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Identifying the genetic variation characteristics of phenotypic traits is important for
fruit tree breeding. During the long-term evolution of fruit trees, gene recombination
and natural mutation have resulted in a high degree of heterozygosity. Apple
(Malus × domestica Borkh.) shows strong ecological adaptability and is widely
cultivated, and is among the most economically important fruit crops worldwide.
However, the high level of heterozygosity and large genome of apple, in combination with
its perennial life history and long juvenile phase, complicate investigation of the genetic
basis of fruit quality traits. With continuing augmentation in the apple genomic resources
available, in recent years important progress has been achieved in research on the
genetic variation of fruit quality traits. This review focuses on summarizing recent genetic
studies on apple fruit quality traits, including appearance, flavor, nutritional, ripening, and
storage qualities. In addition, we discuss the mapping of quantitative trait loci, screening
of molecular markers, and mining of major genes associated with fruit quality traits. The
overall aim of this review is to provide valuable insights into the mechanisms of genetic
variation and molecular breeding of important fruit quality traits in apple.

Keywords: apple, genetic characteristics, quality traits, QTLs, genes

INTRODUCTION

Apple (Malus × domestica Borkh.) shows strong ecological adaptability and is widely cultivated
around the world. In 2020, the total global planting area of apple was 4.622 million ha, with
total production output of 86.443 million tonnes, distributed in almost 100 countries on six
continents (FAO and WFP, 2021). Consequently, apple is among the most economically important
fruit crops worldwide. Most apple fruit are crisp, juicy, sweet, and delicious, and are rich in
vitamins, dietary fiber, polyphenols, and mineral elements. Apple has many benefits to human
health and is a favorite fruit among consumers (Eberhardt et al., 2000; Hyson, 2011; Oyenihi
et al., 2022). Apple fruit quality is determined by many individual traits, most of which are
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quantitative traits controlled by minor polygenes or oligogenes
(Conner et al., 1998; Cãtãlina et al., 2015; Zheng et al., 2020).
According to the research objective, fruit quality can be divided
into appearance, flavor, nutritional, storage and transportation,
resistance, and processing qualities (Chen et al., 2015). The
determinants of the different quality attributes include single fruit
weight, fruit shape, color, texture, flavor, aroma, and functional
ingredients (Chen et al., 2015).

Exploring the genetic basis and molecular mechanism
of phenotypic traits is of great significance for fruit tree
breeding. The inheritance of traits can be divided into
qualitative traits controlled by major genes and quantitative traits
controlled by minor genes. The former are inherited simply
and follow Mendelian inheritance principles (Mendel, 1965),
whereas the latter are affected by the environment and gene
interactions, and hybrid offspring often deviate from Mendelian
inheritance patterns. Over the course of long-term evolution,
gene recombination and natural mutation have resulted in a high
degree of heterozygosity in apple (Sun et al., 2020). In addition,
owing to extensive artificial selection, non-additive genetic effects
are important sources of genetic variation for apple phenotypes
(Kumar et al., 2015). These genetic characteristics, in conjunction
with a perennial life history and long juvenile phase, complicate
research on apple genetics.

Previously, reverse genetics was used to explore the genes
that influence apple fruit quality. For example, the V-myb
myeloblastosis viral oncogene homolog transcription factors
(TFs) MdMYB1 and MdMYB10 regulate anthocyanin synthesis
and coloration in apple fruit (Takos et al., 2006; Espley et al.,
2007). The sucrose transporter MdSUT1 and sorbitol transporter
MdSOT1 regulate the sugar uptake and transport mechanism
(Fan et al., 2009). The 1-aminocyclopropane-1-carboxylic acid
synthase gene (MdACS1) regulates ethylene synthesis and apple
fruit ripening (Sunako et al., 1999). The successful assembly of
the complete genome sequence of “Golden Delicious” apple in
2010 has enabled whole-genome analysis of apple. In addition,
availability of a reference genome has permitted related research
on apple fruit quality, including genome association analysis,
and the cloning and identification of key functional genes.
A total of 57,386 genes, including 4,021 TFs, 178 microRNAs
(miRNAs), 992 resistance genes, and 1,246 biosynthetic genes,
were annotated in the “Golden Delicious” genome (Velasco
et al., 2010). Subsequently, additional high-quality apple genome
assemblies have been generated using the latest sequencing
technologies or more homozygous and diverse samples (Li et al.,
2016; Daccord et al., 2017; Zhang et al., 2019; Sun et al., 2020).
In addition, substantial progress has been achieved in genome-
resequencing analysis and genome-wide association analysis
(GWAS) (Duan et al., 2017; Liao et al., 2021). These achievements
are essential for the genetic analyses of apple fruit traits, for
example, for the construction of high-density linkage maps,
mapping of quantitative trait loci (QTLs), and identification of
genes crucial for apple trait development.

