cu) in rice leaves
under salt stress and constructed different coupled machine
learning models. The results showed that the most accurate
estimation of the LKC based on the PLSR-ELNET model (r =
0.928). Liu et al. (2020a) proposed a novel ensemble-modeling
framework to transform the rape canopy reflectance data of the
selected bands into more distinguishable probability features and
identify the N, P, and K deficiency levels using the probabilities.
The overall accuracy of nutritional deficiency analysis of this
framework is 80.76%, it shows a competitive advantage in severe
and moderate potassium deficiency. In this regard, we will study
more predictive model algorithms in future work to provide
a reference for rapid and non-destructive monitoring of the
LKC in cotton.

CONCLUSIONS

The CWT method and PLSR model were used to estimate the
LKC in cotton, which had high spectral prediction accuracy and
feasibility. The CARS and RF algorithms combined with the
PLSR model were used to determine the optimal decomposition
scales of CWT at three growth stages, which were CWT-1,
CWT-3, and CWT-9 spectra. Also, the CARS is better than
RF in Characteristics selection. Compared with the single R
spectrum model, the R2 values were improved by 0.13, 0.04, and
0.15, respectively.

Compared with the best estimation model of the R spectrum
and CWT spectra, the PLSR model accuracy was improved
after the fusion of image features at the three growth stages.

The best feature combination of estimation models was “CWT-
1 + texture” at the budding stage, “CWT-3 + color” at the
flowering stage and “CWT-9 + texture” at the boll setting stage.
Compared with the single R spectrum model, the accuracy R2

values increased by 0.2, 0.08, and 0.24, respectively.
Using characteristic wavelength to fuse image information

can optimize the performance of the LKC estimation model and
improve the stability and accuracy of the model. Based on the
combination of “CWT spectra+ image,” the best growth stage for
assessing LKC in cotton was the boll setting stage, with the feature
combination of “CWT-9 spectra + texture,” and its R2val and
RMSEval values were 0.90 and 0.20. However, the optimal growth
stage for estimating LKC only by R spectral estimation is the
flowering stage. The model did not show significantly improved
prediction accuracy and had high stability after integrating
image features, indicating that the quantitative estimation of
the LKC based on spectral data can be satisfied in this
growth stage.
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