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Irregular changes in the internal climates of protected cultivation systems can prevent
attainment of optimal yield when the environmental conditions are not adequately
monitored and controlled. Key to indoor environment monitoring and control and
potentially reducing operational costs are the strategic placement of an optimal number
of sensors using a robust method. A multi-objective approach based on supervised
machine learning was used to determine the optimal number of sensors and installation
positions in a protected cultivation system. Specifically, a gradient boosting algorithm,
a form of a tree-based model, was fitted to measured (temperature and humidity)
and derived conditions (dew point temperature, humidity ratio, enthalpy, and specific
volume). Feature variables were forecasted in a time-series manner. Training and
validation data were categorized without randomizing the observations to ensure the
features remained time-dependent. Evaluations of the variations in the number and
location of sensors by day, week, and month were done to observe the impact of
environmental fluctuations on the optimal number and location of placement of sensors.
Results showed that less than 32% of the 56 sensors considered in this study were
needed to optimally monitor the protected cultivation system’s internal environment with
the highest occurring in May. In May, an average change of −0.041% in consecutive
RMSE values ranged from the 1st sensor location (0.027◦C) to the 17th sensor location
(0.013◦C). The derived properties better described the ambient condition of the indoor
air than the directly measured, leading to a better performing machine learning model.
A machine learning model was developed and proposed to determine the optimal
sensors number and positions in a protected cultivation system.

Keywords: air-vapor mixture, artificial intelligence, greenhouse, machine learning, psychrometric properties,
RMSE, time-series big data
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INTRODUCTION

The changing climate and depletion of natural resources such
as fossil-based energy, land, and water necessitate improving
resource use efficiency. Protected cultivation systems such as
greenhouses could be essential in efficiently providing nutritious
fresh foods for a growing world population (Stanghellini, 2013).
Higher water use efficiency per unit area of crop production
has been recorded in protected cultivation systems compared to
open-field cultivation (Li et al., 2010). This could be a potential
solution to land scarcity. Where disasters such as pandemics
make farms momentarily less accessible, remotely controlled and
autonomous cultivation strategies would be beneficial.

However, the benefits in these systems come at higher energy
demands, especially when poor decisions are made based on
incorrect monitoring of the micro-climate. Overheating and
consequently poor plant growth and ensuing economic losses
could be one such result (Park and Park, 2011). Protected
cultivation systems could, however, be capital intensive.
Improved efficiency will reduce the system’s energy consumption
and reduce production costs (DeFacio et al., 2002; Vox et al.,
2010).

In protected cultivation systems, irregular changes or high
fluctuations in indoor climatic conditions can be deleterious to
productivity. Temperature and relative humidity management to
meet specific plant requirements is critical for survival, optimum
growth, and enhanced productivity (DeFacio et al., 2002; Vox
et al., 2010). The optimal placement of the minimum number of
sensors for measuring the micro-climate of protected cultivation
systems is critical for their efficient use and sustainability. The
protected cultivation system has a high level of variability caused
by plant respiration and heating systems.

Ventilation causes air movement and consequently the
uniformity of the environment. In Guzmán et al. (2019), the wind
direction was reported to have a significant effect on ventilation
rate, airflow, and crop temperature distributions. Also, in Li
et al. (2010), it was observed that temperature did not rise
linearly between inlet and fans and was higher at or above the
top of the crop canopy than within it in a full-size house but
not in a glasshouse compartment. A method for determining
the optimal number and locations of the sensors would be
necessary to accurately measure the environment of a protected
cultivation system.

Recent high-tech protected cultivation systems are equipped
with advanced sensors for monitoring parameters such as
temperature, relative humidity, CO2, and light. This is
done to improve monitoring and control of micro-climate
parameters and sometimes facilitate remote-controlled and
autonomous cultivation. Decisions may be made based on
various actuators used to regulate heating, lighting, cooling,
dosing of CO2 and fertilizers, dehumidification, irrigation,
screening, fogging, as examples (Nelson, 1991; Uyeh et al.,
2019, 2021; Bhujel et al., 2020; Gadekallu et al., 2021). These
actuators operate based on sensors providing feedback on
measured data for the control loop set points configured
in a computing device (Stanghellini, 2013; Graamans et al.,
2018).

In autonomous growing systems (Stanghellini, 2013;
Graamans et al., 2018; Hemming et al., 2020), deployment of the
more costly, high-precision sensors have added benefits such as
durability and reduced capital costs in the long-term. Decisions
based on imprecise measurements could result in poor plant
growth (due to under-or over-heating) or irreversible damage
and associated economic losses. An additional benefit of using
more precise sensors is energy savings.

Growers constantly face decision-making and optimization
problems in agriculture. Multiclass models have been used to
develop multivariate statistical methods in agriculture (Guzmán
et al., 2019) and Principal Component Analysis - whale
optimization-based neural networks to classify diseases in plants
(Li et al., 2010). Others include algorithms and systems for
improved decision-making and optimizations (Nelson, 1991;
DeFacio et al., 2002; Vox et al., 2010; Park and Park, 2011; Uyeh
et al., 2019; Gadekallu et al., 2021). Machine learning provides
opportunities to solve complex tasks such as optimal sensor
placement because of its capabilities to efficiently compute vast
and complex datasets with a high success ratio and fewer errors
(Syed and Hachem, 2019a,b).

To solve the optimal sensors placement problem, this study,
(a) designed and fabricated temperature and humidity sensors
to monitor every section of a protected cultivation system and
accurately collect data per minute were, (b) derived psychometric
properties to understand better, the actual condition and behavior
of the air-vapor mixture in a protected cultivation system, and
(c) proposed a machine-learning solution based on the derived
psychometric properties.