This review focuses on the genetic variation characteristics
of important fruit quality traits in apple. We summarize recent
genetic studies on apple fruit quality traits, including appearance,
flavor, nutritional, ripening, and storage qualities. In addition, we

discuss the mapping of QTLs, screening of molecular markers,
and mining of major genes associated with each quality trait.
The overall aim of this review is to provide valuable insights into
the mechanisms of genetic variation and molecular breeding of
important fruit quality traits in apple.

APPLE FRUIT APPEARANCE QUALITY

The appearance quality of apple fruit, mainly comprising
fruit size (single fruit weight), fruit shape, and fruit color, is
an important aesthetic attribute that strongly determines the
commercial value of the fruit. For example, the breeding of the
large-fruit cultivar “World No. 1” (a single fruit weighs more than
600 g), the long-oval shaped cultivar “Starkrimson” (fruit shape
index of 0.98; Westwood and Blaney, 1963), and various red-
colored cultivars all represent the genetic improvement of apple
fruit appearance and quality (Chen et al., 2021). Here, we present
an overview of the genetic characteristics of fruit appearance
quality, such as single fruit weight, fruit shape, coloration, and
fruit russeting, and discuss the QTLs, molecular markers, and
main-effect genes associated with each appearance quality trait.

Single Fruit Weight
Fruit weight is an economically important trait in apple and is a
quantitative trait controlled by multiple genes (Brown, 1960). As
a quantitative indicator of apple fruit size, it directly determines
the market price of the fruit. Almost 100 QTLs associated
with apple fruit weight have been reported, with logarithm
of the odds (LODs) ranging from 2.97 to 10.98, and include
major and minor loci distributed on almost all 17 chromosomes
(Liebhard et al., 2003; Kenis et al., 2008; Devoghalaere et al.,
2012; Chang et al., 2014; Potts et al., 2014). Devoghalaere et al.
(2012) detected six QTL regions for fruit weight. Two of the
QTLs were conserved across both segregating populations on
linkage group (LG) 8 (designated fw2) and LG 15 (designated
fw1). One QTL was mapped to a region containing an auxin
response factor gene (ARF106). This gene is expressed during cell
division and cell expansion, consistent with a potential role in
the control of fruit size (Devoghalaere et al., 2012). Consistently,
transcriptome analysis of “Longfeng” apple and its large-fruited
bud sport variety “Grand Longfeng” showed that most of the
differential genes were related to auxin signaling, including the
auxin synthetic genes MdTAR1 and MdYUCCA6 (Bu et al., 2020).
These results suggested that auxin played a critical role in trait
development of single fruit weight in apple. Recent apple genome
resequencing studies identified one cell division regulatory gene
and two β-galactosidase genes in fw1 by GWAS analysis. In
addition, the miRNAs miR172g and miR172h are indicated to
be important for fruit enlargement during domestication of
cultivated apples (Duan et al., 2017). Similarly, overexpression of
miR172p in transgenic “Royal Gala” apple significantly reduces
fruit size by targeting the expression of AP2 TFs (Yao et al., 2015).
The QTLs, molecular markers, major-effect genes, and miRNAs
associated with apple fruit weight have been extensively mined,
but for the majority, except miR172p, their functions remain to
be elucidated (Figure 1).
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FIGURE 1 | Quantitative trait loci (QTLs), molecular markers, major-effect genes, and miRNAs associated with apple fruit weight. The main QTLs associated with fruit
weight include fw1, fw2, and fszg08.8 (Devoghalaere et al., 2012; Chang et al., 2014). The major-effect genes include the auxin response factors MdARF6 and
MdARF106, and APETALA 2 family TF MdAP2 (Devoghalaere et al., 2012; Yao et al., 2015). The main miRNAs include miR172g, miR172h, and miR172p (Yao et al.,
2015; Duan et al., 2017). The function of miR172p has been elucidated in transgenic “Royal Gala” apple.

