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Baphicacanthus cusia (Nees) Bremek (B. cusia) is an important medicinal plant. Its

effective substances including indigo and indirubin are metabolites in indoleacetate

metabolic pathway. Based on a previous transcriptome sequencing analysis, a WRKY

transcription factor, BcWRKY1, in B. cusia was identified, showing significant correlation

with effective substances from B. cusia. In this study, BcWRKY1 was cloned by

reverse transcription-polymerase chain reaction (RT-PCR). Further analysis showed

that the BcWRKY1 gene was 916 bp in length, containing three exons and two

introns. The open reading frame (ORF) of BcWRKY1 was 534 bp in length and

encoded a WRKY domain-containing protein with 177 amino acids residues. Subcellular

localization showed that BcWRKY1 protein was mainly localized in the nucleus. It

could bind to the W-box motif and its role in transcriptional activation was confirmed

in yeast. The function of BcWRKY1 was investigated by overexpressing BcWRKY1

in Arabidopsis thaliana. Metabolic profiles in wild type and BcWRKY1-OX1 transgenic

Arabidopsis thaliana were analyzed with LC-MS. Results showed that the metabolic

profile was significantly changed in BcWRKY1-OX1 transgenic Arabidopsis thaliana

compared with wild type. Furthermore, indole-related metabolites were significantly

increased in BcWRKY1-OX1 transgenic Arabidopsis thaliana, and the metabolic

pathway analysis showed that flavonoid biosynthesis was significantly enriched.

Overexpression of BcWRKY1 significantly changed flavonoid and indole metabolism

and indole-related metabolites were significantly upregulated. We postulated that the

BcWRKY1 transcription factor might be involved in the regulation of effective substances

metabolism in B. cusia.

Keywords: Baphicacanthus cusia (Nees) Bremek, BcWRKY1, bioinformatics analysis, metabolites, indole-related

metabolism, flavonoid-related metabolism

INTRODUCTION

Baphicacanthus cusia(Nees) Bremek (B. cusia) (Supplementary Figure 1), also known as south
isatis root, belongs to theAcanthaceae family (Huang et al., 2009). It has manymedicinal properties
(Lin et al., 2019). The leaves and stems of the plant are used to extract Indigo naturalis (Qing-Dai),
while the roots are used for the production of traditional Chinese medicine (TCM), which has
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been recorded in the Chinese Pharmacopeia (China
Pharmacopoeia Commission, 2020). Qing-Dai (indigo and
indirubin) has the functions of purging fire, clearing heat, and
detoxification, as well as analgesic and anti-inflammatory effects
(Li et al., 2011). The roots of B. cusia and Isatis indigotica Fortune
are termed as south and north isatis root, respectively, exhibiting
antiviral, antibiosis and anti-inflammatory properties (Shen,
2009). Previous study has shown the effective substances in B.
cusia. For example, indirubin can treat chronic myelogenous
leukemia (Wang et al., 2014a), while its derivative 6-bromo
indirubin-3′-oxime can effectively inhibit the growth of ovarian
cancer cells (Yu and Zhao, 2015; Zeng and Diao, 2016). Other
effective substances, such as indigo and tryptanthrin in B. cusia,
were demonstrated to exhibit anti-inflammatory activities in
vitro (Ishihara et al., 2000; Danz et al., 2001; Liu et al., 2014;
Huang et al., 2017). Indigo and indirubin are belonging to
indole alkaloids. It has been reported that the synthesis of indole
alkaloids in plants is controlled by DXR, SLS, G10H, TAA1,
YUC1 and so on (Han et al., 2007; Wang et al., 2015). Flavonoids
are isolated from the ethanol extract of B. cusia (Liu et al.,
2009). Flavonoids are also important secondary metabolites with
effective substance in medicinal plant, which is usually regulated
by PAL, CHS, CHI, ANR, FLS and FTH (Qiao et al., 2009; Zou
et al., 2016; Zhang et al., 2017). Taken together, B. cusia is an
important TCM herb of Chinese traditional medicine and has
been widely used to treat various diseases.

