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Among abiotic stresses, salinity is a significant limiting factor affecting agricultural

productivity, survival, and production, resulting in significant economic losses.

Considering the salinity problem, the goal of this study was to identify a halotolerant

beneficial soil bacterium to circumvent salinity-induced phytotoxicity. Here, strain KR-17

(having an irregular margin; a mucoid colony; Gm-ve short rod; optimum temperature,

30◦C; pH 7.0; no any pigmentation; showed a positive response to citrate utilization,

catalase, starch, sucrose, lactose, and dextrose, etc.) recovered from rhizosphere

soils of the potato-cultivating field, tolerated surprisingly a high (18% NaCl; 3.-M

concentration) level of salt and identified as Kosakonia radicincitans (Accession No.

OM348535). This strain was discovered to be metabolically active, synthesized essential

PGP bioactive molecules like indole-3-acetic acid (IAA), siderophore (iron-chelating

compounds), ACC deaminase, and ammonia, the quantity of which, however, increased

with increasing NaCl concentrations. Here, Raphanus sativus L. (radish) was taken as

a model crop to evaluate the adverse impact of NaCl, as well as salinity alleviation by

halotolerant K. radicincitans. Salinity-induced toxicity to R. sativus was increased in a

dose-dependent way, as observed both in vitro and in vivo conditions. Maximum NaCl

levels (15%) demonstrated more extreme harm and considerably reduced the plant’s

biological features. However, membrane damage, relative leaf water content (RLWC),

stressor metabolites, and antioxidant enzymes were increased as NaCl concentration

increased. In contrast, halotolerant K. radicincitans KR-17 relieved salinity stress and

enhanced the overall performance of R. sativus (L.) by increasing germination efficiency,

dry biomass, and leaf pigments even in salt-challenged conditions. Additionally, KR-17

inoculation significantly (p≤ 0.05) improved plant mineral nutrients (Na, K, Ca, Mg, Zn, Fe,

Cu, P, and N). Following inoculation, strain KR-17 enhanced the protein, carbohydrates,

root pigments, amino acids (AsA and Lys), lipids, and root alkaloids in R. sativus (L.).
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Besides these, due to PGPR seed priming in NaCl-stressed/non-stressed conditions,

membrane damage, RLWC, stressor metabolites, and antioxidant defense enzymes

were dramatically reduced. The strong biofilm-forming capacity of K. radicincitans could

result in both in vitro and in vivo colonization under NaCl stress. Conclusively, halotolerant

K. radicincitans KR-17 may probably be investigated affordably as the greatest way to

increase the production of radish under salinity-stressed soils.

Keywords: halotolerant PGPR, bioactive molecules, colonization and biofilm formation, phenolics and alkaloids,

stressor metabolites

INTRODUCTION

In recent times, the rising global population has been
accompanied by increased food consumption, and Oleraceous
plants are vital to satisfy this growing need. Raphanus sativus
L. (radish) is a significantly important root, leafy, and fruit
vegetable cultivated in India and South East Asia, belonging to
the Brassicaceae family (Lee et al., 2021). Due to its pungent
flavor and crisping texture, radish roots are often consumed
raw in the form of salad and pickles. Being a leafy vegetable,
radish contains a vast variety of phytochemicals like vitamin
“A” (Gamba et al., 2021) vitamin “C”, minerals like sulfur
(Jaafar et al., 2020), and anthocyanins and glucosinolates and
other micronutrients that help enhancing the health of humans.
This crop has anti-tumorigenic, antioxidant- and microbiome-
regulating, and therapeutic properties, and, due to this very
reason, radish is a well-studied crop.

Salinity is an important abiotic factor that reduces the yield
and physiological processes of several plants worldwide (Ghosh
et al., 2016). According to a recent analysis, salt affects 11.73
million km2 of agricultural soil (Hassani et al., 2020). It affects
over 20% of the world’s agricultural land and about half of the
world’s irrigated areas. The negative impact of NaCl on plants
is the result of two factors: (i) water deficit caused by excessive
solute concentrations in the soil and (ii), particularly, Cl and
Na+ stress. Furthermore, there are two primary components of
salinity stress; (i) ionic, which is connected to the toxicity of the
ions produced by salts, and (ii) the osmotic component, in which
a high salt concentration in soil solution limits water availability
to plants (Miranda et al., 2017). Under a saline environment,
high osmotic stress and sodium (Na) toxicity pose a negative
impact on crops (Ali et al., 2021). As a result, plants experience a
wide range of physiological and biochemical alterations (Chang
et al., 2019) in nutrient absorption (Petretto et al., 2019),
mobilization, osmotic balance, membrane integrity, oxidative
stress, photosynthetic rate (Ji et al., 2018), photorespiration,
transpiration (Jan et al., 2020), protein and glucose synthesis,
disruption in amino and nucleic acid metabolism and overall
growth and, ultimately, reducing the crop output and land-
use sustainability.

New and more effective techniques to boost crop yield in
salt-stressed soil are critical to long-term agricultural production
and food security, especially in saline soils. In numerous crops,
plant breeders have attempted to generate salt-tolerant varieties.
However, accessibility to salt-tolerant varieties is very limited.

Several approaches have been used to promote salt tolerance, and
one of them is the use of NaCl-tolerant (halotolerant) compatible
microbial inoculants. The evolution of ways and tactics to reduce
the detrimental effects of salt stress on plants has thus garnered
great focus. Several approaches have been used to promote salt
tolerance, and one of them is the use of salinity-alleviating
microbial inoculants.

Inoculation of plant growth-promoting (PGP) rhizobacteria
plays a significant role in crop development, nutritional
management (Bechtaoui et al., 2020), and disease control
(Zaidi et al., 2016, 2017). These PGP bacteria infiltrate exo-
rhizospheres/endo-rhizospheres of plants and increase crop
productivity through a variety of direct/indirect mechanisms.
Furthermore, the importance of PGP bacteria in themanagement
of biotic and abiotic stresses is expanding. In such circumstances,
the most appropriate approach is to utilize salt-tolerant bacterial
(halotolerant) inoculants, which may be beneficial in creating
ways to aid plant development in saline soils. Halotolerant PGP
bacteria may also relieve the damaging effects of salinity by
synthesizing multiple growth-regulating substances (Camaille
et al., 2021). The mechanism of NaCl tolerance and its mitigation
by rhizobacteria for plants could be the result of a combination
of actions, including (i) synthesis of plant hormones (indole-3-
acetic acid, abscisic acid, gibberellic acid, and cytokinins), (ii)
synthesis of ACC deaminase, which decreases the ethylene level
in root tissues, (iii) release of extra polymeric substances (EPS),
and (iv) induced systemic resistance (ISR) to fungal diseases by
bacterial compounds. The possible mechanism behind salinity
alleviation by soil microbes is that halotolerant PGP bacteria
express the antioxidant genes that play a significant role in the
maintenance of reactive oxygen species (ROS) levels in plants
exposed to high salinity stress, thus confirming the significance
of NaCl tolerant microbes in free radical scavenging in saline
conditions. Furthermore, salinity mitigation can be explained by
the fact that enzymes are involved in the neutralization of free
radicals, so the amount of free enzymes is reduced, resulting
in a decrease in enzyme production, as well as having plant
growth-promoting function. Another reason for PGPR-mediated
growth promotion is that halotolerant PGP bacteria aid plants
under salt stress by breaking down elevated ethylene hormone
levels using ACC deaminase, as ethylene inhibits plant growth in
stressful situations.

Multiple studies have found that rhizosphere bacteria play
a key role in reducing salt stress in a variety of crop plants.
For instance, halotolerant PGPR strains (Kocuriaerythromyxa

Frontiers in Plant Science | www.frontiersin.org 2 August 2022 | Volume 13 | Article 919696

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shahid et al. Halotolerant-PGPR Improves Radish Under NaCl

and Staphylococcuskloosii), following their application to
salinity-stressed radish plants, caused improved accumulation
of Na+, reduced the membrane damage, and increased
plant production (Yildirim et al., 2008). Additionally, salt-
tolerant Bacillus oryzicola strain YC007 augmented the
length, biomass, and chlorophyll molecules accumulated in R.
sativus L. and Brassica oleracea L. plants by (i) maintaining
intracellular Na+ ion concentration and (ii) regulating
SOS1-dependent salinity-stressed signaling pathways (Baek
et al., 2020). In addition, a study conducted by Kaymak
et al. (2009) reported that bio-priming of radish seeds
with halotolerant PGPRs (Bacillus subtilis, Burkholderia
gladii, Bacillus megaterium, Pseudomonas putida, and
Agrobacterium rubi) caused a surprising increase in germination
efficiency of plants raised in soils exogenously added with
NaCl. Studies on Triticumestivum (L.) grown in saline–
sodic soil that were fertilized and inoculated with ACC
deaminase positive Bacillus sp., Zhihengliuellahalotolerans and
Staphylococcussuccinus, either alone or in combination, alleviated
the NaCl-induced toxicity, and plants grew and yielded better
(Orhan, 2016).