Fruit Color
The fruit color of apple can be divided into skin color and
flesh color. The skin color can be subdivided into presence
or absence of red pigmentation, striped red, or blushed red.
The flesh color is mainly subdivided into red fleshed and non-
red fleshed. The red pigmentation of apple fruit is determined
mainly by anthocyanins, which are color-producing secondary
metabolites that accumulate in different tissues and organs
of plants (Jaakola, 2013). The major gene MdMYB1 was the
first gene identified to control the presence or absence of red
pigmentation in the skin (Takos et al., 2006) and associated
molecular markers were explored subsequently (Kumar et al.,
2012). More recently, GWAS analysis using single-nucleotide
polymorphism (SNP) markers confirmed the association between
fruit color and theMdMYB1 locus on chromosome 9 (Migicovsky
et al., 2016; McClure et al., 2019). Comparative genomics analysis
of 148 apple populations and a segregated hybrid population
revealed that a gypsy-like long terminal repeat retrotransposon
(designated redTE) was inserted 3297 bp upstream of MdMYB1,
thereby activating the expression of MdMYB1 and controlling the
redness of the skin (Figure 2A; Zhang et al., 2019). In Japanese
plums, high levels of variability in the intronic and intergenic
regions of the MYB10 LG3 cluster were also closely associated
with polymorphisms in their skin color (Fiol et al., 2021). These
results reveal the important function of MYB1 as a major gene
in regulating fruit coloration, and its function is affected by
extensive variation in gene regions and intergenic regions.

In contrast with the presence or absence of red pigmentation
in the fruit ground color, the color patterns of the fruit overcolor,
such as blushed red and striped red, are mostly associated with
methylation modification, which represents a type of epigenetic
inheritance. Differences in anthocyanin levels between the red
and green stripes can be explained by differences in methylation
levels of the MdMYB10 promoter (Telias et al., 2011). Whole-
genome bisulfite sequencing of “Red Delicious” and its four-
generation red sport mutants “Starking Red,” “Starkrimson,”
“Campbell Redchief,” and “Vallee Spur” showed that differences
in DNA methylation levels were responsible for genetic variation
of red sport mutants from “Red Delicious” (Li et al., 2019).

Subsequent detailed methylation modification studies using
striped red or blushed red fruit of “Fuji” apple as the study
material showed that Argonaute 4 (MdAGO4s) methylated the
MdMYB1 promoter, thereby regulating anthocyanin biosynthesis
(Figure 2B; Jiang et al., 2020).

Red-fleshed apples have received widespread attention from
apple breeders and consumers owing to their more attractive
color and higher functional nutritional content (Wang et al.,
2018a). Red-fleshed apples are mainly divided into type I (red
pigmentation in the fruit flesh, stems, flowers, and young
leaves) and type II (red flesh only in the outer cortex, no red
pigmentation in the leaves, stems, or other tissues) (Volz et al.,
2009; Sekido et al., 2010). The red-flesh phenotype of type I apples
is controlled by MdMYB10, which contains six 23 bp repeating
microsatellite sequences in its promoter that confer it with
self-activation, resulting in anthocyanin synthesis (Figure 2C;
Espley et al., 2009). The red-flesh phenotype of type II apples is
controlled by MdMYB110, a MdMYB10 homolog located in LG
17, which is not expressed in type I red-fleshed fruit (Figure 2D;
Chagné et al., 2013). In red-fleshed kiwifruit, both MYB10 and
MYB110 could upregulate anthocyanin biosynthesis in fruit,
while MYB10 resulted in anthocyanin accumulation limited to
the inner pericarp (Wang W. Q. et al., 2022a). These results
suggest that the differential expression patterns of MYB10 and
MYB110 contribute to the variation of the red flesh phenotype.

Fruit Shape
Fruit shape is a quantitative trait controlled by minor polygenes.
The fruit shape index is the ratio of the fruit height to width.
Using multiple hybrid populations, Brown (1960) observed that
the fruit shape index of most combinations was close to the parent
median value. Previous studies have shown that the fruit shape
index of apple is a quantitative trait controlled by five pairs of
genes (Sun et al., 2012). Four simple sequence repeat markers and
one amplified fragment length polymorphism marker linked to
the fruit shape index were screened in a “Jonathan” × “Golden
Delicious” hybrid population using bulked segregant analysis
(Sun et al., 2012). Using the same hybrid population, QTL
mapping analysis showed that LG11 and LG15 contained QTLs
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FIGURE 2 | Red pigmentation of apple fruit skin and flesh. (A) A gypsy-like long terminal repeat retrotransposon (designated redTE) was inserted 3297 bp upstream
of MdMYB1, thereby activating the expression of MdMYB1 and controlling the redness of the fruit skin. (B) MdAGO4s, MdDRM2s, and MdRDM1 interact with each
other and form an effector complex. MdAGO4s recruit MdDRM2s, which catalyze CHH methylation of the MdMYB1 promoter. MdMYB1 then regulates anthocyanin
accumulation to determine the coloration. M, a -CH3 (methyl); ABS, AGO4 binding sequence. (C) Model showing autoregulation of the R6 and R1 promoters by
MdMYB10. The MdMYB10 promoter in red-fleshed apple contains six 23 bp repeating microsatellite sequences (R6), which confer MdMYB10 with self-activation.
The MdMYB10 promoter in white-fleshed apple contains only one 23 bp repeating microsatellite sequence. (D) MdMYB10 and its homolog MdMYB110a are
involved in the red pigmentation of type I and type II red-fleshed apples, respectively.