Transcription factors (TFs) are proteins that regulate gene
expressions at the transcriptional level. It is reported that
TFs participate in the regulation of essential physiological
metabolism (Liu et al., 2001; Mitsuda and Ohme-Takagi, 2009;
Ma et al., 2015). TFs regulate the expression of target genes
through binding to cis-acting elements to activate or repress the
expression of downstream genes (Priest et al., 2009). WRKY TF
is one of the largest TF families in higher plants, which contain
a conserved WRKYGQK sequence in the DNA-binding domain
(Eulgem et al., 2000; Rushton et al., 2010; Wen et al., 2017b). It
has been reported that WRKY TFs specifically bind to the cis-
acting element W-box [(T)TGAC(C/T)] in the promoter region
of the target gene through the WRKY domain, thus activating
or inhibiting transcription and regulating the expression of
downstream genes (Bakshi and Oelmüller, 2014; Huang et al.,
2019). It is believed that WRKY TFs are widely involved in the
responses to various biotic and abiotic stresses, and hormonal
signaling, regulating plant growth and development (Xiong et al.,
2014; Gu et al., 2015; Wani et al., 2016; Jiang et al., 2017;
Finatto et al., 2018). Besides, more and more research has
shown that WRKY TFs also participate in secondary metabolic
regulation such as indole alkaloid production in plants (Xu et al.,
2004; Suttipanta et al., 2011). Moreover, the preliminary results
from our group indicated a significant correlation of BcWRKY1
with indole metabolic pathway in B. cusia (Huang, 2017).
Therefore, we postulated that BcWRKY1 might be involved
in the metabolism of effective substance in B. cusia. In this
study, BcWRKY1, which showed a high association with indole
metabolic pathway in B. cusia, was cloned, and its function was
validated in plant Arabidopsis model, especially its influence on
metabolite profiles and indole metabolic pathway in Arabidopsis

was investigated. These results conferred the understanding of
the role of BcWRKY1 in regulating the effective substance in
B. cusia.

MATERIALS AND METHODS

Plant Material
The plant material, B. cusia, was collected from the Field
experimental station of Huqiao University in Shufeng town of
Fujian Province, China (25◦25′N 118◦39′E).

Primer Design
Based on the sequencing data of B. cusia transcriptome (accession
number SRR4428209) and the full length of BcWRKY1 gene
(c16427_g1_i1), the degenerate primers WRKY-F-XhoI and
WRKY-R-BamHI were designed using Premier Premier
5.0 (Supplementary Table S2). The primer sequence was
synthesized by Sunya Biotechnology Company (Fuzhou, China).

Total RNA Extraction and cDNA Synthesis
Total RNA of B. cusia was extracted with TRIzol method
according to the following protocol: A total of 0.1 g leaves of B.
cusia were homogenized with liquid nitrogen. The homogenate
wasmixed with an additional 1mL TRIzol and incubated at room
temperature for 1min. Subsequently, 200 µL chloroform was
added to the mixture and incubated at room temperature for
3–5min. The mixture was centrifuged at 12,000 ×g for 15min
at 4 ◦C; 500 µL of the supernatant was mixed with 500 µL
isopropyl alcohol. Then 1mL of 75% ethanol was added after
discarding the supernatant and the mixture was centrifuged at
12, 000 ×g for 5min at 4 ◦C, twice. The precipitate was air-
dried, solubilized in 25–30 µL ddH2O, and maintained at 4 ◦C
for 1–2 h (Ma et al., 2008). Finally, the RNA was analyzed by 1
% agarose gel electrophoresis and the quality and concentration
were determined by Nanodrop 2000 UV-vis Spectrophotometer
(Thermo Scientific, Wilmington, USA). The remaining was
stored at −80 ◦C until utilized for cDNA synthesis by reverse
transcription using Trans Script One-Step gDNA Removal and
cDNA Synthesis Super Mix (Beijing TransGen Biotech Co., Ltd.)
according to the manufacturer’s instructions.

PCR Amplification
The PCR reaction system included 25µL 2× Buffer, 5µL dNTPs,
2 µL F1 primer, 2 µL R1 primer, 4 µL cDNA, and 1 µL enzyme,
with 11 µL ddH2O in a reaction volume of 50 µL. The PCR
reaction conditions were as follows: initial denaturation for 5min
at 95 ◦C, followed by 40 cycles of denaturation at 94 ◦C for 20 s,
annealing at 58 ◦C for 20 s, and extension at 68 ◦C for 40 s. The
final extension was carried out for 5min at 68 ◦C. The PCR
products were detected by 1 % agarose gel electrophoresis.

Cloning and Sequencing of BcWRKY1
The target PCR fragment was recovered using Easy Pure Quick
Gel Extraction Kit (Beijing TransGen Biotech Co., Ltd.). The
DNA was eluted, and the recovered fragment was ligated to
the pEASY-Blunt vector (Beijing TransGen Biotech Co., Ltd.)
and transformed into Trans1-T1 (Beijing TransGen Biotech Co.,
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Ltd.). The positive clones were sent to BoShang Biotechnology
(Fuzhou, China) for sequencing.