Under saline-induced agricultural practices, the application
of salinity-alleviating microbes is a green option for increasing
crop productivity; however, additional research into how they
act and affect the plant system is needed. Considering the
negative impact of salinity-induced stress on agriculturally
important crops, especially R. sativus (L.) radish, and bearing
in mind the importance of halotolerant microbes in salinity
alleviation, we isolated NaCl-tolerant Kosakonia radicincitans. It
is a Gram-ve, rod-shaped plant growth-promoting soil bacterium
(residing inside/outside the rhizosphere soil of several important
vegetable crops), which belongs to the new genus Kosakonia and
family Enterobacteriaceae. Numerous Kosakonia species have
been recovered from different soil sources and are reported
to increase the growth of Vigna radiata (Shahid et al., 2021a),
Medicago sativa (Noori et al., 2018), Solanum lycopersicum
(Berger et al., 2017; Silambarasan et al., 2022), R. sativus
(Berger et al., 2015), etc., by synthesizing different types of
essential PGP metabolites (IAA, ACC deaminase, siderophore,
and ammonia, etc.).

The study was further intended for specific objectives:
- (i) isolation of PGPR strain and its morpho-biochemical
characterization (ii) evaluation of salt-tolerance potential of
bacterial strains and molecular identification of selected strain
(iii) determination of essential bioactive molecules under
NaCl-stressed growth medium (iv) assessment of biofilm
formation and associated PGP traits under salt stress (v)
evaluation of salt-relieving potential of K. radicincitans KR-17
on biological attributes and photosynthetic molecules of NaCl-
treated radish raised in pot soils (vi) determination of mineral
composition in radish grown in absence/presence of NaCl and
halotolerant PGPR inoculums (vii) extraction and determination
of total soluble protein, carbohydrates, amino acids, and
pigments in tissues of bio-inoculated and NaCl-supplemented
radish (viii) assessment of in vivo biofilm formation and
further colonization.

MATERIALS AND METHODS

In vitro Assessment of NaCl to
R. sativus (L.)
Germination Efficiency and Biological Attributes
R. sativus L. (radish) seeds were soaked for 24 h in double-
distilled (dd) deionized water. Under aseptic circumstances,
sodium hypochlorite (NaOCl, 1%) was used to sterilize the
surface for 2min, followed by three washing cycles with sterile
distilled water. Soft agar (0.7%) plates amended with varying
levels (0, 2, 5, 7, 10, 12, and 15%) of NaCl were prepared.
The seeds were planted on plates of soft agar and kept at
room temperature (28 ± 2◦C) for 3–4 days. After 4 days,
percent germination and root and shoot lengths of the plantlets
were recorded.

Percent Survival, Tolerance Index, Cellular

Permeability, and Cytotoxicity Assessment
The survival percentage of plantlets grown on soft agar plates
treated with varying NaCl concentrations (0, 2, 5, 7, 10, 12, and
15%) was determined. The tolerance index (TI) was calculated by
the formula used by Iqbal and Rahmati (1992).

Tolerance indices (TI)

=
Root length (RL) of NaCl treatment

Root length (RL) of control treatment
× 100

Assessment of NaCl-inducedmembrane damage and cytotoxicity
in root tissues of R. sativus (L.) was examined using confocal laser
scanning microscopy (CLSM). Roots grown on NaCl-treated
soft agar plates were carefully detached, cleaned, washed with
phosphate buffer saline (PBS), and tagged with a fluorescently
labeled dye, propidium iodide (PI: 25µM), and observed for
visually impaired dead cells (as observed with increasing red
color) (Shahid and Khan, 2018; Shahid et al., 2021c). The loss of
cell membrane in root tissues of salt-stressed radish seedlings was
utilized as a toxicity signal to distinguish between metabolically
active and inactive cells. For this, a well-adapted Evans blue
staining procedure was followed (Baker and Mock, 1994).

Isolation, Morphological and Biochemical
Characterization of Recovered PGPR
For bacterial isolation, soil samples were taken from the
rhizosphere soils of potato cultivated in agricultural fields with
saline soils. The soil sample (refer to Supplementary Table 1

for physicochemical properties) was sieved (2-mm pore size),
air dried in the shade to eliminate the excess moisture, and
then utilized to isolate bacteria. The soil samples were diluted
in series (serial dilution of 10−1 to 10−7), and 100 µL was
spread plated over a nutrient-agar (NA) medium and incubated
for 2 days at 28 ± 2◦C. After incubation, bacterial colonies
were purified by several times, streaking on the same medium.
These isolates were subsequently examined by Gram-staining
for their morphological characteristics and assessed for different
biochemical tests (Holt et al., 1994).
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Selection of NaCl-Tolerant PGPR Strain
and Molecular Identification of Strain
KR-17
Furthermore, the NaCl tolerance ability of chosen PGPR strains
was evaluated. For the assessment, all recovered isolates were
grown in a nutrient broth (NB) medium added with various
amounts (0–20%) of sodium chloride (NaCl) and incubated at
28 ± 2◦C in a shaking incubator (at 150 rpm) for 2–3 days.
Metabolically, active cells were screened using a viable count
method after incubation, and the strain that showed the highest
level of salt tolerance was referred to as halotolerant (salt-
tolerating) PGPR strains. In addition, 16S rRNA sequencing was
used to identify the isolate to the species level: K. radicincitans
(see supplementary methods for details).

Bioassays for Plant Growth-Regulating
Substances (PGRS) Under NaCl Stress
Indole-3-Acetic Acid, Siderophore, and ACC

Deaminase Enzyme
The modified method of Bric et al. (1991) was used to
determine the synthesis of IAA by culturing the cells
of K. radicincitans KR-17 strain in Luria Bertani (LB)
broth amended with a fixed quantity of tryptophan
(100 µL) and treated with varying levels of NaCl (see
Supplementary Method Section S4.2a). The siderophore-
producing ability of strain KR-17 was assessed by growing
the bacterial cells in a salt-treated universal chrome azurol S
(CAS) medium (Schwyn and Neilands, 1987; Alexander and
Zuberer, 1991) (see Supplementary Method Section S4.2.b).
To assess the ACC deaminase activity of KR-17 strain, the
cells were grown in a liquid medium added to different
salt concentrations, and the amounts of produced α-
ketobutyrate were measured (Honma and Shimomura, 1978)
(see Supplementary Method Section S4.2c).

P-Solubilization and Production of HCN and

Ammonia
To estimate the P-solubilization activity, bacterial strain KR-
17 was grown in Pikovskaya’s (PKV) broth added with 0, 2, 5,
10, 15% NaCl, and P- solubilization activity was quantitatively
evaluated. For estimation, 5ml of culture filtrate was collected
and tested for P-solubilization effectiveness, following the
soluble P chlorostannous-reduced molybdophosphoric acid
method Jackson, 1973. Production of the bacterial cyanogenic
compounds, i.e., HCN (Bakker and Schippers, 1987) and
ammonia Dye, 1962, was tested by growing the bacterial strain in
anNaCl-treated/untreatedHCN-inductionmedium and peptone
water, respectively.

Determination of Biofilm Development and
Associated Traits in KR-17 Under NaCl
Stress
Biofilm formation ability of bacterial strain KR-17 in
absence/presence of different NaCl concentrations was assessed
by growing the cells in 96 well plates and treating with 1% crystal
violet (CV), following the standard procedure of O’Toole (2011)

(Syed et al., 2021) (see Supplementary Method Section S2.5).
Furthermore, swimming and swarming motilities of strainKR-17
were assayed (Adler, 1966). For this, spot inoculation of freshly
produced cells was done on 0–15% NaCl-supplemented 0.3%
and 0.5% (w/v) in nutrient agar (NA) plates and incubated at 28
± 2◦C for 2 days. After this, bacterial motilities were measured
as their swarm diameter and represented in millimeters (mm).
Extracellular polymeric substances (EPS) produced by KR-17
strain in the presence of salt were estimated quantitatively
(Mody et al., 1989). The alginate produced by strain KR-17 was
quantified. For the assay, the cells were grown in a liquid medium
added with different NaCl concentrations (Wozniak et al., 2003)
(see Supplementary Method Section S2.5.1). Furthermore,
the cell surface hydrophobicity (CSH) of the KR-17 strain was
quantified by cultivating bacterial cells with/without different
NaCl concentrations using the microbial adhesion to the
hydrocarbons (MATH) method (Rosenberg et al., 1983).

Crop-Based Experiments
Plant Culture, NaCl Treatment, and Inoculation of

Halotolerant Strain KR-11
The description for planting of R. sativus (L.), seed
bacterization, and treatment plans for pot-house experiments
has been provided in electronic supporting information (see
Supplementary Method Section S2.6.1) (Khan et al., 2020).