associated with fruit shape index, and the QTL loci in LG11
were stable in different years (Chang et al., 2014). Interestingly,
there are not only overlapping QTLs for single-fruit weight
and fruit shape, but also many independent QTLs. However, to
date, the crucial genes that regulate apple fruit shape have not
been identified.

Fruit Russeting
Fruit russeting occurs in many apple cultivars, such as “Egremont
Russet,” and seriously affects the appearance quality and
commercial value of the fruit. Fruit russeting in apple is the
result of formation of a plastic periderm following microscopic
cracking of the cuticle (Khanal et al., 2013). It was initially
considered that fruit russeting in apple might be controlled
solely by the Ru gene. However, evaluation of the offspring of

crosses of non-fully russeted and less-russeted cultivars with fully
russeted cultivars revealed that the non-fully russeted phenotype
was controlled by multiple factors (Alston and Watkins, 1973).
A high-density genetic map was developed using a F1 segregating
population derived from a cross between the fully russeted
cultivar “Renetta Grigia di Torriana” and “Golden Delicious,” and
a major QTL associated with fruit russeting, designated Ru_RGT,
was detected on chromosome 12. In addition, a putative ATP-
BINDING CASSETTE G family transporter ABCG has been
identified as a candidate gene that controls russet development
in apple (Falginella et al., 2015). Overexpression of MdMYB93
in tobacco leaves leads to accumulation of a large amount of
lignin monomers, suberin, and their precursors (Legay et al.,
2016), suggesting that MdMYB93 may promote the formation of
apple fruit russeting. In contrast, MdLIM1 can directly bind to
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the CCACTTGAGTAC element in the phenylalanine ammonia-
lyase promoter, thereby inhibiting lignin synthesis and reducing
the formation of fruit russeting (Yuan et al., 2019). However, the
functional verification of the genes regulating fruit russeting so
far is only related to the lignin synthesis, and the subsequent
direct relationship with the fruit russeting phenotype remains to
be verified.

FLAVOR AND NUTRITIONAL QUALITY
OF APPLE FRUIT

With economic development and improvement of living
standards, increasing attention is paid to the flavor quality,
nutritional value, and health benefits of fruit. While consumers
are influenced by aesthetic traits, they also are paying greater
attention to taste attributes. Here, we introduce the genetic
characteristics of apple fruit flavor and nutritional components,
such as soluble sugars, organic acids, aromatic substances, and
polyphenols, and discuss the QTLs, molecular markers, and
main-effect genes associated with each quality trait.

Soluble Sugars
In apple, sugar and acid contents and the sugar:acid ratio
are important indicators of fruit flavor quality (Jayasena and
Cameron, 2008). The soluble sugars in apple fruit mainly

comprise sucrose, fructose, glucose, and sorbitol, among which
glucose and fructose are almost entirely localized to vacuoles
(Yamaki, 1984). The sugar content of apple fruit is a typical
quantitative trait controlled by minor genes (Liao et al.,
2021). The sugar content in hybrid offspring shows a normal
distribution and the average sugar content in the population is
close to the parent median (Ma et al., 2015), which indicates
that the of sugar content is mainly controlled by additive genetic
effects. More than 70 QTLs associated with fruit sugar content
have been detected in different populations, distributed on at least
15 chromosomes with LODs ranging from 1.9 to 12.6 (Table 1).
Taken together, the focal LGs for sugar content in apple fruit are
LG1 and LG3, which have been located frequently in multiple
hybrid populations.