Bioinformatics Analysis
The ORF finder (NCBI) was used for identifying
the ORF of BcWRKY1 (Gao et al., 2009). Protparam
(www.expasy.org/tools/protparam.html) was used for predicting
the physical and chemical properties of the BcWRKY1 amino
acid sequence (Wang et al., 2013). Eslpred (Bhasin and Raghava,
2004) (http://www.imtech.res.in/raghava/eslpred/) was used for
predicting the subcellular localization of BcWRKY1 protein.
DAS.TMfilter (https://mendel.imp.ac.at/DAS/) was used for
analyzing the transmembrane protein structure (Cserzö et al.,
2002). Signal P4.1 (http://www.cbs.dtu.dk/services/SignalP/) was
applied to predict the signal peptide (Shi et al., 2012). Protein
functional sites were analyzed by MotifScan (https://myhits.
sib.swiss/cgi-bin/motif_scan). NPS@Network Protein Sequence
Analysis (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.
pl?page=/NPSA/npsa_seccons.html) was used to predict the
secondary structure of the protein (Lv et al., 2016). SWISS-
MODEL was used to predict the three-dimensional structure
of BcWRKY1 (Guex and Peitsch, 1997; Schwede et al., 2003;
Arnold et al., 2006). The search for protein sequence similarities
of BcWRKY1 was conducted using BLAST algorithm at the
National Center for Biotechnology Information (http://www.
ncbi.nlm.nih.gov/blast). The neighbor-joining method (Mega
5.10) was used for constructing a phylogenetic tree (Shang et al.,
2013; Kumar et al., 2016).

Subcellular Localization
BcWRKY1was amplified from the cDNA of B. cusiawith primers
WRKY-for-5941GFP-F and WRKY-for-5941GFP-R (Table S2),
cloned into the intermediate 5941-35S-GFP vector. The 5941-
35S-BcWRKY1-GFP plasmid was constructed by inserting the
BcWRKY1 to the AscI restrict sites of the 5941-35S-GFP vector,
and 5941-35S-OsSPX1-RFP was used a marker (Wang et al.,
2014b). The positive clone was introduced into Agrobacterium
EHA105, cultured, and injected into 4-week-old tobacco leaves,
followed by culturing at 22–28 ◦C for 48 h. Then, the infected
leaves were observed under a confocal laser scanningmicroscope.

DNA Binding Assay
For the verification of DNA binding activity of BcWRKY1
as a WRKY family transcription factor, the Electrophoretic
Mobility Shift Assay (EMAS) assay was employed. First, the
BcWRKY1 was sub cloned to the pGEX-4T-1 prokaryotic
expression vector using EcoRI restriction sites with primer pair
GST-WRKY-F and GST-WRKY-R (Supplementary Table S2).
and then the resulting vector GST-WRKY was transformed
into the BL21 (DE3) cells. The expression and purification of
recombinant protein was conducted according to the study by
Lv et al. (2014). The classic WRKY binding motif W-box was
synthesized and labeled with biotin by SUNYA company, and
the sequence of ploynucleatides including W-box was listed in
Supplementary Table S2. EMSA was performed using LightShift
Chemiluminescent EMSA kit (Thermo Scientific) according to
the manufacturer’s instructions. The biotin-labeled probes were

detected using chemiluminescence substrate (Thermo Scientific)
and the ChemDoc XRS system (Bio-Rad).

Transcriptional Activation Activity
The BcWRKY1 gene was amplified by PCR using primersWRKY-
R-for-BD-F and WRKY-F-FOR-BD-R, with 40 amplification
cycles as previously described (Supplementary Table S2). The
pGBKT7-BcWRKY1 vector was constructed, and the pGBKT7-
BcWRKY1 and pGBKT7 plasmids were respectively transformed
into the AH109 competent cells, and then invertedly cultured
at 30 ◦C for 48–72 h. Yeast plaques on SD/-trp medium were
observed and photos were taken.