A machine learning algorithm, the Gradient Boosting
Algorithm, was implemented as a multi-objective approach to
determine the optimal number of sensors and locate their
best position. The objective function of this algorithm was to
minimize the root mean squared error (RMSE) and the number
of sensors using two multiple hyper-parameter tuning algorithms
(Random Search and Grid Search).

Related Works
Growers constantly face decision-making and optimization
problems. Multiclass models have been used to develop
multivariate statistical methods in agriculture (Gadekallu et al.,
2021) and principal whale optimization-based neural networks
to classify diseases in plants (Gadekallu et al., 2021). Others
include algorithms and systems for improved decision-making
and optimizations (Park et al., 2019; Syed and Hachem, 2019a,b;
Uyeh et al., 2019, 2021; Bhujel et al., 2020). Using an inadequate
number of sensors may lead to under-performance, while a
likely result of being superfluous is large sizes of redundant data
and its associated management problems. The sensor placement
problem has been recognized and studied in other fields. These
include fire detection in a target region (Li et al., 2013), air
and water quality monitoring (Du et al., 2014; Fontanini et al.,
2016), and monitoring physical activity in humans with a three-
dimensional accelerator (Boerema et al., 2014). Others include
structural health monitoring based on modal data (Chang and
Pakzad, 2014; Tong et al., 2014) and mid and low frequency
range methods (Rao et al., 2014). Attempts have been made to
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FIGURE 1 | Workflow for optimal sensor selection using (state method) in a protected cultivation system.

FIGURE 2 | Location of the experimental greenhouse (G) used for data
collection for optimal sensor placement study.

determine the optimal sensor selection and location in internal
environments, focusing on structures stability (Worden and
Burrows, 2001; Löhner and Camelli, 2005; Wang et al., 2009;

Chang et al., 2012; Hu and Patel, 2014; Huang et al., 2014;
Arnesano et al., 2016; Seabrook, 2016). Worden and Burrows
(2001) studied the optimal temperature sensor location using
an error-based approach for monitoring a stadium’s heating,
venting, and air-conditioning systems.

As the environment in protected cultivation systems is
dynamic, optimal sensor placement may involve the following
scenarios: (a) multiple sensor types required in one system with
two or more sometimes embedded as one (Faris and Mahmood,
2014); (b) movements of the rising and setting sun which affects
the internal data (Cossu et al., 2014; Wang et al., 2014); (c)
multiple layers of plant beds with varying atmospheric conditions
at each level (Pamungkas et al., 2014); and (d) the influence of
other internal structures of the system.

Techniques for selecting and installing sensors for monitoring
and controlling climatic conditions in protected cultivation
systems such as plant factories, greenhouses, etc., have been
mostly heuristic. Feng et al. (2013), simulated greenhouse internal
air temperature and wind-velocity distributions and suggested
that the optimal sensor location is where the air and speed do
not change rapidly. Several approaches, such as z-index, the
outliers, and statistical measures, including central tendency and
dispersion measures, have been employed (Lee et al., 2019). This
study’s limitation was the low volume of air temperature data and
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FIGURE 3 | The experimental greenhouse with temperature and relative humidity sensors installed; (A) front view; (B) side view for optimal sensor placement study;
and (C) with growing strawberry plants and fan for mechanical ventilation circled in broken red lines.

FIGURE 4 | Wireless system architecture for remote sensing of the protected cultivation system.

the non-inclusion of other influencing environmental variables
such as humidity and light. In more complex and larger-sized
systems, statistically based techniques incapable of handling big
data would be ineffective.

Some studies attempted to use machine learning to determine
the number of optimal sensors and identify their locations
(Aydin et al., 2019), however, derived conditions (dew point
temperature, humidity ratio, enthalpy, and specific volume),
or some other environmental variables were not taken into
consideration to provide a better representation of the protected
cultivation system state. According to Ponce et al. (2014),
most analytic models focusing on controlling the internal
environment of protected cultivation systems have been based
on a state-space relationship. This state-space form includes
variables such as indoor temperature, humidity, energy input,
outdoor temperature, wind speed, time, etc. Further, they (Ponce
et al., 2014) recorded temperature and humidity are influential
variables used to simplify the greenhouse state. Psychometric
properties such as dew point temperature, humidity ratio,
enthalpy, and specific volume would be beneficial to better

represent the greenhouse’s dynamic behavior, especially since air
is mixed with vapor (Czubinski et al., 2013).

METHODOLOGY

a. Overview
Temperature and relative humidity data were collected

remotely from a protected cultivation system located on the
research farm of Kyungpook National University, South Korea.
Data was collected over seven months (February, March, April,
May, June, July, and October). The time-series observation
for the two conditional parameters recorded per minute were
representative data.

The temperature and humidity data were preprocessed, and
four psychometric variables (dew point temperature, humidity
ratio, enthalpy, and specific volume) were derived and used to
model the protected cultivation system’s indoor environment.
The algorithm was trained on 70 % of the data to ensure
generalization and no overfitting. The metric of evaluation,
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FIGURE 5 | Graphs of (A) training data; and (B) test data used in data preprocessing for sensor A1 in optimal sensor placement study.

RMSE, was minimized by tuning the algorithm’s hyper-
parameters (parameters whose values are used to alter the
machine learning algorithm’s learning rate) iteratively. Based on
each month, sensor ranking was carried out. Furthermore, the
number of optimal sensors required daily, weekly, and monthly
was determined in a supervised manner. Figure 1 shows the
workflow for optimal sensor selection. The data is collected
using the fabricated temperature and humidity sensors and
stored in a cloud system. The collected data was preprocessed
using forward fill and transformed into psychrometric variables.
The preprocessed temperature, humidity, and transformed
psychrometric data were used to develop the supervised
machine learning model. Optimal sensor selection was done by
minimizing RMSE using hyper-parameter tuning.

b. Experiment setup and protected cultivation system
location

A Quonset-shaped protected cultivation system
(greenhouse) located on the research farm of Kyungpook
National University, Daegu, South Korea (35◦53′43.0
N and 128◦36′49.1 E) was selected for this study. The
greenhouse is used to cultivate strawberries and is close
to two inner roads and a major road with heavy vehicular
traffic (Figure 2).