Whole-genome resequencing of 497 apple accessions revealed
that apple breeding has resulted in a reduction in the degree of
population-level genetic polymorphisms, and that sweet apples
and wine apples were domesticated independently (Liao et al.,
2021). GWAS for soluble sugar contents showed that a SNP
mutation of the main-effect gene MdSOT2 significantly reduced
accumulation of sorbitol in apple fruit (Liao et al., 2021). In
addition, a stable QTL was detected in LG01 in “Honeycrisp.”
The SNP A/G variation of the sorbitol dehydrogenase gene
MdSDH2 promoter affects its binding to the TF MdABI3, thereby
downregulating the expression level of MdSDH2 and reducing
the fructose content in the fruit (Wang Z. et al., 2022b).

TABLE 1 | Linkage mapping for soluble sugar content in apple fruit.

Populations Linkage group (LG) Logarithm of the
odds (LOD)

Markers References

“Fiesta” × “Discovery” LG3, LG6, LG8, LG9, LG14 1.9∼4.9 NA Liebhard et al., 2003

“Telamon” × “Braeburn” LG2, LG10 3.3∼12.6 EAATMCCT108
CH03d11

Kenis et al., 2008

1120 seedlings in seven full sib families LG6 NA ss475878574 Kumar et al., 2012

“Orin” × “Akane” LG5, LG6, LG10, LG12,
LG15, LG16

2.79∼8.26 Hi15a13, Hi09b04, CH05c06,
CH05d11, CH03d07, CH05d11,

MEST147, TsuENH109

Kunihisa et al., 2014

“Fuji” × “Delearly”
“Fuji” × “Cripps Pink”
“Golden Delicious” × “Scarlet”
“Golden Delicious” × “Braeburn”

LG6, LG8
NA
LG8
NA

3.39∼3.95
3.61

GDsnp01682
GDsnp00747
GDsnp00862

Costa, 2015

233 seedlings, 32 cultivars, 9 advanced
selections

LG1, LG2, LG3, LG4, LG5,
LG9, LG11, LG12, LG13,
LG15, LG16

NA ss475883868
ss475876959
ss475877464

ss475877847. . .

Guan et al., 2015

“Jonathan” × “Golden Delicious” LG1 3.5∼4.3 huC01.18233570
emC01.11115376
huC01.18378291

Sun et al., 2015

“Fuji” × “Hongrou” LG2 2.12 CH05d11-430m Liu et al., 2016

“Jiguan” × “Wangshanhong” LG3, LG4 3.41∼7.73 MdSNPui0843
MdSNPui05013

Ma et al., 2016

85 cultivars LG8 NA Chr8:24235959 Amyotte et al., 2017

110 cultivars LG1, LG7, LG11 NA Chr1:30129468
Chr1:30221387

Larsen et al., 2019

461 apple accessions LG1, LG3, LG7, LG9,
LG10, LG11

NA Chr3_35640501
Chr10_11639616
Chr10_11639656

MdWD40, MdSOT2

Liao et al., 2021

“Honeycrisp” × “Qinguan” LG1 4.71, 4.14 lm2151, MdSDH2 Wang Z. et al., 2022b

NA, Not applicable.
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Thus, SNP mutations in genes that encode key enzymes for
sugar synthesis have significant effects on the accumulation of
various soluble sugars.

The unloading of sugars from the phloem to the fruit
via the apoplast and symplast pathways, and the transport
of sugars to the plasma and tonoplast membranes of fruit
flesh cells are regulated by various genes, such as the sucrose
transporters MdSUT1, MdSUT2, and MdSUT4, monosaccharide
transporter MdTMT1, glucose transporter MdVGT1, and
multiple MdSWEET genes (Fan et al., 2009; Ma et al., 2017;
Zhen et al., 2018; Peng et al., 2020; Xu et al., 2020). The genetics,
synthesis, metabolism, and transport of soluble sugars in apple
fruit are complex and further research is needed.

Organic Acids
The predominant organic acid in apple fruit is malic acid,
which accounts for more than 80% of the total acid content
and is the main contributor to tartness in the fruit (Scherer
et al., 2012). The content of malic acid is jointly regulated by
the major gene Ma and a minor gene (Verma et al., 2019).
The recessive homozygous mama genotype exhibits low acidity,
whereas the dominant homozygous MaMa and heterozygous
Mama genotypes are controlled by minor polygenes and exhibit
high to moderate acidity (Xu et al., 2012). Using a molecular
marker linkage map, the major gene associated with malic acid
was localized to LG16 and designated the Ma locus (Maliepaard
et al., 1998). Subsequently, two QTLs associated with fruit acidity
were detected, which were located in LG8 and LG16, respectively,
and the QTL in LG16 was identical to that detected previously
(Liebhard et al., 2003; Kumar et al., 2012; Ma et al., 2016).