Assessment of Germination Efficiency, Plant Length,

Biomass and Photosynthetic Pigments
At 8 days after sowing (DAS), germination efficiency of salt-
treated and bio-inoculated R. sativus (L.) seeds was recorded.
At the harvest, plants cultivated in soils inoculated with
NaCl-tolerant PGPR strain K. radicincitans KR-17-added plants
cultivated at different salt concentrations in soils were removed,
and germination efficiency and biological attributes (such as root
and shoot length and weight, and dry biomass) were recorded.
Accumulation of photosynthetic pigments (chlorophylls and
carotenoids) in the NaCl-treated/untreated and bacterized plants
was measured using universal methods of Arnon (1949) and Kirk
and Allen (1965).

Estimation of Protein and Carbohydrate Contents in

Root Tissues of R. sativus (L.)
The protein (AOAC, 1990) and carbohydrate contents
(Prud’homme et al., 1992) accumulated in root tissues
of NaCl-treated and PGPR inoculated R. sativus plants
were estimated.

Carotenoids and Flavonoids Estimation in R. sativus

(L.) Root Tissues
The carotenoid contents accumulated in roots tissues of NaCl-
treated and PGPR-inoculated R. sativus (L.) were extracted
(Rodriguez et al., 1976). For this, 5-g freshly detached root
samples were homogenized in 80% acetone. The acetone layer
was separated, and 20ml of the petroleum ether was added.
At the separation stage, H2O was mixed, whereas, at the
end of separation, the petroleum ether-carotenoid phase is
made a volume of up to 50ml. This petroleum-ether extract
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was spectrophotometrically (at 450 λ) determined. Carotenoid
content was estimated and expressed as β-carotene (g ml−1) and
calculated as:

β − carotene = A×df×V/E1%1 cm× w

where A, df, E1%, w, and V represent absorbance, dilution factor,
absorbance co-efficient (2,592 for petroleum ether), 1 cm, weight
of sample (g) and volume (ml), respectively.

The total flavonoid content in roots of R. sativus (L.) was
estimated by adopting the method of Sultana et al. (2009). For
estimation, 10-g freshly detached roots were homogenized in
methanol with the help of an electric blender. To the filtrate,
1ml was taken and 4ml of water was added to this. At the start,
0.3ml of 5% NaNO2 solution was mixed with them. After 5min
of incubation, 10% AlCl3 (w/w) was mixed, and, after 6min, 2ml
of 1-M NaOH was added to the solution. The absorbance was
read at 430 nm.

Estimation of Root Ascorbic Acid and Lysine Content
Ascorbic acid (AsA) contents in freshly removed root tissues
of KR-17-inoculated and NaCl-treated R. sativus (L.) plants
were estimated (Mukherjee and Choudhuri, 1983) (see
Supplementary Method Section S2.6.5). To determine the
lysine content in inoculated and salt-treated R. sativus (L.) roots,
we applied the previously described method of Galicia et al.
(2009).

Determination of Mineral Composition in Root

Tissues of R. sativus (L.)
The mineral content accumulated in salinity-stressed and bio-
inoculated root tissues of radish was determined. For estimation,
0.1 g of root samples was oven-dried following acid digestion.
Mineral contents like sodium (Na), calcium (Ca), potassium
(K), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu),
phosphorous (P), and nitrogen (N), etc., were determined using
spectrophotometer and atomic absorption a spectrophotometer
(AAS) (see Supplementary Method Section S2.6.6).

Estimation of Total Lipids, Phenolic Compound, and

Alkaloid in R. sativus (L.)
Total lipid contents accumulated in salt-treated and bio-
inoculated R. sativus (L.) leaves were measured quantitatively
using chloroform and methanol in the ratio of 2:1 (Bligh
and Dyer, 1959). Furthermore, accumulation of total phenolic
content in NaCl-treated and PGPR-inoculated radish foliage
was analyzed using the method of Jindal and Singh (1975).
The spectrophotometric analysis was applied to quantify the
total alkaloid content in NaCl-supplemented and salt-alleviating
PGPR-inoculated radish foliage.

Assessment of Membrane Injury and Oxidative Stress

Under Saline Stress

Assessment of Membrane Damage and Relative Leaf

Water Content
Freshly detached NaCl-untreated/treated and PGPR-inoculated
leaves of R. sativus (L.) were used to determine the membrane
damage and relative leaf water content (RLWC). The leaf

electrolyte leakage (EL) was used to evaluate membrane
injury/damage. For this, 1 g of foliage was placed in a vial
containing 10-ml sterilized H2O and incubated for 1 day at 25◦C,
following which electrical conductivity (EC) of solution (L1) was
determined. After that, the samples were placed in a boiling water
bath (120◦C) for 30min, and EC (L2) was determined. Electrolyte
leakage (percentage) was estimated (Lutts, 1996):

Electrolyte leakage (%) = L1/L2×100

In order to determine relative leaf water content (RLWC), the
method of Barrs and Weatherley (1962) was applied. For this,
leaf samples were cut in pieces, weighed and maintained for
3 h in DDW to get turgid weight. The samples were then oven-
dried (at 80◦C) for 24 h until constant weight. The RLWC was
calculated as:

RLWC(%) =
FW − DW

TW − DW
× 100

Here, FW= fresh weight, DW= dry weight, TW= turgid weight

Estimation of Free Proline in R. sativus (L.)
The free proline content accumulated in roots and foliage
of R. sativus (L.) plants cultivated with and without the
amendment of NaCl and inoculated with halotolerant KR-17
strain was assayed as demonstrated earlier (Bates et al., 1973) (See
Supplementary Method Section S2.6.8.2).

MDA Content (Lipid Peroxidation) Estimation
Lipid peroxidation (MDA content) in roots and foliage of
R. sativus (L.) cultivated with/without the amendment of NaCl
and inoculated with halotolerant KR-17 strain was calculated as
malondialdehyde (MDA). Absorbance of abduct (MDA-TBA2)
formation after reaction of thiobarbituric acid (TBA) and MDA
was spectrophotometrically measured (Heath and Packer, 1968).
In order to assess the MDA content, 500mg of fresh roots and
foliage was homogenized with 10.-ml tri-chloroacetic acid (TCA;
5% w/v) on an ice bath, followed by centrifugation (12,000 × g)
for 20min (at 4◦C temperature). In clean acid-washed glass tubes,
equal quantities of the resultant supernatant and thiobarbituric
acid (TBA;0.67 percent w/v) were combined, and this mixture
was heated (at 100◦C) for a period of half an hour. To stop the
reaction, it was placed in an ice bath. After centrifugation (10,000
× g) at 4◦C for 10min, optical density (OD) of supernatant
was recorded at three wavelengths (λ) of 450, 532, and 600. The
MDA levels were calculated using equation and molar extinction
coefficient of 155 mM−1 cm−1.

MDA level(µmol/L) = 6.45×(Aλ532− Aλ600)− 0.56×Aλ450

where A = absorbance

Extraction and Determination of Antioxidant Enzymes
The antioxidative defense enzymes like ascorbate peroxidase
(APX), catalase (CAT), superoxide dismutase (SOD), and
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glutathione reductase (GR) of salt-treated and KR-17
strain inoculated in radish foliage were determined (See
Supplementary Method Section S2.6.8).

Determination of in vitro Biofilm Formation
The ability of strain KR-17 to produce biofilms in the presence of
NaCl was tested in polystyrene wells of a 96-well micro titer plate
and on a glass surface (Ahmed et al., 2021). In a nutshell, a young
culture (1× 106 CFUml−1) of KR-17 strain was inoculated in NB
broth added with glucose (5%) and NaCl. Following growth, next
stages were the same as those outlined by Ahmed et al. (2021).
Then, microscopic examination was done.

Characterization for in vivo Biofilm Formation and

Further Colonization
The 45-day-grown NaCl-untreated/treated Raphanus sativus (L.)
roots were surface sterilized and treated with 24-h old culture (1
× 107 CFU ml−1) of K. radicincitans KR-17. Surface sterilization
efficiency of roots was checked by last wash plating and tissue
imprinting. The roots (both untreated and treated with varying
levels of salts) were dipped in the bacterial inoculum for a
period of 12 h and allowed for biofilm formation. After that,
the roots were washed with phosphate-buffered saline (PBS)
thoroughly and cleaned with double-distilled water. The root
samples were then processed for scanning electron microscopic
(SEM) observation for checking the observation of biofilm
formation over plant roots and further colonization.

Statistical Analysis
Three replications (each treatment) of the trials were conducted
in complete randomized block design (RBD). Sigma Plot 12.0
and Minitab 17.0 software was used to do statistical analysis of
experimental data. Tests included two-way ANOVA, followed by
post hoc least significant difference (LSD). Student’s T-test was
used to compare the data at p ≤ 0.05, p ≤ 0.005, and p ≤ 0.001
levels. The statistical software Sigma 13.0 was used to prepare
the graphs.