Real-Time Fluorescence Quantitative PCR
Total RNA were extracted from wild type and transgenic
Arabidopsis overexpressing BcWRKY1 gene using RNAiso Plus
reagent (TaKaRa Bio). The cDNA was further synthesized
through reverse transcription reaction and quantitative PCR
using TransStart R© Tip Green qPCR SuperMix (TransGen
Biotech, Beijing), according to the instruction of the
manufacturer. Real-time fluorescence quantitative PCR was
carried out on the LightCycler96 (Roche Diagnostics) PCR
system. Additionally, qPCR reactions were carried out in 25 µL
reaction system containing 10 µL SYBR Premix, 0.4 µL forward
and reverse primers, 4 µL cDNA template, and 0.4 µL Rox, using
ddH2O to adjust to 25 µL. The PCR program were set as 94 ◦C
for 5min, followed by 44 cycles of 94 ◦C 20 s, 58 ◦C 20 s, and 72
◦C 20 s. Totally, there were three replicates for each biological
analysis. The Actin gene was selected as a reference gene (Sun
et al., 2007). The expression of BcWRKY1 was calculated using
the methods described by Livak and Schmittgen (2001). Primers
used for qPCR are listed in Supplementary Table S2.

Gene Function Verification
BcWRKY1 overexpression transgenic Arabidopsis thaliana line
was obtained by transforming recombinant plasmid 5941-35S-
BcWRKY1-GFP into Rdr6 wild type Arabidopsis thaliana using
Agrobacterium-mediated floral dipping method (Bent, 2006).
The collected T1 generation seeds on MS medium containing
Glufosinate were cultured in an artificial growth chamber and
the positive transgenic seedlings were further identified with
fluorescence microscopy (22 ◦C 18 h in the day, 20 ◦C 6 h
at night). The metabolites in wild type and BcWRKY1-OX1
transgenic Arabidopsis thaliana (T2 generation) were analyzed
by UPLC-MS at the Novogene Institute (Beijing, China). The
offline data (raw-data) file was imported into the CD (Compound
Discoverer TM2.0) search software to simply screen the retention
time and mass-charge ratio, followed by peak alignment of
different samples using a retention time deviation of 0.2min
and a mass deviation of 5 ppm (Thevenot et al., 2015).
Peak extraction was carried out according to a set quality
deviation of 5 ppm, a signal strength deviation of 30 %, the
signal noise ratio, the minimum signal strength (100, 000),
adduct ion and other information (Fraga et al., 2010; Chen
et al., 2013; Zhu et al., 2013). At the same time, peak area
was quantified, target ions were integrated, molecular formula
was predicted and compared with mzCloud database (Ruttkies

Frontiers in Plant Science | www.frontiersin.org 3 July 2022 | Volume 13 | Article 919071

http://www.expasy.org/tools/protparam.html
http://www.imtech.res.in/raghava/eslpred/
https://mendel.imp.ac.at/DAS/
http://www.cbs.dtu.dk/services/SignalP/
https://myhits.sib.swiss/cgi-bin/motif_scan
https://myhits.sib.swiss/cgi-bin/motif_scan
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html
http://www.ncbi.nlm.nih.gov/blast
http://www.ncbi.nlm.nih.gov/blast
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zeng et al. Study on BcWRKY1 in B. cusia

et al., 2016), background ions were removed by blank samples,
quantitative results were normalized by QC samples, and finally
the data identification and quantitative results were obtained.
The experimental samples and QC samples were extracted
respectively, and the corresponding peaks were obtained. After
Pareto-scaling treatment, the data were analyzed by PCA.
Partial Least Squares Discrimination Analysis (PLS-DA) was
used to establish the PLS-DA model for each group (Chen
et al., 2009; Tang et al., 2014). The Variable Importance in
the Projection (VIP) value of the first principal component of
PLS-DA model was used, and the P value obtained by T-test
analysis was used to screen the differential metabolites between
the two experimental groups (Thevenot et al., 2015), and the
differential metabolites analysis table was made. A volcano map
was plotted according to log2 (fold change) and -log10 (p-value).
Considering KEGG Pathway as a unit, hypergeometric test
was used to find out significantly enriched pathways associated
with differential metabolites. The most important biochemical
metabolic pathways and signal transduction pathways involved
in differential metabolites could be determined by Pathway
significant enrichment, and the KEGG pathway enrichment
analysis map was drawn (Kanehisa and Goto, 2000; Wen et al.,
2017a).

Statistical Analysis
Means and SE (Standard Error) values were calculated using
GraphPad Prism version 7.0 (GraphPad Software Inc., San
Diego, CA, USA; https://www.graphpad.com). The significantly
differential metabolites between two groups were analyzed
with DEseq2 package in R with absolute log2Foldchange >

1. Adjusted P value was calculated with FDR (False discovery
rate). The two-tailed student’s t test was used to compare the
two samples.