Fifty-six 2-in-1 temperature and humidity sensors were
installed on eight rows and seven columns, each at 3 m horizontal
and 1 m vertical distance apart for uniformity (Figure 3). The
sensors were specifically manufactured to have a similar range
(and error) of−20◦C to 80◦C (± 0.3◦C) and 0% to 100% (± 2%)
for temperature and relative humidity, respectively. The sensors
were installed in different columns represented with A – H
(Figure 3A) and seven fixed rows in Figure 3C. To prevent solar
radiation from interfering with readings and causing errors, the
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FIGURE 6 | Flow chart showing the summary of the model building process for optimal sensor selection.

sensors were enclosed in a plastic covering. Constantly running
ventilation fans were installed in the greenhouse (Figure 3B).

c. Environmental sensing of protected cultivation system and
data collection

A network controller (U-NWC-W-7S, UBN, Daegu,
South Korea) was installed to minimize the temperature and
relative humidity data collection error from the 56 sensors. The
controller has a distributed processing system, a radio frequency
of 447.9 MHz, enabling mobile software development for
real-time data retrieval from the sensors. The sensor-controller
system’s architecture is shown in Figure 4.

The sensors were tightly installed to prevent movement and
connected via cables to the sensor nodes, which transferred data
via gateways to a server and then to a mobile telephone device.
This wireless system enabled consistent remote monitoring.
Preventive maintenance of the systems was regularly carried out
to avert errors from factors such as sensor clogging.

d. Variability analysis of greenhouse environmental data
The variability of the conditions within the greenhouse was

measured by calculating the Coefficient of Variation (CV) as
the ratio of the standard (Equation 1) deviation to the mean
temperature/humidity in each period (when expressed as a
percentage) as used by Ayalew et al. (2012) and Kassie (2014).

Coefficient of Variation (CV) =
Standard deviation, σ

Mean, µ
(1)

e. Dynamic time warping to determine the effect of the plants
on microclimate distribution

i. Data Description
Using the hourly reading of the temperature and relative

humidity data collected in March with plants and June when the

TABLE 1 | Coefficient of Variation for temperature-relative humidity data for
estimating the variability of the greenhouse.

Month Temperature CV (%) Relative humidity CV (%)

June 22.1 36.70

October 25.26 38.96

February 40.43 32.53

July 14.08 19.30

March 42.30 42.09

May 24.65 38.31

greenhouse was without plants, the data dimensions for March
and June were 744, 113, and 720, 113, respectively.

ii. Implementation of dynamic time warping algorithm
The dynamic time warping (DTW) algorithm, following

Furlanello et al. (2006) and given below, was implemented to
ascertain the effect of the plants on the microclimate distribution
of the greenhouse.

Input:
series: u = {u1, u2,..., uTu }
series: v = {v1, v2,..., vTv }
Base conditions :
g (0,0) = 0
g (1,1) = d (u1, v1)·wD
g (i,0) =∞ for 1 ≤ i ≤ Tu
g (0, j) =∞ for 1 ≤ j ≤ Tv
Recursive relation:

g(i,j) = min


g(i, j− 1)+d(ui, vj) · wv

g(i− 1, j− 1)+d(ui, vj) · wD
g(i− 1, j)+d(ui, vj) · wH

for 1 ≤ i ≤ Tu and 1 ≤ j ≤ Tv
Alignment deduction by tracing back from g (Tu,

Tv) to g (0,0).
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FIGURE 7 | Plots of temperature data for (A) March and June; and (B) optimal match of the time series.

Where Tu and Tv are the time points for series u and v,
respectively; d is the local distance minimized by the DTW
algorithm to find the minimum cost path or best alignment; g is
the matrix of the dynamic table construction of (Tu + 1)× (Tv +

1); wH , wD, wV are the weight configuration for horizontal (H),
diagonal (D) and vertical (V) time distortions.

f. Protected Cultivation Environmental Data Preprocessing
Preprocessing the data involved standardizing features (sensor

locations) and treating missing values. To standardize the
features within a range of 0 to 1, feature scaling was done.
Train-validation split was carried out in a time series to
avoid a randomized or highly stochastic output. The tree-
based algorithm (Gradient Boosting) was fitted on the training
data and validated on the remaining (or unseen) portion to
prevent overfitting.

Missing data was less than 1%, and these were
treated with forward (or backward) filling given the
appropriateness of this approach for the observations
recorded within a minute. Figure 5 shows the result of the
data preprocessing at sensor A1.

From the two condition parameters – temperature and
humidity – psychometric properties (dew point temperature,
humid ratio, enthalpy, and specific volume) describing the air

vapor mixture (Czubinski et al., 2013) in the greenhouse were
derived. This helped to determine more features of importance
as condition parameters for the greenhouse environment.

g. Derivation of Psychometric Variables
Equations 2–5 were used to convert the raw temperature and

relative humidity data into dew point temperature, humidity
ratio, enthalpy, and specific volume (Handbook, 2001):

Dew point temperature (◦C), Td =
T− (100− RH)

5
(2)

Humidity ratio, w =
0.62198Pw

P− Pw
(3)

Enthalpy(kJ/kg), h = 1.006T+ w (2501+ 1.805 (T)) (4)

Specific volume (m3/kg), v =
RdaT

P− Pw
(5)

Where T was internal temperature; RH, relative humidity; Pw,
partial pressure of water vapor; P, total pressure; and Rda, gas
constant for dry air = 287.055 J/(kg K).
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TABLE 2 | Performance of a sensor network in identifying the optimal number of
sensors and placement for measuring greenhouse conditions across different
months using temperature data.