RESULTS AND DISCUSSION

Effect of NaCl on Raphanus sativus (L.)
Seedling: In vitro Studies
Seed Germination, Vigor Index, and Plant Length of

R. sativus (L.)
In order to assess the salinity-induced negative impact on crop
plants, seeds of R. sativus (L.) (radish) were sown on plates of
soft agar, added with different levels (0, 2, 5, 7, 10, 12, and
15%) of NaCl under in vitro condition. The obtained result
demonstrated that a higher level of NaCl (15%) had a maximum
detrimental effect on characteristic features of germinated
radish seedlings (Figures 1A–D). For instances, at 15% NaCl,
germination efficiency (p < 0.001) (Figure 1E), seedling vigor
index; SVI (p < 0.001) (Figure 1F), radical length (RL) (p
< 0.001) (Figure 1G), and plumule length (PL) (p < 0.001)
(Figure 1H) of radish seedlings were drastically reduced by 66,
65, 84, and 90%, respectively, over control treatment (without
any salt). In the life cycle of plants to be cultivated, germination

is a complex biological process that requires several variables to
work together for a seedling to develop. Germination vigor is
determined by the ability/capacity of plant embryo to resume
the metabolic process in a coordinated and sequential way
after being implanted within the seed. The reduced germination
and vigor indices observed in this study represented that the
NaCl-induced osmotic barrier affects the water uptake, which
prevents the seed water uptake by generating an external osmotic
potential, and, thus, reduction in a germination attribute occurs.
Under in vitro circumstances, various concentrations of NaCl
detrimentally affected the germination efficiency, vigor indices,
and biological features of water spinach (Ipomoea aquatica)
(Ibrahim et al., 2019).

Plant Survival, Tolerance Index, Root Membrane

Permeability, and Cell Death
The survival percent of R. sativus (L.) seedlings grown on soft
agar plates was varied. The higher the level of NaCl, the greater
negative effect on seedling survival percentage is. For instance,
15%NaCl concentration maximally decreased (51%) the seedling
survival over control (Figure 1I). Likewise, tolerance indices
(TI) in R. sativus (L.) were significantly reduced as the salt
levels were increased, confirming a negative relationship between
NaCl and TI. The R. sativus (L.) tolerance index was measured
up to 1.04, 0.94, 0.88, 0.76, 0.62, 0.54, and 0.34 at 0, 2, 5, 7,
10, 12, and 15% NaCl levels, respectively (Figure 1J). These
findings revealed that the lower level of salts had the highest TI,
whereas greater NaCl concentrations had the lowest tolerance
indices. Similarly, the tolerance of varying levels of NaCl in S.
lycopersicum L. (tomato) germplasm at seedling stages has been
reported (Rehman et al., 2019).

Additionally, the root membrane integrity of salt-treated
R. sativuswas examined using confocal laser (CLSM)microscopy
to better analyze the detrimental impact of NaCl on root
membrane. Propidium iodide (PI), a DNA-binding dye, was,
therefore, utilized to differentiate between viable/active cells
and cells with damaged/disrupted root membrane, following
exposure to varying levels of NaCl. Surprisingly, the roots treated
with different concentrations of NaCl showed a concentration-
dependent increase in dead/injured cells (Figures 1K–N).
Damage/injuries to the integrity of cell membranes may be
associated with morphological alterations in cells (Ziegler
and Groscurth, 2004). With higher NaCl concentrations and
longer treatment times, the harmful impact became more
pronounced. Nucleotides may be created by DNA degradation
and reallocated for shoot and new root forms when salt stress
is transitory or modifiable at the seedling stage. Following
salt treatment, cell death was detected in this investigation.
The growth of plant roots could be slowed as a result of
cell death. A high NaCl concentration can significantly limit
the plant seedling growth, almost totally stopping it. Similarly,
NaCl-induced cytotoxicity was observed by staining the NaCl-
untreated/treated root samples with Evan’s blue dye (acidic
and non-permitting exclusion). Here, Evan’s blue-stained NaCl-
treated roots showed a concentration-dependent increase in the
uptake of the dye, confirming the cellular death in root tissues
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FIGURE 1 | R. sativus seeds germinated on soft agar plates treated with 0% (A), 5% (B), 10% (C), and 15% NaCl (D). Effect of different rates of NaCl on germination

efficiency (E), radical length (F), vigor index (G), plumule length (H) survival (I), and tolerance index (J) of R. sativus seeds grown on soft agar plates in vitro. (K–R)

represent the CLSM images of NaCl-induced permeability and cellular death in root tissues of radish treated with 7, 10, 12, and 15% NaCl, respectively. In this figure,

bar diagrams represent the mean values of three replicates (n = 3). Corresponding error bars represent standard deviation (S.D) of three replicates (SD, n = 3). The

asterisks *, **, and # denote statistical significance at p < 0.05, p < 0.005 and p < 0.001, respectively, computed by Student’s T-test.
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of plants (Figures 1O–R). This blue dye can penetrate thru the
ruptured/destabilized cell membrane.

Isolation of PGPR, Salt Tolerance, and
Molecular Identification
In current agricultural techniques, salinity is a serious issue.
It has a significant negative impact on the growth, biological
characteristics, and yield attributes of various important edible
crops. To address these issues, we attempted to identify a
salt-tolerating rhizosphere PGPR strain that might be used
as a microbial inoculant to boost the growth and yield of
crops raised in salty environments. During the investigation
and isolation of microbial strains for NaCl stress relief, a
total of 15 PGPR isolates were recovered from the vegetable
rhizosphere cultivated in a saline environment and tested
for their morphological and biochemical characteristics. All
of the strains were detected under a light microscope as
red/pink-colored short rods (Gm –ve), with a varied response
to different biochemical assays. In this study, strain KR-
17 survived an exceptionally high level of salt concentration
(18%NaCl; 3-M concentration) (Supplementary Table 2). Strain
KR-17 was chosen for agricultural trials because of its
high salt tolerance profile. This strain exhibited a varied
level of biochemical reactions (Supplementary Table 3). The
KR-17 strain was part of the genus Kosakonia on the
basis of morphological, biochemical (citrate utilization, indole
production, NO3- reduction, oxidase, catalase, starch, gelatin,
dextrose, and glucose, etc.), and cultural (an irregular margin;
a mucoid colony; optimum temperature, 30◦C; pH 7.0;
no any pigmentation) features. In addition, this strain was
identified molecularly by 16S rRNA gene sequencing for
species-level identification. The 16S rRNA nucleotide sequences
(1,085 bp) of strain KR-17 were submitted to GenBank
(Accession No. OM348535). The BLASTn tool was used to
do a similarity search, which revealed that strain KR-17 was
closely related to Kosakonia radicincitans due to its highest
relatedness. Then, MEGA 7.0 software was used to create
a phylogenetic tree (Supplementary Figure 1) based on the
16S rRNA partial gene sequences retrieved from the NCBI
portal. Likewise, numerous workers recovered halotolerant
PGPR strains viz., Kocuriarhizophila (Li et al., 2020); Alcaligenes
faecalis (Babar et al., 2021); Kosakonia sacchari (Shahid et al.,
2021a); Bacillus amyloliquefaciens and B. pumilus (Sharma
et al., 2021); Achromobacter denitrificans and Ochrobactrum
intermedium (Sultana et al., 2020) identified them based on 16S
rRNA sequencing.

Essential PGP Substances of
K. radicincitans Under NaCl Stress
Indole-3-Acetic Acid and 1-Amino Cyclopropane

1-Carboxylate Deaminase
Here, salt-tolerating PGPR strain KR-17 when grown in
the absence (Supplementary Table 4)/presence of salt-stressed
environment, production of bioactive molecules (growth-
controlling chemicals) was uneven. With increasing NaCl

concentrations, growth-regulating activities of bacterial strain
were increased. Strain KR-17 produced 138 ± 7.8 µg IAA
ml−1 at 0% NaCl, which yet increased with graded NaCl
concentrations. For instance, a maximum of 243 ± 20 µg IAA
ml−1 (43% increase over control) was recorded at a higher
(15% NaCl) concentration (Figure 2A). The increased quantum
of IAA in the presence of increased salinity levels is related
to the salt tolerance capacity of the bacterial strain. It has
been reported that 80% of rhizobacterial populations release
indole-3-acetic acid (IAA), a physiologically active auxin (Park
et al., 2021). Even under harsher settings, IAA produced by soil
microorganisms regulates cell development and proliferation,
root morphogenesis, apical dominance, phototropism, and other
physiological activities. In addition, IAA loosens the cell walls
of roots, resulting in a reduction in root exudates, which
stimulates the development of PGPR by supplying extra nutrients
(Glick, 2012). Several IAA-producing halotolerant PGPR strains
residing inside the salinity-stressed environments have been
shown to improve the growth of leafy vegetables under salty
conditions. In a study, Ahmad et al. (2013) reported that
indole-3-acetic acid produced by halotolerant Rhizobium and
Pseudomonas strains enhanced the overall performance of plants
under salt stress. Similarly, a considerable increase in IAA
production with increasing NaCl is reported (Hidri et al.,
2019). Even at greater levels of NaCl, halotolerant KR-17
strain secreted IAA, which is an unusual and encouraging
characteristic of halotolerant microbes, because such halotolerant
PGPR strains are more likely to endure synthesizing indole-
3-acetic acid and allowing plants to access this important
growth-promoting phytohormone even in the salty environment
(Mehmood et al., 2018).