RESULTS

Cloning and Characterization of BcWRKY1
For the cloning of the BcWRKY1, the primers specifically
for BcWRKY1 were designed according to the sequence of
BcWRKY1 obtained through RNA-seq (Huang, 2017). PCR
was performed with cDNA of B. cusia leaves using specific
primer pair designed. To investigate the structure of BcWRKY1,
PCR was also performed with genomic DNA of B. cusia.
The results showed that the length of BcWRKY1 gene was
916 bp, containing a 534 bp ORF (Supplementary Figure 2A).
BcWRKY1 contained three exons, size 257 bp, 151 bp, and 126
bp, respectively and two introns, 154 bp and 228 bp, respectively
(Supplementary Figure 2B). BcWRKY1 gene encoded a protein
with 177 amino acids residues (Supplementary Figure 2C). The
composition and physicochemical characteristics of the deduced
BcWRKY1 protein are compared in Supplementary Table S1.

Eslpred software prediction showed that BcWRKY1 protein
was localized in the nucleus. DAS.TMfilter was further used
to predict the transmembrane structure of the BcWRKY1
protein. The results showed that this protein did not have any
transmembrane domains. Signal P4.1 prediction showed that
BcWRKY1 did not contain a signal peptide. Motif Scan analysis

showed that the protein contained a conserved WRKY domain
(115-174 bits, E-value 2.6e-38). Network Protein Sequence
Analysis (NPS) was used to predict the secondary structure
of the protein, and the results demonstrated the presence of
alpha helix (20.79 %), extended strand (15.73 %), and random
coil (62.92 %) components (Supplementary Figure 3). These
findings indicated that the secondary structure of BcWRKY1
primarily consisted of random coil and alpha-helix. The
three-dimensional structure of BcWRKY1 obtained by SWISS-
MODEL is shown in Supplementary Figure 2D.

Phylogenetic Analysis
Genes with close homology to BcWRKY1 were searched in
NCBI and their protein sequences were downloaded to construct
a phylogenetic tree with MEGA 5.10 software. ClustalX was
used for multiple alignments and the Neighbor-Joining method
with 1000 replicates of bootstrap testing (Saitou and Nei, 1987;
Shang et al., 2013). The phylogenetic tree of BcWRKY1 showed
that the BcWRKY1 of B. cusia was closely related to WRKY
in Helianthus annuus (Supplementary Figure 2E). The results
of multiple sequence alignment showed that the BcWRKY1
protein was highly conserved compared with its homologous
proteins in Helianthus annuus, Ziziphus jujuba, Olea europaea
var. Sylvestris, Prunus persica and Phoenix dactylifera, with a
homology of 72.62, 73.17, 71.91, 73.68, and 75.34%, respectively
(Supplementary Figure 4).

Subcellular Localization of the BcWRKY1
Protein
The vector containing 5941-35S-BcWRKY1-GFP and the empty
vector containing 5941-35S-RFP were transformed into tobacco
leaves for transient expressions of 5941-35S-BcWRKY1-GFP and
5941-35S-RFP. Then the tobacco leaves were cultured for 48 h,
and observed under a confocal laser scanning microscope with
GFP and RFP double channels. The results showed that 5941-35S-
RFP was localized in both the nucleus and cytoplasm of tobacco
epidermal cells (bright points), and 5941-35S-BcWRKY1-GFP
was localized in the RFP bright spot where the nucleus was
labeled (Figure 1A). This finding was in line with the protein
subcellular localization prediction results with Eslpred, which
suggested that BcWRKY1 protein was most likely to be in the
nucleus. Meanwhile, BcWRKY1-GFP was further co-labeled with
5941-35S-OsSPX1-RFP that was reported to be specially localized
in the nucleus (Wang et al., 2014b). In addition, OsSPX1-
RFP was detected in the nucleus, perfectly overlapping with
the signal of BcWRKY1-GFP (Figure 1A). Taken together, these
results demonstrated that BcWRKY1 protein was localized in
the nucleus.

DNA Binding and Transcriptional Activation
Activity of BcWRKY1
Since BcWRKY1 was a putative WRKY TF, it was further
investigated whether BcWRKY1 could bind to the DNA
sequence including classic W-box motif. Recombinant protein
GST-BcWRKY1 was expressed and purified in E. coil BL21
(DE3). The results showed that GST-BcWRKY1 expression
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FIGURE 1 | Expression and functional characterization of BcWRKY1

transcription factor. (A) Subcellular localization of 35S-BcWRKY1-GFP and

35S-RFP and subcellular co-localization of 35S-BcWRKY1-GFP and

35S-OsSPX1-RFP. (B) The results of recombinant protein GST-WRKY1

expression and purification. The molecular weight of the recombinant protein is

indicated using protein markers. (C) The result of DNA binding activity of

GST-WRKY1 to the DNA probe including W-box using EMSA assay. (D)