Index Sensor location (s) RMSE (◦C)

February (F7)

0 C2 0.0448124

1 C2, H7 0.0133850

2 C2, H7, B7 0.0114320

3 C2, H7, B7, A1 0.0102077

4 C2, H7, B7, A1, D6 0.0108046

5 C2, H7, B7, A1, D6, F1 0.0110145

March (G7)

0 H7 0.0380515

1 H7, D5 0.0278228

2 H7, D5, F7 0.0239464

3 H7, D5, F7, A7 0.0215741

4 H7, D5, F7, A7, B7 0.0196743

5 H7, D5, F7, A7, B7, B4 0.0194982

6 H7, D5, F7, A7, B7, B4, C7 0.0199467

7 H7, D5, F7, A7, B7, B4, C7, E7 0.0200142

April (F7)

0 D6 0.0397207

1 D6, D7 0.0349923

2 D6, D7, F6 0.0288990

3 D6, D7, F6, F4 0.0286996

4 D6, D7, F6, F4, H7 0.0285790

5 D6, D7, F6, F4, H7, G7 0.0270916

6 D6, D7, F6, F4, H7, G7, F5 0.0268920

7 D6, D7, F6, F4, H7, G7, F5, F3 0.0266292

8 D6, D7, F6, F4, H7, G7, F5, F3, E6 0.0260851

9 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7 0.0226352

10 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6 0.0224960

11 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2 0.0224442

12 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2, D5 0.0223317

13 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2, D5, C6 0.0226247

14 D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, D2, D5, C6, D3 0.0226412

May (D4)

0 A2 0.0291603

1 A2, B2 0.0288598

2 A2, B2, B3 0.0266414

3 A2, B2, B3, F1 0.0235686

4 A2, B2, B3, F1, D3 0.0171915

5 A2, B2, B3, F1, D3, H1 0.0172351

6 H7, D5, F7, A7, B7, B4, C7 0.0173482

June (D5)

0 D4 0.0115102

1 D4, D3 0.0105300

2 D4, D3, C6 0.0103634

3 D4, D3, C6, C2 0.0104309

4 D4, D3, C6, C2, C4 0.0106421

July (D4)

0 D5 0.0069262

1 D5, F1 0.0062005

2 D5, F1, D6 0.0061786

3 D5, F1, D6, D3 0.0051103

4 D5, F1, D6, D3, C4 0.0050485

(Continued)

TABLE 2 | (Continued)

Index Sensor location(s) RMSE (◦C)

5 D5, F1, D6, D3, C4, D2 0.0050180

6 D5, F1, D6, D3, C4, D2, C6 0.0048374

7 D5, F1, D6, D3, C4, D2, C6, F7 0.0047972

8 D5, F1, D6, D3, C4, D2, C6, F7, E1 0.0046052

9 D5, F1, D6, D3, C4, D2, C6, F7, E1, H7 0.0046170

10 D5, F1, D6, D3, C4, D2, C6, F7, E1, H7, F4 0.0046221

October (B7)

0 B1 0.0397534

1 B1, D3 0.0355036

2 B1, D3, B2 0.0373681

3 B1, D3, B2, F1 0.0381142

NB: Sensor location in parenthesis implies the location with the least RMSE value -
most important (predictor). The bolded values represent optimal sensor locations.

Optimal Sensors Placement Problem
Formulation
Objective 1: Minimizing the RMSE (Sensor Location Ranking)

A single sensor location that gives the maximum gain to
the objective function (Equation 6) was selected from all the
environment’s 56 possible positions. Furthermore, having fixed
the previous selection of the best sensor location, the following
location was determined from the remaining (56 – 1 = 55)
locations that gave the best improvement in the objective –
lowest RMSE. This technique was applied iteratively until the last
sensor location was determined. That is, RMSEmin,1, RMSEmin,2,
RMSEmin,3,. . ., RMSEmin,56, where 1, 2,. . ., 56 are placeholders
for the sensor nodes, A1, A2,. . ., H7 (not necessarily in this order
but ranked by the minimum RMSE at each node).

RMSEmin_N =

√∑n
i = 1 (xi (i, t)− xˆi (i, t))2

n
(6)

Where N was sensor location number, xi (i, t) is the actual
observation of the climatic variables at location i and time t,
xˆi (i, t) was the estimated value, and n was the total number of
nodes or sensor locations.

N submatrices of the matrix, A of m × n representing
the data, such that, A ∈ Rm × n were derived to represent the
observations at each sensor node given that Sm,p→q ∈ Rm × p→q

∀ m, n, p, q ∈ N {p, q < n}. p→ q took an element from the
start of the column of a particular sensor location to the end of
the column (a node was defined at column index p and q-1 with
temperature and humidity index, respectively, for a two-in-one
sensor). Sub matrix, S of elements aij where i = 1, 2, . . ., m; j = 1, 2,
. . ., q-1 is ordered in a rectangular frame as shown in Equation 7.