The 1-amino cyclopropane 1-carboxylate (ACC) deaminase
produced by a variety of plant-beneficial soil microorganisms
is another exceptional biological characteristic that may
significantly reduce the ethylene levels in plants and, hence,
speed up the functioning of growing plants under harsher
environments (Gao et al., 2020; Jha et al., 2021). Here, even when
grown in media supplemented with different levels (0, 2, 5, 7, 10,
12, and 15%) of NaCl, strain KR-17 showed a favorable response
to ACC deaminase. The amount of α-ketobutyrate produced
by K. radicincitans has steadily increased with increasing levels
of salt. For example, at 15% NaCl, strain KR-17 produced 57
± 1.8µM α-ketobutyrate mg−1 protein hour−1 (>59% over
untreated control) (Figure 2B). Several salt-tolerant bacterial
strains utilizing ACC as their only source of nitrogen (N)
have been identified. Plants often produce ethylene as a stress
response, and it is closely linked to different stress conditions,
such as drought, salt, metal toxicity, and nutrient shortage
(Riyazuddin et al., 2020). As a result, ACCD produced by PGPR
shields the plants from the damaging effects of ethylene when
they are exposed to abiotic stresses (Sapre et al., 2019). Several
researchers have found that halotolerant PGPR strains exhibited
the production of ACC deaminase when exposed to a harsher
saline environment (Wu et al., 2012; Sarkar et al., 2018; Ji
et al., 2020; Han et al., 2021). Like our study, salinity-alleviating
Bacillus sp. has been reported to alleviate the salt stress and
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FIGURE 2 | Influence of different levels of the NaCl (0, 2, 5, 7, 10, 12, and 15%) growth-regulating substance secreted/released by PGPR strain under in vitro

condition; indole-3-acetic acid (A) ACC deaminase (B), P-solubilization (C), siderophore production (D,E), and ammonia production (F). In this figure, bar and line

diagrams represent the mean values of three replicates (n = 3). Corresponding error bars represent standard deviation (S.D) of three replicates (SD, n = 3). The

asterisks *, **, and # denote statistical significance at p < 0.05, p < 0.005, and p < 0.001, respectively, computed by Student’s T-test.

promoted the growth of Zea mays L. (maize) by expressing
ACC deaminase exogenously (Misra and Chauhan, 2020). A
large number of ACC deaminase positive PGPR have also been

shown to aid the development of vegetables in derelict/stressed
soils, in addition to their involvement in crop improvement in
traditional soil.
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P-Solubilizing Activity and Siderophore Production
Under increasing NaCl concentration, a similar pattern of
increase as with other measured PGP substances in P-
solubilization was observed (Figure 2C). The second most
important plant nutrient after water is phosphorous, P (a
master key element), and it is involved in virtually all metabolic
processes of plants, including genetic transmission, chlorophyll
production, respiration, signaling molecule transduction, and
energy transfer (Billah et al., 2019). Plant development is greatly
hampered by a shortage of phosphorous. Plants have access
to <5% of total soil P (Dobbelaere et al., 2003). As a result,
phosphate fertilizers are administered from outside sources to
avoid P deficiency and allow plants to develop properly. In
this regard, P-solubilizing microorganisms (PSM) of various
genera have provided some alternatives to costly synthetic
P fertilizers (Alori et al., 2017). Several halotolerant PGPR,
including Kocuriarhizophila (Li et al., 2020), Bacillusmegatrium
(Akcay and Kaya, 2019), Enterobacter asburiae (Mahdi et al.,
2020), Acinetobacter, Pseudomonas (Jiang et al., 2020), etc., has
been reported to exhibit the P-solubilizing activity at greater
NaCl concentrations. These halotolerant PSBs are reported to
increase salt-tolerance levels in various vegetable crops. Microbes
use a variety of ways to provide P to plants, (i) phosphate
solubilization: organic acids, OH– ions, CO2, and protons are
produced and released, respectively (ii) biochemical phosphate
mineralization: catalyzed by the release of extracellular enzymes.

In Fe-deficient situations, siderophore, aniron (Fe)-chelating
complex, with a lowmolecular weight produced by soil microbial
diversity, transports Fe to plants (Garg et al., 2021). Insoluble
iron is divided into two types; (i) hydroxide and (ii) oxyhydroxide
that become unavailable to rhizobacteria (Bonneville et al., 2004).
As a result, the release of siderophore in the presence of Fe
deficiency might be beneficial since a PGPR strain capable
of producing siderophore might be utilized in the biological
management of plant diseases. Like other growth-regulating
traits, increasing NaCl concentration caused a pronounced
increase in bacterial production of siderophore. For example,
under controlled conditions, strain KR-17 produced 34 µg ml−1

of salicylic acid (SA), which, however, increased by 50% at 15%
NaCl concentration (Figure 2D). A trend similar was recorded
for halo formation (a siderophore zone) under NaCl stress
(Figure 2E). Under iron-limiting circumstances, a siderophore
largely aids the producing organism in iron acquisition. The
Fusarium-wilt disease in pepper is caused by F. oxysporum Schl. f.
sp. capsici is controlled by siderophore generated by B. subtilis
CAS15 strain (Yu et al., 2011). Similarly, B. amyloliquefaciens
produced a considerable amount of siderophore, which helps to
prevent the tomato crop from bacterial wilt disease (Singh et al.,
2015). Similar to our work, enhanced synthesis of siderophore
was also observed at increased NaCl levels (Panwar et al., 2016).

HCN and NH3 Production
The concentration of NaCl had no effect on production of
ammonia (Figure 2F) and cyanogenic (HCN) compound
(Supplementary Table 5) produced by KR-17 strain. Another
metabolite generated by a high bacterial population is ammonia,
which is created by the breakdown of amino acid and

ammonification of nitrite, hydrolytic-mediated urea, and
decarboxylation of amino acid. Furthermore, many PGPR
strains include ammonia transporters within their cells that are
believed to participate in NH4+ absorption due to NH3 diffusion
across the bacterial cell membrane (Patriarca et al., 2002).
Like this finding, a number of HCN and ammonia-producing
halotolerant PGP bacterial strains are reported to improve the
growth attributes in several edible crops by increasing their
tolerance levels to salt stress (Goswami et al., 2014; Kerbab et al.,
2021; Shahid et al., 2021a).

Development of Biofilm and Associated
Traits (EPS Production, Swimming and
Swarming Motility) Under Salinity Stress
Impact of different levels of NaCl on biofilm formation, cell
adhesion ability to hydrocarbons, and motility of K. radicincitans
KR-17 was evaluated in vitro. Here, formation of bacterial biofilm
was increased with increasing NaCl. For example, a 61% increase
in biofilm development was noticed at a higher level of salt over
control (Figure 2A). Similarly, effectiveness of biofilm-forming
and EPS-producing abilities of PGPR strains under saline stress
has been reported. Understanding the biological implications
of exopolysaccharides (EPS) synthesized by a variety of soil
bacterial populations, the impact of NaCl on EPS produced by
halotolerant KR-17 strain was evaluated. In the absence of salt,
KR-17 strain produced a considerable amount (167 µg ml−1)
of EPS. Interestingly, quantum of EPS was increased as the
level of NaCl was increased. For instance, at 15% NaCl, the
quantum of produced EPS was 60% higher as compared to
control (Supplementary Figure 2B). EPS are water-in-polymer-
matrix-hydrated molecules that provide immediate protection
against desiccation in developing seeds. It has been reported that
bacterial production of EPS and alginate is likely to improve the
survival strategy and enhance the rate of production of active
metabolites under harsher conditions, such as drought, salinity,
and others (Egamberdieva et al., 2019). Likewise, Upadhyay et al.
(2011) found that four salt-resistant PGPR strains secreted EPS
continuously in a growth medium supplemented with increasing
NaCl concentrations. Furthermore, inoculating Vicia faba L.
(faba bean) plants with EPS-synthesizing and biofilm-forming
halotolerant PGPR Pseudomonas anguilliseptica SAW-24 strains
increased the growth features of crops against increasing salt
concentrations (Alaa, 2018). Similarly, swimming and swarming
motilities of KR-17 strain showed a significant increase with
rising NaCl concentrations. In the absence of salt (at 0% NaCl),
the swarming and swimming motility of KR-17 strain was
recorded as 31mm and 21mm, which, however, maximally
increased by 28 and 43%, respectively, at higher concentration
(15% of NaCl) (Supplementary Figures 2C,D).