Transcriptional activation activity of BcWRKY1 in yeast.

was significantly induced by the addition of IPTG (Isopropyl-
β-D-thiogalactoside), and the GST-BcWRKY1 recombinant
protein was successfully purified (Figure 1B). Further analysis
with EMSA showed that GST-BcWRKY1 could specially bind
to the DNA probe including the W-box motif, and the
binding of GST-BcWRKY1 to the biotin-labeled probe could
be specially attenuated by the addition of unlabeled competitor
DNA probe (Figure 1C). Furthermore, to investigate whether
BcWRKY1 is a transcriptional repressor or an activator.
Plasmids containing pGBKT7-BcWRKY1 and pGBKT7 were
respectively transformed into yeast AH109 competent cells, and
then cultured at 30 ◦C for 48–72 h. The plaque of AH109
(pGBKT7-BcWRKY1) and AH109 (pGBKT7) were similar in

size on SD/-trp medium. The results showed that pGBKT7-
BcWRKY1 fusion protein had no toxicity to AH109 cells.
Besides, yeast AH109 (pGBKT7-BcWRKY1) showed blue plaque
(Figure 1D), suggesting that BcWRKY1 protein could promote
gene transcriptional activities.

Overexpression of BcWRKY1 in
Arabidopsis thaliana
To investigate the function of BcWRKY1 protein, BcWRKY1
was over-expressed in Arabidopsis thaliana. Positive transgenic
Arabidopsis plants that grew normally onMSmedium containing
Glufosinate were then transplanted into organic soil spiked with
vermiculite, and cultured in a growth chamber for a period of
time. The plants with resistance to Glufosinate were sampled
and observed under a fluorescence microscope. The positive
transgenic plants were further identified by GFP signal detection
in the leaves (Figure 2A). Two independent transgenic lines
showing strong GFP signal were further selected to determine
the expression levels of BcWRKY1. The results showed that the
expression of BcWRKY1 was significantly higher than that in
the control line (Figure 2B). Hence, the transgenic Arabidopsis
plant overexpressing BcWRKY1-OX1 with strong GFP signal was
selected for the following research.

Differential Metabolic Profile Between Wild
Type and BcWRKY1-OX1 Transgenic
Arabidopsis thaliana
To investigate the function of BcWRKY1 in Arabidopsis thaliana
metabolism, the metabolic profile in Arabidopsis thaliana was
determined and compared between the wild type (WT) and
BcWRKY1-OX1 transgenic lines. The results from the Principal
Component Analysis (PCA) showed that the metabolites in
wild type and BcWRKY1-OX1 transgenic Arabidopsis thaliana
could be clearly separated by PC1 with an explanatory degree
of 58.88%, followed by PC2, with an explanatory degree of
9.33% (Figure 2C). These results suggested that overexpression
of BcWRKY1 significantly changed the metabolic profile in
Arabidopsis thaliana.

Metabolites Regulated by the Expression
of BcWRKY1
The Variable Importance in Projection (VIP) P-value of the first
principal component in the PLS-DA model was used to identify
differential metabolites by t-test. The threshold was set as VIP >

2.0, and the difference multiple FC was set to be> 2.0 or< 0.5. A
P-value < 0.05 was used to identify the differential metabolites in
wild type and BcWRKY1-OX1 transgenic Arabidopsis thaliana.

The total number of identified metabolic compounds in
both lines was 2,131. In Volcano Plots, gray points represented
the metabolites without significant differences (NoDiff),
and the total number of significantly different metabolites
between wild type and BcWRKY1-OX1 transgenic Arabidopsis
thaliana was 80 (Figure 2D and Supplementary Table S3).
Red points represented up-regulated metabolites in BcWRKY1-
OX1 transgenic line (UP), and the number of significantly
up-regulated metabolites was 74. Green points represented
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FIGURE 2 | BcWRKY1 overexpression influences the metabolic profile in Arabidopsis thaliana. (A) Phenotypic overexpression of BcWRKY1-GFP in Arabidopsis

thaliana; [Note: (a, c) Under the white light channel, (b, d) Under the fluorescent channel; WT: wild type Arabidopsis thaliana; BcWRKY1: BcWRKY1 overexpression

transgenic Arabidopsis thaliana]. (B) The quantitation of expression levels of BcWRKY1 in transgenic Arabidopsis thaliana using qRT-PCR. (C) PLS-DA of differential

metabolites between wild type and BcWRKY1-OX1 transgenic Arabidopsis thaliana in positive ion mode; (D) Volcano Plots of differential metabolites between wild

type and BcWRKY1-OX1 transgenic Arabidopsis thaliana in positive ion mode, drawn by DEseq2 R package using a absolute log2Foldchange > 1 and an adjusted P

value < 0.05 (FDR).