S =
[

a1pa1q−1a2pa2q−1
...
... ampamq−1

]
, aij ∈ R (7)

A supervised learning approach was employed for this study.
As such, a response or target variable (climatic variables to be
predicted by the input features), yt+k was derived by making
a k-step forecast of a column (feature) of the submatrix, S for
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FIGURE 8 | Root mean squared error curves showing the reduction in error at different numbers of sensors using temperature and relative humidity data for
(A) February; (B) March; (C) April; (D) May; (E) June; (F) July; and (G) October.

k ∈ N. All observations were made per minute and the response
variable at time t was one step ahead of the observation; thus,
k = 1. A machine learning model simply represented in Equation
8 where d = 1, 2, . . . D were index features, was fitted on the new
data matrix, C ∈ Rm × 3

⊇ S and evaluated by the performance
metric, RMSE. This was carried out for all sensor nodes, and the
RMSEs were used to rank the order of importance of the sensor
nodes – in the order of increasing RMSE values. This implied a
larger improvement to the objective function is used to rank the
sensors.

f : RD
→ R (8)

Objective 2: Minimizing the Optimal Number of Sensors
The second objective of this study was to determine the

minimum optimal number of sensors and the sensor location
ranking. Having determined the sensor location that gave the
most considerable improvement to the objective function, the
target variable, yt+k was taken to be a one-step forecast of one
of the environmental variables (temperature) readings at this
location. Following Li (2016), a gradient boosting model at each
point m of M stages, Gm such that 1 ≤ m ≤ M was fitted
on the preprocessed data, with the subsequent addition of some
estimators, hm(x)(regression trees) to improve the model by
compensating for the inadequacy of the existing model Gm(x)
(Equation 9).

Gm1(x) = Gm(x)+ hm(x) (9)

Gm1(x) is the new model, Gm(x) is the existing model and
hm(x) is the regression tree.

As a supervised learning problem for the training data,
{(x1, y1), ..., (xn, yn)}, an approximation function, Gˆ(x)
extended a function G(x) to minimize the objective function
given as R(yt+k, G(x)) by starting with a model containing
function G0(x) and expanding the model as given in Equations
10 and 11.

G0(x) = arg min
ţ

n∑
i=1

R(yi, µ) (10)

Gm(x) = Gm−1(x)+ [

n∑
i=1

R(yi, Gm−1(xi)+ hm (xi))] (11)

where i ∈ N, hm ∈ H is a base learner function.
The model was updated by applying the steepest gradient

descent to the minimization problem in Equations 12 and 13.

Gm(x) = Gm−1 (x)− µm

n∑
i=1

∇Gm−1 R(yi, Gm−1 (xi)) (12)

µm =

n∑
i=1

R(yi, Gm−1(xi)− µ∇Gm−1 R(yi, Gm−1 (xi))) (13)

where the derivatives are taken concerning the functions Gi for
i ∈ {1, , m} and m was the step length.

An N number of sensor locations was considered, where
RMSEmin,1 < RMSEmin,2 < RMSEmin,3 < RMSEmin,4 < . . . <
RMSEmin,N for each node from 1, 2, . . ., N. A one-step-
ahead time forecast at node 1 was taken as the response
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TABLE 3 | Performance of sensor network in identifying the optimal number of
sensors and placement for measuring greenhouse conditions across different
months using relative humidity data.

Index Sensor location(s) RMSE (%)

February (F7)

0 C2 0.0299539

1 C2, H7 0.0115791

2 C2, H7, B7 0.0095410

3 C2, H7, B7, A1 0.0094043

4 C2, H7, B7, A1, D6 0.0093536

5 C2, H7, B7, A1, D6, F1 0.0093313

6 C2, H7, B7, A1, D6, F1, C3 0.0092886

7 C2, H7, B7, A1, D6, F1, C3, D3 0.0093494

8 C2, H7, B7, A1, D6, F1, C3, D3, F2 0.0094121

March (G7)

0 H7 0.0399899

1 H7, D5 0.0266852

2 H7, D5, F7 0.0190371

3 H7, D5, F7, A7 0.0163404

4 H7, D5, F7, A7, B7 0.0156854

5 H7, D5, F7, A7, B7, B4 0.0158632

6 H7, D5, F7, A7, B7, B4, C7 0.0159132

April (F7)

0 D6 0.0397690

1 D6, D7 0.0347859

2 D6, D7, F6 0.0307091

3 D6, D7, F6, F4 0.0305697

4 D6, D7, F6, F4, H7 0.0304953

5 D6, D7, F6, F4, H7, G7 0.0290896

6 D6, D7, F6, F4, H7, G7, F5 0.0288381

7 D6, D7, F6, F4, H7, G7, F5, F3 0.0289097

8 D6, D7, F6, F4, H7, G7, F5, F3, E6 0.0291045

May (D4)

0 A2 0.0255216

1 A2, B2 0.0252681

2 A2, B2, B3 0.0215447

3 A2, B2, B3, F1 0.0199938

4 A2, B2, B3, F1, D3 0.0179418

5 A2, B2, B3, F1, D3, H1 0.0181023

6 H7, D5, F7, A7, B7, B4, C7 0.0194512

June (D5)

0 D4 0.0129441

1 D4, D3 0.0105844

2 D4, D3, C6 0.0109450

3 D4, D3, C6, C2 0.0110102

July (D4)

0 D5 0.0152904

1 D5, F1 0.0143873

2 D5, F1, D6 0.0148891

3 D5, F1, D6, D3 0.0152913

October (B7)

0 B1 0.0343254

1 B1, D3 0.0302872

2 B1, D3, B2 0.0298292

3 B1, D3, B2, F1 0.0312717

4 B1, D3, B2, F1, D2 0.0324157

NB: Sensor location in parenthesis implies the location with the least RMSE value -
most important (predictor). The bolded values represent optimal sensor locations.

or target variable to be used as a predictor for other nodes
to determine the performance of placement, while, for the
first aspect, the input features were environmental variables
(temperature and humidity), and the second aspect, the four
psychometric properties (dew point temperature, humid ratio,
enthalpy, and specific volume), plus crucially engineered features
of the date/time object variable. The overall RMSE continued
to decrease, indicating improvements in the sensor stacking
performance until a point was reached where there was no further
minimization of the objective function. At this point, the number
of sensors was considered as being optimal. The pseudo-code
below illustrates the algorithm for optimal sensor selection, and
Figure 6 shows the summary of this process. The algorithm
used flow conditional statements that iterated the whole process
of ranking. The RMSE was the objective function. It was the
metric for evaluating the variability due to the disturbances in the
greenhouse’s climate. The ranking was done by using a time-series
forecast methodology. The RMSE compared the predicted values
with the actual values.