Alginate Production and Cell Surface Hydrophobicity
The production of alginate by strain KR-17 was diminished with
increasing NaCl concentration. The minimum production (74
µg ml−1) of alginate was recorded at 15% salt concentration
(Supplementary Figure 2E). Adhesion of bacterial cells to
hydrocarbons or ability of cell surface hydrophobicity (CSH)
of K. radicincitans KR-17 was also reduced with an increasing
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level of NaCl stress. For example, 15% NaCl concentration,
CSH of strain KR-17 was maximally reduced by 58% over
control (Supplementary Figure 2F). Cell surface hydrophobicity
in bacterial species is associated with bacterial cell aggregation
and adhesion, as well as biofilm formation. As a result, excessive
levels of salinity stress on bacterial cells may impede the
bacterial species colonization behavior. The continued formation
of biofilm and production of associated traits even at higher
concentrations of NaCl is a clear indication that salt-tolerating
PGPR strain has the ability to withstand even under harsher salty
environment. Salt tolerance is predicted to provide protection to
the developing bacterial cells, as well as increase the survival and
activity of halotolerant PGPR in stressful situations.

Plant-Microbe Interaction Under Salinity
Stress: Pot-House Studies
Bio-Inoculation of Halotolerant K. radicincitans

KR-17 Positively Affected the Germination, Efficiency,

Vigor Index, Growth, Biomass, and Chlorophyll

Content of NaCl-Treated Radish
The ability of seeds to germinate in saline circumstances may
appear to be straightforward and helpful criteria for selecting
NaCl-tolerant microbial populations. Furthermore, salt stress
has a greater impact on germinating seeds and seedlings than
on growing plants, because germination occurs in surface soils,
which collect soluble salts as a result of evaporation and a
capillary rise in soil water content. High salt concentrations
reduce the amount of water available to geminating seeds
and seedlings, damage the structure of different enzymes
and macromolecules, and halt protein metabolism, respiration,
and chlorophyll formation. When planted in inoculated and
untreated control soils, almost all of the seeds germinated.
However, higher salt concentration (15% NaCl) maximally
reduced the seed germination ability and vigor indices of R.
sativus (L.). However, salt-alleviating PGPR strain improved the
germination efficiency and vigor index when applied to NaCl-
treated radish plants. For instance, strain KR-17 increased the
percentage of germination and vigor index of radish plants
to the greatest extent possible in the presence of 2% NaCl
(Figures 3A,B). Seed priming with halotolerant PGPR had
beneficial effect in the form of higher germination, as well as
improved physio-biochemical characteristics (Kasim et al., 2016).
This increased tolerance also enables the seeds to deal with other
environmental challenges, resulting in the enhanced seedling
establishment. The colonization of biofilm-forming, IAA and
EPS-secreting halotolerant PGP bacterial communities around
the germinating seeds and seedling roots under salt stress could
be the possible reason of growth enhancement. In addition,
inoculated bacteria also promoted the production of plant
hormones (for example, indole-3-acetic acid), which directly
stimulate the activity of enzymes (for example, amylase). This
resulted in an increase in starch absorption, which encourages
the early germination even in stressful situations. Improvements
in auxin (IAA) synthesis by PGPR would result in a significant
boost in seedling vigor. Like this study, salinity-alleviating

Pseudomonas putida strain Rs-198 increased the germination
efficiency of salt-stressed cotton seedlings (Yao et al., 2010).

Under the pot-house condition, bio-inoculated but NaCl-
treated plants had varied growth conditions. The growth
characteristics were generally reduced, with an increase in
concentrations of NaCl, which, however, increased after soil
application of strain KR-17 over un-inoculated plants. As an
example, when treated with 15% NaCl concentration, roots
(RL), shoots (SL), and whole plant length (WPL), roots (RB),
shoots (SB) and total dry biomass (TDB) were greatly and
negatively impacted. In the presence of NaCl stress, however, a
steady increase in bacterized plants was observed. For instance,
strain KR-17 has shown beneficial effects on the determinant
of plants and enhanced the growth and dry weight even at
high concentrations of NaCl (Figures 3C–I). The continued
production of IAA in the presence of increasing levels of NaCl
is likely to be responsible for growth promotion of plants, which
benefits them in a variety of ways, including root morphogenesis.
Like other stress-tolerant PGPR, salt-tolerant K. radicincitans
strain KR-17, which was used as a strong salt reliever in the
current study, generated a significant increase in the overall
functioning of R. sativus (L.), which could be attributable to the
release of bioactive molecules by beneficial soil bacteria (Shahid
et al., 2021b). IAA, for instance, among these bio-stimulants
directly provoke the plant root development (Figure 3J) by
different physiological processes, such as cell division, elongation
of cells, morphogenesis, and apical prevalence (Duca et al., 2018).
As a result, enlarged roots takemore water and nutrients from the
soil, resulting in stronger plants. Plant growth is also influenced
by other growth-regulating variables like available phosphorous,
production of siderophore, ACCD, cyanogenic compounds,
and ammonia. Likewise, NaCl-tolerating B. subtilis enhanced
the growth and biomass of Triticum aestivum L. (wheat)
crop cultivated in NaCl-stressed soils (Jabborova et al., 2020).
Furthermore, NaCl-tolerant and ACCD-synthesizing Bacillus
strains WU-13 increased the fresh weight, dry biomass, root and
shoot length of Capsicum annuum L. (pepper) seedlings raised
under saline environment (Wang et al., 2018).

In this work, formation of chlorophyll in bacteria inoculated
and NaCl-stressed plants decreased with increasing NaCl
concentrations. For example, higher concentration of NaCl
significantly reduced the total chlorophyll and carotenoid
pigments of R. sativus (L.). Salt stress has a negative impact
on the photosynthetic system, resulting in reduced synthesis of
carotenoid and chlorophyll, owing to enzyme degradation that
is responsible for the development and synthesis of pigments
inside the leaf tissues (Sharma et al., 2020). In contrast,
at 2% NaCl, strain KR-17 increased the chl a, chl b, total
chlorophyll, and carotenoid content by 34, 29, 18, and 17%,
respectively, over un-inoculated but treated with a similar
level of NaCl (Figure 3K). The reason behind the increase
in the leaf pigments under salinity stress is halotolerant PGP
bacteriamight possibly promote the antioxidants and polyamines
in salt-affected plants, resulting in increased photosynthetic
efficiency. The root biomass and total chlorophyll content
have shown a high association during the calculation of the
correlation (R2 = 0.91). Also, total dry biomass and carotenoid
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FIGURE 3 | Bio-inoculation impact of halotolerant PGPR strain on germination efficiency (A), Vigor index (B), Biological attributes; root shoot length (C), Whole plant

length (D), Root (E), Shoot fresh weight (F), Whole plant weight (G), Root-shoot dry biomass (H), Total dry biomass (I), Photosynthetic pigments (J) and carotenoid

content (K) of radish plants raised in soils treated with different levels of NaCl. In this figure, the bar, and line diagrams represent the mean values of three replicates (n

= 3). Corresponding error bars represent the standard deviation (S.D) of three replicates (S.D, n = 3). The asterisks *, ** and # denote statistical significance at p <

0.05, p < 0.005 and p < 0.001, respectively computed by Student’s t-test.

were positively correlated (R2 = 0.89). Similar to our study,
Kocuriarhizophila Y-1, a novel halotolerant PGPR, increased the
tolerance of NaCl in Zeamays L. (maize) plants by adjusting the
levels of phytohormone, nutrient intake, ionic homeostasis, and
photosynthetic capability (Li et al., 2020). In addition, inoculation
of salt-resistant B. subtilis improved chlorophyll production in

Bassia indica (L.) plants cultivated in the presence of high
concentration of salts (Abeer et al., 2015). Additionally, single or
combined inoculation of salt-tolerating bacterial strains Pantoea
ananatis and Piriformospora indica has shown to improve the
chlorophyll and carotenoid molecules in rice (Gilani et al.,
2018).
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Halotolerant K. radicincitans KR-17 Improved the

Total Root Yield, Amino Acids, and Pigment

Composition of Salinity-Stressed Radish

Total Root Protein, Carbohydrate, Carotenoids,

and Flavonoids
The increasing concentrations of abiotic stresses, including salts,
often resulted in a substantial reduction in total root protein and
carbohydrate content. Like other biological features of plants,
here, a high NaCl level maximally reduced the protein and
carbohydrate content accumulated in root tissues of R. sativus
(L.). Alternatively, bio-inoculation of salt-tolerating PGPR strain
KR-17 relieved the salt stress and significantly increased the
protein and carbohydrate. For instance, at 2% NaCl, strain KR-17
maximally increased the amount of protein and carbohydrates
in root tissues by 11 and 18%, respectively, over un-inoculated
control (Figures 4A,B). This enhancement might be attributed
to salt-relieving ability of PGPR strain, which may possibly
demonstrate the beneficial impacts on investigated minerals
by preserving cell membrane stability/integrity. A similar
pattern of NaCl-induced decrease was recorded in carotenoid
and flavonoid content accumulated in root tissues, which,
however, increased considerably, following the inoculation of
salt-tolerating K. radicincitans (Figures 4C,D).