down-regulated metabolites in BcWRKY1-OX1 transgenic

line (DW), and the number of significantly down-regulated
metabolites was 6. The size of the dot represented the VIP

value, and alpha (0.4) represented the transparency of points.
Compared with wild type Arabidopsis thaliana, the number

of up-regulated metabolites in BcWRKY1-OX1 transgenic

Arabidopsis thaliana was significantly higher than that of down-
regulated metabolites (Figure 2D). In addition, significantly

altered metabolites in WT and BcWRKY1-OX1 transgenic lines
were further analyzed and clustered, and the results showed that
the differential metabolites between the two plant lines varied
(Supplementary Figure 5). Furthermore, some differential

metabolites exhibited significant correlation with each other
(Supplementary Figure 6).

KEGG Pathway Enrichment Analysis in
Wild Type and BcWRKY1-OX1 Transgenic
Arabidopsis thaliana
In order to investigate whichmetabolic pathway these differential
metabolites were enriched in, KEGG analysis was performed.
It was clear that the differential metabolites in wild type and
BcWRKY1-OX1 transgenic lines participated in the main
biochemical metabolic pathways and signal transduction
pathways. KEGG Pathway enrichment analysis in wild type and
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FIGURE 3 | Indole-related metabolites are significantly increased in BcWRKY1-OX1 transgenic Arabidopsis thaliana line. (A–E) Abundance of indole-related

metabolites in wild type and BcWRKY1-OX1 transgenic Arabidopsis thaliana line. The P value < 0.05 indicates a significant difference between the two groups

determined using student’s t test. (F) KEGG pathway enrichment analysis in wild type and BcWRKY1-OX1 transgenic Arabidopsis thaliana in positive ion mode.

BcWRKY1-OX1 transgenic Arabidopsis thaliana are shown in
Supplementary Table S4.

The results showed that the abundance of indole-related
metabolites were significantly increased in BcWRKY1-OX1 line
(Figures 3A–E) (Supplementary Table S5). Besides, there were
more differential metabolites enriched in flavonoid biosynthesis
and phenylpropanoid biosynthesis pathways in BcWRKY1-
OX1 transgenic line (Figure 3F). Compared with wild type
Arabidopsis thaliana, the most obvious difference in BcWRKY1-
OX1 transgenic line was the enrichment of flavonoid biosynthesis
(Figure 4F). Compared with wild type Arabidopsis thaliana,
baimaside of flavone and flavonol biosynthesis in BcWRKY1-OX1
transgenic Arabidopsis thaliana were significantly up-regulated
(Supplementary Figure 7). Although tryptophan metabolism
did not exhibit a significant change, the abundance of
indoleacetate in the tryptophanmetabolic pathway in BcWRKY1-
OX1 transgenic Arabidopsis thaliana was significantly increased
(Supplementary Figure 8).

To further understand why BcWRKY1 overexpression
changed flavonoid and indole relative metabolites in Arabidopsis
thaliana, we further detected the expression levels of key genes
in the flavonoid and indole acetic acid biosynthesis pathways.
Expression levels of key genes in the flavonoid and indole acetic
acid biosynthesis pathway (such as TAA1, YUC1 and CHS) were
detected with qRT-PCR. Results showed that the expression level
of TAA1 and YUC1 in indole acetic acid biosynthesis pathways
in BcWRKY1 overexpression line were significantly increased by

comparison with wild type Arabidopsis. Similarly, expression of
CHS in flavonoid biosynthesis in BcWRKY1 overexpression line
was also significantly increased (Figure 4). Taken together, our
results suggested that BcWRKY1 might regulated the flavonoid
and indole metabolism, through regulation the expression of key
genes in these two biosynthesis pathway.