The RMSE was minimized by tuning the hyper-parameters of
the algorithm to obtain the best result. This also ensured that
the ranking was not subjected to fluctuations and the optimal
selection was accurate no matter how many times the pipeline
was automated/re-run.

Optimal sensor selection pseudo-code.

Input: Temperature-humidity dataset, A ∈ Rm × n, of(m × n) dimension
Output: Set of optimal sensors
Ranking of. . .
Ranking of sensors
1 Create data-frame for each sensor location
2 Split into Xtrain and Xval in a time-series manner
3 Derive target variable by forecasting a feature’s observations
4 Split into ytrain and yval

5 Fit the model on the data
6 Append sensor locations to a list by RMSE ranking (Update the list of sensors
iteratively with the corresponding RMSE values in an ascending order to show
ranking)

Optimal number of sensors
7 Initialize optimal sensors (p) to 0
8 Assign v to 56 (total number of sensors)
9 for i = 1 to v do
10 Fit model on training set and score
11 if hyper-parameter is not optimal do
12 try other combinations of hyper-parameters
13 else do
14 append RMSE values [Equation 6]
15 increment p by 1
16 return p

EXPERIMENTAL RESULTS AND
DISCUSSION

In (Lee et al., 2019), a statistical approach was adopted for optimal
sensor selection. Our study advanced the optimal sensor selection
by developing a machine learning model using generated time-
series big data and transformed psychrometric variables. In
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TABLE 4 | Seasonal variation in optimal sensor placement.

February (Winter) March (Spring) April (Spring) May (Spring) June (Summer) July (Summer) October (Autumn)

U Td w h v U Td w h v U Td w h v U Td w h v U Td w h v U Td w h v U Td w h v

F7 F7 F7 F7 F7 G7 G7 G7 G7 G7 F7 F7 F7 F7 F7 D4 D4 D4 D4 D4 D5 D5 D5 D5 D5 D4 D4 D4 D4 D4 B7 B7 B7 B7 B7

C2 C2 C2 C2 C2 H7 H7 H7 H7 H7 D6 D6 D6 D6 D6 A2 A2 A2 A2 A2 D4 D4 D4 D4 D4 D5 D5 D5 D5 D5 B1 B1 B1 B1 B1

H7 H7 H7 H7 H7 D5 D5 D5 D5 D5 D7 D7 D7 D7 D7 B2 B2 B2 B2 B2 D3 D3 D3 D3 D3 F1 F1 F1 F1 F1 D3 D3 D3 D3 D3

B7 B7 B7 F7 F7 F7 F7 F6 F6 F6 F6 F6 B3 B3 B3 B3 B3 C6 C6 C6 C6 C6 D6 D6 D6 D6 D6

A1 A1 A7 A7 A7 A7 F4 F4 F4 F4 F1 F1 F1 F1 F1 C2 D3 D3 D3 D3 D3

D6 D6 B7 B7 B7 B7 H7 H7 H7 H7 D3 D3 D3 C4 C4 C4 C4 C4 C4

B4 B4 B4 G7 G7 G7 G7 H1 H1 H1 D2 D2 D2 D2 D2

C7 C7 C7 F5 F5 A4 A4 A4 C6 C6 C6 C6 C6

E7 E7 E7 F3 F3 C4 C4 C4 F7 F7 F7 F7 F7

D7 D7 E6 E6 A3 A3 A3 E1 E1 E1 E1

D4 D4 E7 E7 D2 H7

H6 H6 C2 F4

D2 D2 E1 F5

D5 C1

A6

C3

B1

(3) (3) (6) (6) (4) (9) (11) (11) (6) (3) (13) (4) (14) (7) (7) (17) (5) (10) (10) (5) (6) (4) (4) (4) (4) (9) (13) (10) (10) (10) (3) (3) (3) (3) (3)

Keys: U – untransformed (raw temperature and humidity) data. Td – dew point temperature. w – humidity ratio. h – enthalpy. v - specific volume.

the results obtained in Lee et al. (2019), sensor locations with
the highest entropy were selected as optimal because of high
disturbance from the wind. We implemented an algorithm on
time-series big data and transformed psychrometric variables that
choose sensors that can best monitor the state of the greenhouse
optimally using hyper-parameter tuning.

Variability Analysis: Coefficient of
Variation of Greenhouse Temperature
and Humidity Data
The coefficient of variation (CV) of the climate data was
calculated for all the studied months. The CV was used
to determine the extent of variability of the greenhouse by
computing the ratio of the standard deviation to the mean of the
temperature or relative humidity values.

During the summer period (June and July) in Table 1, it was
observed that the temperature variation was the least, indicating
the data points have the minimum difference from the mean
compared to other periods. July showed the least CV for the
relative humidity data but differed slightly from June and showed
a slightly higher value than February. Similarly, the greenhouse
had the least variability in the summer months for relative
humidity. Considering plants were not grown during this period
in the greenhouse could be a reason for the low variation in
greenhouse climate properties. During aerobic respiration, plants
use oxygen and emit carbon dioxide (Kader and Saltveit, 2002),
which affects the properties of the greenhouse. Generally, this was
observed in other months in which plants were grown.