Ascorbic Acid and Lysine Content
Lysine (Lys) is an essential signaling amino acid that stimulates
plant development and reactions to environment. In plants, Lys
is thought to be involved in various physiological activities,
including blooming, formation of seeds, gamete production,
and fertilization. Considering the importance of amino acids as
building-block material for growth and development of plants,
effect of increasing concentrations of NaCl on AsA and Lys
content accumulated in root tissues of radish was evaluated. Here,
NaCl-induced stress resulted in a substantial reduction in AsA
and Lys content. However, radish plants grown from seeds pre-
bacterized with KR-17 strain and supplemented with various
NaCl regimens showed a substantial improvement in AsA and
Lys content.While comparing all treatments, the plants produced
from seeds pre-primed with salt-tolerant PGPR and treated with
2% NaCl exhibited a greatest increase of 13% and 16% in AsA
(Figure 4E) and Lys content (Figure 4F), respectively.

Total Lipids, Phenolics, and Alkaloids
Here, the quantity of total lipids extracted from root tissues of
NaCl-treated R. sativus (L.) dropped as the concentration of NaCl
increased. In contrast, bio-priming of R. sativus (L.) seeds with
halotolerant PGPR mitigated the salinity stress, and total lipid
content was considerably increased. For instance, strain KR-17
maximally improved the total lipids in the presence of 2% NaCl
(Figure 4G). The increased lipid synthesis caused by PGPRmight
be owing to salt-relieving effect on membrane lipids and higher
activity of lipid-producing enzymes.

The buildup of phenolic compounds accumulated in leaf
tissues of R. sativus (L.) was considerably increased by NaCl
stress, which was more pronounced at 15% NaCl. This increase
might be the result of osmotic stress or an enhanced activity of
plant hormones. However, compared to un-inoculated control,

the combined application of NaCl and halotolerant KR-17 strain
resulted in a proportionate decrease in its level (Figure 4H).
Thus, increased accumulation of phenolics under salt stress
both with/without PGPR inoculation indicated that induction
of secondary metabolism is one of the defense strategies used
by plants to cope with under a harsher saline condition.
Similarly, NaCl stress has accelerated the accumulation of total
alkaloid in radish foliage, which was increased with a rising
level of NaCl. However, over un-inoculated control, the KR-
17-bacterized plants resulted in a significant decrease in an
alkaloids level (Figure 4I). The decrease in alkaloids as a result
of PGPR application might be attributed to their salt-tolerating
and strong salt-mitigating properties, which protect the plant
from damaging effects of reactive oxygen species (ROS) mediated
during metabolic processes.

Mineral Composition of R. sativus (L.) Was Improved

by Strain KR-17 and NaCl Stress
In this study, the concentration of minerals in the leaf tissues
of R. sativus (L.) was considerably reduced with increasing
salt stress. Like other plant parameters, the higher salt level
(15% NaCl) poses a remarkable decrease in the nutrient uptake
related to lower concentrations. The decrease in mineral nutrient
absorption under saline circumstances could be due to Na+-
induced transporter blockage, which results in an ionic imbalance
of K+, Ca2+, and Fe2+ as opposed to Na+. However, the plants
developed from seeds pre-treated with different regimens of NaCl
and halotolerant PGPR strains showed a considerable increase in
these nutrients. For instance, Na, K, Ca, Mg, Zn, Fe, Cu, P, and
N contents were maximally increased by 38, 17, 12, 9, 11, 14, 33,
11, and 15%, respectively, following the soil inoculation of KR-17
strain in the presence of 2% NaCl over non-inoculated but added
with a similar rate of salts (Figures 5A–I). The inoculation of
halotolerant PGPR strain in R. sativus (L.) may help to reduce the
negative effects of salt stress. A few mechanisms can explain this
phenomenon; bacterial inoculation can inhibit the absorption
of Na and Cl ions while positively enhancing the uptake of
other plant nutrients, such as Na, K, Ca, and Mg. The N-
fixation and P-solubilization may have induced greater total N
and P absorption in radish, boosting the development of plants.
Higher nutrient absorption by PGPR inoculations resulted in
considerably enhanced seedling development. Inorganic ions,
particularly Na+, might be held in roots by PGPR inoculants,
limiting their transport to leaves. By reducing Na+ absorption,
these bacteria may help to enhance the salt tolerance to crops.
By improving water usage efficiency and supplying plants with
fixed N, Fe, and soluble P, salt-tolerant PGPR can help plants’
roots and thrive in salty environments (Dey et al., 2021). Plant
growth and absorption of plant nutrient elements from soil might
be boosted in this way by stimulating the development of root
system. Therefore, increased root development may contribute
to stability of membrane permeability and enhance the synthesis
of chlorophyll and RLWC, boosting the growth of R. sativus (L.)
plants in saline environment. Similarly, very recently, Kusale et al.
(2021) have observed that the growth and nutritional content of
salinity-stressed maize and plants were considerably increased
following the inoculation of halotolerant PGPR. Likewise, in
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FIGURE 4 | Inoculation impact of halotolerant PGPR strain on root total protein (A), total carbohydrate (B), total carotenoid (C), total flavonoid (D), ascorbic acid (E),

lysine content (F), total lipids (G), total phenolics (H), and alkaloids (I) extracted from root and foliage tissues of radish plants raised in soils treated with different levels

of NaCl. In this figure, bar and line diagrams represent the mean values of three replicates (n =3). Corresponding error bars represent standard deviation (SD) of three

replicates (SD, n = 3). The asterisks *, **, and # denote statistical significance at p < 0.05, p < 0.005 and p < 0.001, respectively, computed by Student’s T-test.

a study, salt-tolerant bacterial strains enhanced the mineral
composition of R. sativus (L.) plants when applied to soils added
with different levels of salts (Yildrim et al., 2008).

Halotolerant KR-17 Strain Improved the

Stress-Related Parameters (Membrane Damage and

Relative Leaf Water Content; RLWC)
The membrane damage and RLWC in salt-treated and PGPR-
inoculated radish plants showed a varied response. As a result,
membrane injury and RLWC have been enhanced with a
corresponding increase in NaCl concentration. For example,
as compared to untreated control, 15% concentration of
NaCl increased the membrane injury and RLWC maximally
and substantially by 89 and 76%, respectively (Figures 6A,B).
However, after soil inoculation, strain KR-17 dramatically
reduced the membrane damage potential and RLWC of the
plants. The drop in these characteristics might be attributable
to the use of halotolerant PGPR strain, which likely lowered
the sodium absorption in NaCl-treated R. sativus. Similar to

our findings, halotolerant PGPR strains greatly reduced the salt
stress and improved the membrane damage, relative leaf water
content, ionic composition, and production of strawberry plants
cultivated in the presence of various levels of salt stress (Karlidag
et al., 2010).

Bio-Inoculation of K. radicincitans KR-17 Affected

Stressor Metabolites (Proline and MDA Content)
Salinity stress is typically linked to oxidative damage in terms of
reactive oxygen generation (ROS). The ROS comprises of OH–,
O2-, and H2O2, as well as free radicals, which damage the plant
development and survival (Choudhury et al., 2017). Production
of ROS is a key indicator of the damage caused by salt stress.
The ROS accumulation in plant tissues causes cellular membrane
damage, as well as the oxidation of biological macromolecules
(Hasanuzzaman et al., 2020). Stress-inducing proline in plant
bodies is seen as physiological and functional activities. Proline, a
stressor molecule, shields the cellular organelles and membranes
from detrimental effects of increased salt and other inorganic
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FIGURE 5 | Mineral composition; Na+ (A), K+ (B), Ca+ (C), Mg (D), Zn (E), Fe (F), Cu (G), P (H), and N (I) accumulated in root tissues of radish plants raised in soils

treated with different levels of NaCl and inoculated with halotolerant PGPR strain. In this figure, bar and line diagrams represent the mean values of three replicates (n

= 3). Corresponding error bars represent standard deviation (SD) of three replicates (SD, n = 3). The asterisks *, **, and # denote statistical significance at p < 0.05, p

< 0.005, and p < 0.001, respectively, computed by Student’s T-test.

ion concentrations. In many plant species, an increase in
free cellular proteins in the presence of different biotic
and abiotic stressors serves as a self-protective mechanism
(Hussain et al., 2018). Another oxidative stress measure is lipid
peroxidation/malondialdehyde (MDA). In this this study, proline
and MDA content salt-induced and PGPR-inoculated radish
were examined. These stress indicators showed a concentration-
dependent increase as the level of NaCl increases. Contrarily,
bacterial strain resistant to salt reduced the NaCl-induced
oxidative stress. For example, when administered to R. sativus
(L.), plants in the presence of 2% NaCl concentration, strain
KR-17 substantially and maximally decreased the proline and
MDA content by 56 and 60%, respectively (Figures 6C,D).
Likewise, Islam et al. (2016) in a parallel investigation also
observed that plant growth-promoting halotolerant strain
Bacillus cereus strain Pb-25 alleviated the NaCl-induced toxicity
and improved proline and MDA content in V. radiata
L. (greengram) via the upregulation of antioxidant defense
enzymatic activities.