DISCUSSION

The development of molecular biological techniques has opened
the avenue of the in-depth study of genes, which not only
focuses on the gene function but also on mapping the genes
in various plant systemic networks (Li and Zhou, 2014). Along
with genome sequencing of different species, the WRKY gene
family has also been identified in several species. WRKY is
a kind of transcription factor with specific roles in plants
(Cheng et al., 2012; Chi et al., 2013). Besides, our preliminary
study suggested that the WRKY transcription factor exhibited
a significant correlation with indole metabolic pathway in
B. cusia (Huang, 2017). And the main effective substances
including indirubin and indigo in B. cusia were the secondary
metabolites derived from indole metabolism in B. cusia (Huang,
2017). More and more research has shown that WRKY TFs
also participate in the secondary metabolic regulation such
as indole alkaloid production in plants (Xu et al., 2004;
Suttipanta et al., 2011). Therefore, based on the previous
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FIGURE 4 | Expression analysis of key genes in the flavonoid and indole acetic acid biosynthesis pathway. (A) Expression analysis of TAA1 in the biosynthesis of

indole acetic acid pathway by qRT-PCR. (B) Expression analysis of YUC1 in the biosynthesis of indole acetic acid pathway by qRT-PCR. (C) Expression analysis of

CHS in the biosynthesis of flavonoid pathway by qRT-PCR.

studies and the transcriptome sequencing database of B. cusia,
the full length sequence of WRKY in B. cusia (BcWRKY1)
was successfully cloned using RT-PCR, and bioinformatics
analysis was performed (Supplementary Figure 2). Compared
to the conventional laboratory-based experimental research,
bioinformatics can obtain more reliable results in less time
and was cost-effective. In subcellular localization studies, we
found that BcWRKY1 protein was mainly localized in the
nucleus, which was consistent with its function as a transcription
factor. This result was also in line with the previous Eslpred
prediction. The transcriptional regulation domain determined
whether it could activate or inhibit gene expression (Dong
et al., 2018). In the study, we found that BcWRKY1 protein
could bind to the WRKY-binding motif W-box, acting as a
transcriptional activator (Figures 1B–D), which was consistent
with previous studies (Rushton et al., 1996). However, some
WRKY proteins also play a role as transcriptional suppressor.
For example, Bo (2016) found that tomato SIDRW1 gene
encoding the WRKY transcription factor might function as
a transcriptional suppressor. In addition, the WRKY protein
in some species, such as AtWRKY6, could play a dual role
as transcriptional activator or repressor depending on the
regulation process (Xie et al., 2005). Metabolomics is an
effective method to comprehensively explore the distribution of
compounds in plants, including differential metabolites (Tikunov
et al., 2005). Target analysis method has high accuracy, but useful
information may be missed in metabolic phenotype analysis
(Wang et al., 2018). Non-targeted metabolomics has been
applied to investigate the differential metabolites and analyze
the enriched pathways, especially in studies on the discovery
of metabolic markers. Due to high throughput characteristics
and a wide coverage of metabolites (Duan et al., 2016),
all cellular metabolites can be detected without bias, more
comprehensively reflecting the overall metabolic state of cells
(Patti et al., 2012). Non-targeted metabolomics LC-MS was used
to analyze the metabolic profiles in wild type and BcWRKY1-
OX1 transgenic Arabidopsis thaliana. The results showed that

flavonoid biosynthesis pathway was significantly influenced
by BcWRKY1 overexpression (Figure 3F). Besides, although
tryptophan metabolism did not show a significant change
(Figure 3F), some indole-related metabolites were significantly
increased in BcWRKY1-OX1 transgenic line (Figures 3A–E).
These results suggested that BcWRKY1 was involved in the
regulation of indole metabolic pathways in Arabidopsis thaliana
plant model. In addition, qRT-PCR suggested that indeed
some genes in the flavonoid and indole biosynthesis pathway
were induced in the BcWRKY1-OX1 over-expression line. And
indeed, the most homologous WRKY in Arabidopsis thaliana
is AtWRKY50, which has been proved in regulation of sinapic
metabolism in Arabidopsis thaliana (Hussain et al., 2018).
However, whether BcWRKY1 directly or indirectly regulated
these processes needs further investigation. Besides, our findings
indicated that BcWRKY1 might regulate the corresponding
metabolism pathways in B. cusia. Since the main effective
substances in B. cusia were indigo and indirubin, both are
products of indoles metabolism in the Tryptophan metabolismin
B. cusia (Huang, 2017). Taken together, BcWRKY1 might
participate in effective substances metabolism in B. cusia. These
findings may lay a good foundation for further research about the
effect of BcWRKY1 transcription factor on B. cusiametabolism.

CONCLUSION

Effective substances metabolic pathway in B. cusia is still
unknown. We identified a BcWRKY1 involved in this
pathway. We combined the use of bioinformatics analysis,
transgenic plant model and metabolomics technology to
study the function of BcWRKY1 protein in plant metabolism
regulation. Overexpression of BcWRKY1 significantly changed
flavonoid and indole-related metabolism and indole-related
metabolites were also significantly upregulated. We postulated
that BcWRKY1 transcription factor might be involved in the
regulation of effective substances metabolism in B. cusia.
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