February and March (the end of winter and the beginning
of spring) are the two months with the highest temperature
CV (40.43% and 42.30%, respectively), similarly with a very

high humidity CV (32.53% and 42.09%, respectively). This was
probably caused by the changing season, with a sharp change in
weather conditions. February and March recorded a low of−9◦C
and −2◦C, respectively. Both months had a high of 24◦C. An
increment of 9.15% and 30.94% in the temperature and humidity
standard deviation, respectively, were observed in March.

The Effect of the Plants on the
Microclimate Distribution
The dynamic time warping algorithm was implemented to
measure the similarity between March and June sensor readings.
Figure 7A shows the plot of the March and June sensor reading
per hour for the temperature data, and Figure 7B shows the
alignment match plot of the series. The optimal match between
the two series, as shown in Figure 7B, cannot be understood
visually since the dataset is quite large.

The first index from the i sequence matches with at least 250
indices of the j sequence. This implies that the first hour of June
matches with the first 11 days of March with a minimal cost path
as indicated by the vertical line. This implied that there were no
statistically significant changes in the climatic condition of the
greenhouse. However, before the end of the first day in June, a
slow change in the graph indicated a shift of alignment between
the two months. A significant match occurred at the 170th index
of the j sequence (7th day of June) with the 352nd index of the i
sequence (toward the evening of the 14th day of March).

This similarity was stable for about 48 h (2 days). The overall
climatic condition of the greenhouse, by the temperature, in the
last seven days in June matched closely with the state of the
greenhouse within the previous two days of March, with minor
variations.
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FIGURE 9 | Optimal sensor selection for spring month using the psychometric dataset; (A) April daily; and (B) weekly.

Almost all points of the i and j indices had unique matches
for the relative humidity data. A lesser number of matches of
the indices was observed. This high linearity implied that the
absence of crops in June did not have much effect on the relative
humidity of the greenhouse compared to the temperature. This
also justified a lesser percentage decrease from March to June in
the relative humidity CV than the CV of temperature as shown
in Table 1.

Temperature-Relative Humidity Data
The optimal hyper-parameters were n_estimators = 1000 and
learning_rate = 0.01, while max_depth ranged from 2 to 7, as
selected by the iterative algorithm. These hyper-parameters were
used to tune the algorithms to learn the data with the maximum
performance. Seven months (February, March, April, May, June,
July, and October) were selected as representative months to
cover the four seasons (winter, spring, summer, and autumn) and
used in the simulations.

In Table 2, index numbers 3, 5, 12, 4, 3, 8, and 1 with the least
RMSE values of 0.0102077, 0.0194982, 0.0223317, 0.0171915,
0.0103634, 0.0046052, and 0.0355036 were recorded as optimal

sensors numbers and locations for February, March, April, May,
June, July, and October, respectively, for temperature data. At
some months, the RMSE values start increasing, indicating that
the addition of more sensors would instead reduce the quality
of the data. These presented the sensors that measured the air-
moisture condition in the greenhouse most accurately in the
different months. The sensors acted as features or variables used
for training the machine learning model. Through ranking, the
number of sensors required was determined with the RMSE
indicating the model’s performance in predicting the best sensor
location. The more relevant the feature(s), the lower the RMSE.
The row (bolded) beyond which the RMSE no longer decreased
was taken as the optimal. Table 2 shows index number that a
high variation in the optimal number of sensors occurred at
different months with a total number of 4, 6, 13, 5, 3, 9, and
3 sensors were optimal for measuring the greenhouse’s internal
environment in February, March, April, May, June, July, and
October, respectively.

Furthermore, investigation of the Pareto front, a set of
nondominated solutions chosen as optimal when no objective
can be improved without sacrificing at least one other objective,
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FIGURE 10 | Optimal sensor selection for summer month using the psychometric dataset; (A) July daily; and (B) weekly.

helped enhance decision-making. The two conflicting objectives
showed a reduction in RMSE values at all the investigated
months with increasing selected sensors. However, to reduce
the RMSE and number of conflicting sensors, the Pareto
front displayed the knee points where a less significant RMSE
occurred. In February, (Figure 8A), a drastic reduction (about
66%) in the RMSE value between one and two sensors with
a slighter decrease between two and five sensors using the
temperature data. This indicated that, for February, two sensors
would give good readings to understand the condition of the
air-vapor mixture in the greenhouse at a less computational
cost than three (about 0.014%), four, and five sensors (about
13%). This trend was seen for the other simulated months,
with March (Figure 8B) having three knee points at two and
five sensors with about 26% and 46%, respectively. In April
(Figure 8C), two distinct knee points were recorded at three

sensors (about 28%) and ten sensors (about 42%). A similar
trend was seen in May (Figure 8D), June (Figure 8E), and
July (Figure 8F). However, in October, a drastic reduction
was seen at two sensors (about 30%), followed by a sharp
rise indicating that more sensors introduced more errors
instead (Figure 8G).

Index numbers 6, 4, 6, 4, 1, 1, and 2 with the least RMSE
values of 0.0092886, 0.0156854, 0.0288381, 0.0179418, 0.0105844,
0.0143873, and 0.0298292 were recorded as optimal sensors
numbers and locations for February, March, April, May, June,
July, and October, respectively, as the sensors that measured
the air-moisture condition in the greenhouse most accurately
in the other months using the relative humidity data. The
results for the sensors to measure the air-vapor mixture in the
greenhouse differed from the temperature and humidity data.
This led us to investigate the stability of the transformed data
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FIGURE 11 | Optimal sensor selection for Autumn month using the psychometric dataset; (A) October daily; and (B) weekly.

would best describe the air-vapor mixture condition in the
greenhouse. In the case of relative humidity, a similar trend
of high variation in the optimal number of sensors occurred
at different months, with a total number of 7, 5, 7, 5, 2, 2,
and 3 sensors being found optimal for measuring the internal
greenhouse environment in February, March, April, May, June,
July, and October, respectively (Table 3).