K. radicincitans Modulated the Antioxidant Defense

Enzymes of NaCl-Treated Radish
Plants develop antioxidant mechanisms to prevent the startling
impacts to alleviate the oxidative stress. Antioxidant enzymes
like ascorbate peroxidase (APX), superoxide dismutase (SOD),
catalase (CAT), and glutathione reductase (GR) are widely
known and common enzymes that are produced by various
cellular organelles, such as mitochondria and chloroplasts, which
play an essential part in the protection of biological systems
(García-Caparrós et al., 2021). A reactive oxygen species (ROS)
buildup activates SOD, which results in production of hydrogen
peroxide (H2O2,), a harmful signal molecule for oxidative stress
(Liu et al., 2018). The buildup of H2O2 enhances the activities of
POD, CAT, APO, and GPO in order to reduce its concentration
by converting it to O2 and H2O. In the current study, it was
discovered that, when concentration of NaCl increased from
low (2% NaCl) to high (15% NaCl), the level of antioxidant
enzymes in leaf tissues of R. sativus (L.) increased. Among the
concentrations tested, 15% NaCl had the most negative impact
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FIGURE 6 | Impact of different levels of NaCl on membrane damage (A), relative leaf water content (B), stressor molecules; proline (C), MDA content (D), and

antioxidant enzymes; ascorbate peroxidase (E), catalase (F), glutathione reductase (G), and superoxide dismutase (H) of radish plants raised in soils inoculated with

halotolerant K. radicincitans. In this figure, bar and line diagrams represent the mean values of three replicates (n =3). Corresponding error bars represent standard

deviation (SD) of three replicates (SD, n = 3). The asterisks *, **, and # denote statistical significance at p < 0.05, p < 0.005, and p < 0.001, respectively, computed

by Student’s T-test.

and elevated the antioxidant enzymes. For example, at 15% NaCl
concentration, APX, CAT, GR, and SOD enzymatic activities
accumulated in leaf tissues of R. sativus (L.) were increased
significantly (p ≤0.005) by 82, 64, 51, and 50%, respectively,
related to the untreated control (Figures 6E–H). However, by
ameliorating the negative effects of salinity stress, halotolerant
KR-17 strain decreased the amount of antioxidant enzymes. For
example, in the presence of a 2% NaCl range, KR-17 dramatically
lowered the APX, CAT, GR, and SOD levels by 52, 21, 27, and
30%, respectively, compared to un-inoculated but treated with
a similar rate of salts (Figures 6E–H). The reduced antioxidant
enzyme expression in KR-17-treated R. sativus (L.) plants grown
in soils supplemented with varying levels of NaCl might be
linked to decreased Na+ absorption and, as a result, lesser
oxidative damage. Similar to this, biofilm-forming halotolerant
PGPR strains Bacillus licheniformis and Pseudomonas
plecoglossicida enhanced growth of sunflower plants by
increasing the salt tolerance and via stimulating antioxidant
enzymes (Yasmeen et al., 2020).

Biofilm Formation (in vitro) and Root Colonization by

Halotolerant PGPR (in vivo)
The ability of beneficial microorganisms to colonize the plant
roots is critical to rhizosphere plant-microbe interaction, which
aids plant development and safeguard the crops against several
abiotic and biotic elements (Gupta et al., 2020; Santoyo et al.,
2021). Under adverse environmental condition, adhesion of
beneficial microbial cells like halotolerant K. radicincitans to
the plant surface, known as the biofilm, is a critical step
for development and fortification of agricultural crops against
harmful factors, including salinity. In natural settings, bacteria
prefer to live in biofilms rather than planktonic cells (Nievas et al.,
2021). The root colonization of R. sativus (L.) by KR-17 cells co-
cultivated with NaCl, on the other hand, is a mystery. In this
work, we investigated the biofilm formation by K. radicincitans
on a glass surface (in vitro) (Figure 7A) and on the roots of
R. sativus (L.) plants grown in soil amended with salt. Under
in vitro, and on both polystyrene wells and glass cover-slips,
KR-17 strain was proved to be a positive biofilm producer
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FIGURE 7 | In vitro biofilm formation by K. radicincitans co-cultivated with different levels of NaCl in polystyrene wells (A) and on A glass surface: control (B), 2% NaCl

(C), 5% NaCl (D), 10% NaCl (E), and 15% NaCl (F). Scanning electron micrographic images of R. sativus roots treated with different levels of NaCl and colonized by

K. radicincitans (G–K). (L,M) represent Log CFU of K. radicincitans g−1 measured from radish rhizosphere (CFU g−1) and rhizoplane (CFU g−1), whereas (N) depicts

the mean ± S.D. absorbance of in vitro biofilm by a crystal violet assay. The asterisks *, **, and # denote statistical significance at p < 0.05, p < 0.005, and p < 0.001,

respectively.

(Figures 7B–F). There were no significant differences in the
biofilm formation of bacterial strain observed after exposure to
15% NaCl. There was just a little difference in mean absorbance
(λ600 nm). A typical biofilm development by K. radicincitans
was also visible on the control glass cover slip. Plant beneficial
bacteria behave differently in the rhizosphere to plant secretions
known as root exudates. Root secretions function as crucial
indicators for reproduction and colonization of bacteria as
biofilms on the rhizoplane (Zhang et al., 2014). After 45 days
of plant growth, SEM micrographs of un-treated and NaCl-
treated groups revealed the colonization of the rhizoplane region
by K. radicincitans (Figures 7G–K). This might be related to

bacterial chemotactic reaction to root exudates of radish, as
well as the combined involvement of bacterial extracellular
proteins, cell wall polysaccharides, and EPS in promoting the
productive root surface adhesion. The effective establishment
of K. radicincitans and its growth even in salt-challenged soil
was further confirmed by colony-forming unit (CFU) counts of
rhizosphere soil obtained from unexposed and NaCl-exposed
soils and rhizoplane (Figures 7L–N). Similarly, salt-tolerant
PGPR strains Bacillusvelezensis, B. altitudinis, and B. safensis
colonized the Zea mays (L.) roots inoculated separately or in
consortia and developed a thin biofilm on the root system under
saline condition (Singh et al., 2021).
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CONCLUSION

The present finding suggests that inoculating R. sativus (L.) with
salinity-alleviating (i.e., halotolerant) PGPR isolate, expressing
a variety of plant growth-promoting characteristics, might
improve growth, redox potential, and ion homeostasis, therefore
facilitating the development of a vegetable crop. Under harsh
saline conditions, inoculated K. radicincitans, comprising the
potential ability of biofilm formation, have shown a substantial
increase in the growth promotion of R. sativus (L.). A key
contributor to plant development and salt stress tolerance are
integral growth features of chosen halotolerant PGP bacteria,
comprising the activity of P-solubilization, indole-3-acetic acid,
and ACC deaminase synthesis. Inoculating salinity-exposed
R. sativus (L.) plants with K. radicincitans KR-17 improved
the dry biomass, chlorophyll synthesis, mineral composition,
redox status, reduced stressor metabolites, and antioxidant
defense enzymes. Overall, these results confirm the future
synchronization of functions between the two symbionts
(R. sativus L. and salt-tolerant K. radicincitans KR-17). As a
result, it may be inferred that biofilm-forming and halotolerant
bacterium K. radicincitans carrying multifarious PGP properties
might be produced as inoculants to help vegetable crops
cultivated in salty soils cope with salinity stress. Furthermore,
molecular signals and mechanisms that drive beneficial plant-
microbe interactions are still little understood, and even less
is known about the link between growth-regulating molecules
in PGPR-primed plants and their overall response to salinity
stress. The use of a systems biology approach to untangle
and comprehend the complexities of plant-microbe interactions
under NaCl-stress opens up new avenues for using soil beneficial
microbes as long-term crop enhancement agents. A complete
and multi-omics-based investigation is required to examine
physiological responses with proper validation and testing of
hypothesis via in vitro and in vivo tests, and this should be the
key next step.

SUMMARY

Salinity stress among abiotic stress is one of the major variables
affecting agricultural areas and reducing crop productivity.
Among leafy vegetables, radish is an important vegetable
crop (containing a high amount of vitamins “A” and “C”
as well as minerals like “sulfur”) consumed by people. We
employed a NaCl-tolerant bacterium Kosakonia radicincitans
KR-17 that produces high amounts of essential PGP metabolites
and colonizes the roots of plants to tackle the problem

of salinity-affected radish. We find that strain KR-17 has
considerable potential to reduce salt stress after conducting
several in vitro and situ (on-field) tests. The bacterial activity,
which inhibited the NaCl stress, increased the number of
agriculturally relevant biometric parameters in radish. In
conclusion, strain KR-17 can be used to relieve salinity
stress by increasing the biological properties of radish under
salt stress.
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