On this basis, through further precise mapping, the major Ma
locus in LG16 was localized to a 65–82 kb segment, containing
12–19 candidate genes, one of which encodes an aluminum-
activated malate transporter, designated MdALMTII (or Ma1)
(Bai et al., 2012; Xu et al., 2012). Ma1 is considered to be the
primary gene that determines the Ma locus and fruit acidity,
which has been verified in a subsequent genome-wide linkage
analysis (Liao et al., 2021). A SNP mutation (A/G) in the coding
sequence of Ma1 leads to premature termination of translation
and reduces the malic acid content (Bai et al., 2012). The
premature termination of translation changes the subcellular
localization of Ma1 and, consequently, its malate transport
function is lost (Ma et al., 2015). Similarly, deletion of a coding
region at the C-terminus of MdALMT9, a homolog of Ma1,
leads to premature termination of its translation and reduction
in malic acid content (Li et al., 2020). Therefore, SNPs or indels
mutations in Ma1 gene coding sequences significantly affect
its transport function and malate content. In addition, recent
studies have showed that MdWRKY126 and MdMa12 can lead
to the accumulation of malate by regulating the activity of malate
dehydrogenase (Gao et al., 2022; Zhang et al., 2022).

Fruit Aroma
The aroma of apple fruit is composed of more than 300 different
volatile substances, mainly including alcohols, aldehydes, esters,
ketones, and ethers. The genetic mechanism of aroma caused
by diverse volatile substances, different synthetic pathways, and

multiple regulatory genes is extremely difficult to study. Except
for LG8, LG10, and LG13, QTLs associated with fruit aroma
may be localized to the remaining 14 LGs (Zini et al., 2005;
Dunemann et al., 2009; Costa et al., 2013). Among them,
LG2 and LG15 are the focal LGs for apple fruit aroma. In
contrast, the main QTL associated with fruit aroma compounds
in peach was detected in LG4 (Eduardo et al., 2013), and
the QTL associated with γ-decalactone content in strawberry
was detected in LG3 (Sánchez-Sevilla et al., 2014). Given the
distinct aroma components in different fruits, the genetic linkage
associations are diverse. In apple, genes have been cloned and
identified for several enzymes crucial for aroma synthesis, such as
MdLOX1 encoding lipoxygenases (Schiller et al., 2015), MdAAT1
and MdAAT2 encoding alcohol acyltransferases (Li et al., 2006;
Dunemann et al., 2012), and MdADH1 and MADH2 encoding
alcohol dehydrogenases (Echeverrıa et al., 2004). However, the
genetic mechanism and crucial regulatory genes associated with
apple fruit aroma require further study.

Nutrient Components
Apple fruit are rich in a variety of vitamins, dietary fiber,
polyphenols, and mineral elements. Among these components,
functional nutrients such as polyphenols, flavonoids, chlorogenic
acid, and L-ascorbic acid (vitamin C) are effective in
antioxidation, prevention of cardiovascular and cerebrovascular
diseases, and anti-tumor effects in the human body (Eberhardt
et al., 2000; Naveed et al., 2018; Bondonno et al., 2019). The
polyphenols in apple fruit comprise mainly flavonoids, tannins,
phenolic acids, and anthocyanins, which are quantitative traits
controlled by multiple genes. Using a “Royal Gala” × “Braeburn”
hybrid population, QTLs associated with the contents of
polyphenols, such as chlorogenic acid, quinic acid, anthocyanin,
catechin, epicatechin, quercetin, and phloridzin, were located in
LG1, LG6, LG7, LG9, LG13, LG14, LG15, LG16, and LG17 with
LODs ranging from 3.03 to 41.28 (Chagné et al., 2012). Among
these QTLs, a crucial gene encoding leucoanthocyanidin
reductase, MdLAR1, involved in flavonol synthesis was
screened from the QTL located in LG16, and genes encoding
hydroxy cinnamate transferase/hydroxy quinate transferase,
MdHCT/HQT, involved in chlorogenic acid synthesis were
screened from the QTL located in LG17 (Chagné et al., 2012).
Using a “Prima” × “Fiesta” hybrid population, QTLs associated
with polyphenols were located in LG1, LG8, and LG13, of which
33 metabolite quantitative trait loci (mQTLs) associated with
skin phenolic compounds and 17 mQTLs associated with flesh
phenolic compounds were detected in LG16 (Khan et al., 2012).
Extensive progress has been achieved in understanding the
genetic mechanism and regulation of polyphenol accumulation
in apple fruit. TFs of the MYB, bZIP, WRKY, HSF, ERF, and other
families are widely reported to be involved in apple polyphenol
synthesis (An et al., 2017; Wang et al., 2017, 2018b, 2020;
Zhang et al., 2018). In comparison, research on other nutritional
components of apple fruit has lagged behind.