A similar trend with the temperature data was seen in the
Pareto fronts for the optimal number of sensors to accurately
measure the air-vapor mixture in the greenhouse using the
relative humidity data. A flat Pareto front was seen in the
reduction of RMSE in February (Figure 8A) from 2 to 8
sensors. All other months (Figures 8B–G) showed that the
Pareto front improved decision-making, as there were sensors
that though reduced the RMSE, did not significantly cause the
front to change.

The temperature and relative humidity data had the same
predictor, implying the location with the least RMSE value
(Tables 2, 3). This indicated that the rankings were not different
(shows the sensors with the least interference for the month).
However, the optimal numbers of sensors using the temperature
and relative humidity data varied across the months.

Transformed Data: Psychometric
Variables
The optimal sensor locations for February, March, April, May,
June, July, and October are given in Table 4 for the four
psychrometric properties considered in this study. The monthly
data was split into daily and weekly data to get a clearer view of
optimal sensors placement for each month and investigate the
effect of the sharp changes in weather conditions. Analyses of the
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sensor numbers results show that the transformed psychrometric
variables had fewer optimal locations than the untransformed
(temperature and relative humidity) dataset, with a difference of
up to about 70% in May.

Figures 9A,B show the daily and weekly distributions of the
variables by sensors for a spring month (April), respectively.
Using the transformed psychometric properties (dew point
temperature, humid ratio, enthalpy, and specific volume),
inconsistencies in selections of the ideal number of sensors
required for some days in April were observed. For instance, on
day 1 (April), nine optimal sensors were required when the dew
point temperature property was considered, while four optimal
sensors were required for other properties. The usage of the
derived psychometric properties resulted in the selection of a
reduced number of optimal sensors indicating a more adaptive
nature of the algorithm to these derived variables compared to
the raw temperature and relative humidity variables. The derived
psychometric properties also showed better understanding of
the air-vapor mixture since two combined properties were
considered instead of the untransformed dataset using a single
property. This improved efficiency would benefit the grower by
reducing acquisition and operating costs as well as decreasing
amounts of dat ato be handled. Furthermore, a cross-cutting
beneficial effect would result from energy savings from proper
monitoring and increased productivity.

Over the study period, specific volume (v) required the least
number of sensors for measurement. However, it showed the
most inconsistent result (having values not in a close range
with the result from other derived properties), likely due to
the very low magnitude of the values producing slightly more
stochastic predictions.

Additionally, it was noted that the order of sensor selection
did not change over the study period. For example, as reported for
April in Table 4, in the April column, the ranking of the 13 sensor
locations according to decreasing order of importance was F7,
D6, D7, F6, F4, H7, G7, F5, F3, E6, E7, H6, and D2. If four sensors
were required for measuring the enthalpy variable, then the first
four sensor locations (F7, D6, D7, and F6) were to be considered.
If one sensor only was selected, then F7 was the optimal sensor.
Figures 10, 11 show the periodic variation of optimal sensor
selection for summer (July) and autumn (October), respectively.

Periodic Variation in the Optimal Sensor
Selection
Several plots (Figures 9–11) show the variation in the optimal
sensor selection for the greenhouse over time (that is, daily
and weekly). External disturbances such as temperature, wind,
and humidity influenced the data. Modeling the phenomenon
of natural ventilation proved to be complex, especially because
it was significantly affected by the external climate, and its
design more complicated than fan ventilation. A fan ventilation
system was adopted for verification (Figure 3C). Yet, significant
variations were still observed based on the analysis of the
coefficient of variation of the indoor climate data (Table 1).
Also thought to be influencing the microclimate within the
protected cultivation systems were factors such as the heating

system and the respiration of the plants which could have
led to variations in the relative humidity. This necessitated a
systematic approach for determining the optimal number and
locations of the sensors. For example, on days 15 and 20 of
April (Figure 9A), temperature measurements and standard
deviations of 0.3258◦C and 0.2130◦C, respectively were reported.
Statistically, in terms of measuring dispersion, the magnitude
of the standard deviation varied across daily, weekly, and
monthly periods. These temporal variations in the results
indicated that optimal sensor placement was affected by periodic
variations of different levels of magnitude. However, the sensors
selected at the same level across the measured conditions and
transformed psychrometric properties were the same, pointing
to the robustness of our method to accurately measure the total
air-vapor mixture in the protected cultivation system.

Additionally, the indoor heating system could contribute to
the differences in the optimal locations selected to measure
environmental conditions as some piping systems heat sections
of the greenhouse nonuniformly.

CONCLUSION

A supervised machine learning model was developed to identify
the optimal number and locations of sensors to monitor climatic
conditions in a protected cultivation system using a multi-
objective approach. The Gradient Boosting Algorithm was fitted
to the measured conditions and derived psychrometric variables.
The derived psychrometric properties resulted in fewer optimal
sensors than the raw temperature and relative humidity data.
This study found that the optimal locations of sensors were
both at the sides and center of the protected cultivation system
depending on the time of year. Variability analyses indicated
that no location was consistently optimal. The changes in
the optimal sensor location with seasons were this study’s
limitation. A future study would aim to develop a dynamic
approach to selecting optimal sensors’ locations. This could
include using the ensemble technique by creating multiple
models and considering a mobile environmental measurement
system. Finally, the solutions in the Pareto front improved
decision-making as some points had close relationships. This
would have cross-cutting effects on energy management and
plant productivity.
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