L-ascorbic acid is an important antioxidant (Davey et al.,
2000). The content of L-ascorbic acid in apple fruit is a
quantitative trait controlled by multiple genes (Mellidou et al.,
2012). Using “Telamon” × “Braeburn” hybrid populations, QTLs
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associated with apple fruit L-ascorbic acid were located in
LG10, LG11, LG16, and LG17, among which genes for crucial
enzymes, such as GDP-L-galactose phosphorylase (GGP) and
dehydroascorbate reductase (DHAR), were identified. Allelic
variation of MdGGP1 and MdGGP3 in “Braeburn” is associated
with high L-ascorbic acid content in the fruit (Mellidou et al.,
2012). A recent study has shown that the transcript and
protein abundances of Asc Mannose pathway Regulator 1 Like
1 (MdAMR1L1), a regulator involved in the L-ascorbic acid
synthesis pathway, are negatively correlated with L-ascorbic acid
content during apple fruit development (Ma et al., 2022). Up to
now, the research on apple L-ascorbic acid is still preliminary,
and its regulatory mechanism and key genes still need to be
further studied.

RIPENING AND STORAGE QUALITY OF
APPLE FRUIT

The respiration of apple fruit is typical of a climacteric fruit.
The fruit ripening and storability periods strongly determine the
commercial value of different apple cultivars (Johnston et al.,
2002). Inevitably, ethylene, as an important senescence-related
endogenous hormone in plants, can initiate fruit ripening and
synergistically complete the entire storage process, degrade cell
walls, and lead to fruit softening (Giovannoni, 2004; Chaves and
Mello-Farias, 2006). Here, we review the genetic characteristics of
apple fruit ripening and storage quality, and discuss the relevant
regulatory functions of ethylene and other factors.

Fruit Ripening
Apple fruit ripening is a quantitative trait controlled by
multiple genes, which basically conforms to the characteristics
of mesotrophic variation. Using “Fiesta” × “Discovery” hybrid
populations, one major-effect QTL associated with fruit ripening
was located in LG3 (LOD = 4.7); the QTL originated from
the early ripening parent “Discovery” and explained 16% of
the phenotypic variability (Liebhard et al., 2003). Using a
“Telamon” × “Braeburn” hybrid population, QTLs associated
with fruit ripening were located in LG3, LG9, LG10, and
LG16, with LODs ranging from 3.2 to 8.6 (Kenis et al., 2008).
Through GWAS of 1168 samples of different apple genotypes
and phenotypic analysis of their phenological traits, six SNPs
(four on chromosome 3, one on chromosome 10, and one on
chromosome 16) were retained as cofactors for ripening period
at the whole-population level, which accounted for 17.2% of the
phenotypic variance. Among the candidate genes, NAC family
TFs and AP2/ERF family TFs were widely identified, indicating
that they play key roles in apple fruit ripening (Urrestarazu et al.,
2017). Consistent with this finding, the involvement of NAC
and AP2/ERF family TFs in fruit ripening has been extensively
demonstrated in other fruits, such as tomato, strawberry, peach,
and kiwifruit (Wang et al., 2019; Gao et al., 2020; Fu et al., 2021;
Kou et al., 2021; Martín-Pizarro et al., 2021).

Ethylene is an important regulator of fruit ripening, and
ethylene biosynthesis, ethylene receptors, and ethylene response-
related genes all affect fruit ripening (Sunako et al., 1999;

Varanasi et al., 2011; Tan et al., 2013). In apple, MdSnRK2-
1 can phosphorylate MdHB1 and MdHB2 to enhance their
protein stability and transcriptional activity toward MdACO1,
thereby promoting ethylene synthesis and fruit ripening (Jia
et al., 2022). Besides, the TF MdMYC2 is responsive to jasmonate
treatment and directly binds to the promoters of MdACS1,
MdACO1, and MdERF3, thereby activating the ethylene signaling
pathway during apple fruit ripening (Li et al., 2017). The auxin
response factor MdARF5 is responsive to naphthaleneacetic acid
treatment and directly binds to the promoters of MdERF2,
MdACS1,MdASC3a, andMdACO1, and thereby induces ethylene
biosynthesis during apple fruit ripening (Yue et al., 2020). These
findings indicate that different hormonal signals are closely
associated with ethylene synthesis and fruit ripening.

Fruit Storage
Fruit storability is a commercially important trait of apple,
which directly determines the shelf life and commodity
value. Fruit storability can be evaluated by retention of
firmness and crispness, which are quantitative traits controlled
by multiple genes (King et al., 2001; Soglio et al., 2009;
Longhi et al., 2013). Ethylene plays an important role in the
formation and maintenance of fruit firmness and crispness.
The transcriptional activity of the ethylene synthesis gene
MdACS1-2 is greatly reduced by insertion in the promoter
of a specific retrotransposon, namely a short interspersed
nuclear element, resulting in significant reduction in ethylene
synthesis and improved storage stability (Sunako et al., 1999).
MdACS1-2/-2 homozygous apple cultivars show lower ethylene
production, higher fruit firmness during storage, and are
generally storable, whereas MdACS1-1/-2 heterozygous and
MdACS1-1/-1 homozygous cultivars show higher ethylene
production, the fruit softens readily, and is generally intolerant of
storage (Sunako et al., 1999; Harada et al., 2000; Oraguzie et al.,
2004). Recent research has shown that genetic variation of the
ethylene-responsive factors MdERF3 and MdERF118 is involved
in regulating flesh firmness and crispness retention of apple fruit
(Wu et al., 2021).

Differences in the activities of various cell wall metabolic
enzymes, such as polygalacturonase (PG) and β-galactosidase
(β-Gal), also contribute to variation in fruit firmness and
crispness among apple cultivars (Nybom et al., 2020).
Comparison of the MdPG1 sequence between “Fuji” and
“Mondial Gala” with significantly different storage traits revealed
a SNP (T/T in “Fuji” and G/T in “Mondial Gala”) in the
exon, which resulted in an amino acid change from valine
to phenylalanine (Costa et al., 2010). Subsequently, 22 SNPs
(10 in exons and 12 in introns) in MdPG1 were identified by
genome-whole resequencing analysis of 77 apple cultivars, of
which six SNPs lead to changes of MdPG1 amino acid and
polygalacturonase activity (Longhi et al., 2013). QTLs associated
with fruit firmness have been detected on chromosomes 12,
16, and 17 by GWAS analysis, and three polygalacturonases,
one pectinesterase, and one glucan endo-1,3-β-glucosidase have
been identified that are associated with cell wall modifications
(Duan et al., 2017).
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CONCLUSION

Genetic characteristics research is an important basis for crop
breeding. This review has summarized research on the genetic
variation characteristics of important quality traits in apple
fruit in recent decades. Compared with annual and biennial
self-compatible field or vegetable crops, perennial fruit trees
mainly show the following characteristics of genetic variation:
First, most perennial fruit trees are self-incompatible, highly
heterozygous, and have a long juvenile phase. Consequently,
it is difficult to design specific experiments to conduct
genetic research on flowering and fruits. Second, most quality
traits of fruit trees are quantitative traits controlled by
multiple genes. This is the case for fruit quality traits
such as fruit size, color, sugar and acid contents, aroma,
and polyphenol content. However, in self-compatible peach
genotypes, more than 20 fruit quality traits are controlled
by one or two genes, such as white flesh/yellow flesh (Y/y),
freestone/clingstone (F/f), and melting/non-melting (M/m)
(Hesse, 1975). Finally, the prevalence of self-incompatibility
and heterozygosity leads to non-additive genetic effects as an
important source of genetic variation in apple phenotypes
(Kumar et al., 2015).

In recent years, with the development of omics technologies,
such as genomics, transcriptomics, proteomics, metabolomics,
and phenomics, as well as GWAS, metabolic GWAS, structural
variation analysis, molecular marker-assisted selection, and
other emerging molecular technologies, substantial progress
has been achieved in the genetic research of fruit traits.
Many crucial genes associated with fruit quality traits have
also been identified. However, owing to limitations in
fruit tree gene editing and the generally longer juvenility

period, the function of most fruit quality trait-related
genes has not been fully validated (Lobato-Gómez et al.,
2021). Furthermore, the heritable variation of the genome
caused by epigenetics, such as histone modification, DNA
methylation modification, chromatin remodeling, and non-
coding RNA regulation, complicates the study of quality
traits in fruit trees. Consequently, there remains much to
do to comprehensively elucidate the genetic mechanism of
fruit quality traits.
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