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Machine vision-based navigation in the maize field is significant for intelligent agriculture.

Therefore, precision detection of the tasseled crop rows for navigation of agricultural

machinery with an accurate and fast method remains an open question. In this article,

we propose a new crop rows detection method at the tasseling stage of maize

fields for agrarian machinery navigation. The whole work is achieved mainly through

image augment and feature point extraction by micro-region of interest (micro-ROI).

In the proposed method, we first augment the distinction between the tassels and

background by the logarithmic transformation in RGB color space, and then the image is

transformed to hue-saturation-value (HSV) space to extract the tassels. Second, the ROI

is approximately selected and updated using the bounding box until the multiple-region of

interest (multi-ROI) is determined. We further propose a feature points extraction method

based on micro-ROI and the feature points are used to calculate the crop rows detection

lines. Finally, the bisector of the acute angle formed by the two detection lines is used as

the field navigation line. The experimental results show that the algorithm proposed has

good robustness and can accurately detect crop rows. Compared with other existing

methods, our method’s accuracy and real-time performance have improved by about

5 and 62.3%, respectively, which can meet the accuracy and real-time requirements of

agricultural vehicles’ navigation in maize fields.

Keywords: agricultural machinery navigation, crop rows detection, micro-region of interest, energy-efficient,

logarithmic transformation

1. INTRODUCTION

In recent years, advances in intelligent agriculture have effectively reduced human costs and
decreased the human harm caused by chemical factors such as pesticides. Real-time navigation of
machines walking in the field is crucial for agriculture. Among them, the most popular approaches
for field navigation are still path planning based on Global Position System (GPS) (Jin and Tang,
2011; Hameed, 2014; Li et al., 2019; Wang et al., 2021) and machine vision-based navigation (Ball
et al., 2016; Radcliffe et al., 2018; Mavridou et al., 2019; Rovira-Mas et al., 2021; Vrochidou et al.,
2022). The development of path planning algorithms has solved the path tracking problem of
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agricultural machinery on a global scale, but the phenomenon
of seedling injury from wheels is still inevitable. Since crops are
usually sown in rows, machine vision-based field navigation is
a promising way to provide navigation paths for agricultural
machinery. Among them, the critical technology of computer
vision, feature extraction (Manavalan, 2020; Xue et al., 2020,
2021a; Shrivastava and Pradhan, 2021; Vishnoi et al., 2022),
is widely used in crop rows detection due to its advantages,
such as low reliance on data resources. Many researchers have
devoted significant efforts to developing efficient field navigation
algorithms, and they can be classified into the following types.

1.1. Methods Based on Hough Transform
Hough (1962) proposed a way to transform points from
a right-angle coordinate system into hough space. It has a
good performance in processing information with straight-line
features, but the real-time performance and accuracy of crop
rows detection are unsatisfactory with mid-late stage plants.
Thus, various improvements have been proposed. Ji and Qi
(2011) detected crop rows by randomly selecting feature points
for the Hough transform and then using many-to-one mapping
to parameter space. Gall et al. (2011) established Hough Forest to
improve the speed of Hough straight line detection. Winterhalter
et al. (2018) proposed a reliable plant splitting pipeline and
detected crop rows by Hough transform, but this approach is still
limited to the crop rows at the early stage.

1.2. Methods Based on Horizontal Strips
It is very difficult to extract crop information from non-parallel
crop rows in the image. This problem is effectively solved by
dividing the image into multiple horizontal strips and processing
them in successive steps. Ma et al. (2021) determined the number
of crop rows by dividing horizontal strips in the upper part of
the image. Ospina and Noguchi (2019) derived detection lines of
crop rows by dividing horizontal strips. Crop contours in each
strip are calculated, and their geometric centers are extracted
as feature points for fitting. Zhou et al. (2021) determined the
multi-ROI by dividing the horizontal strips. The initial ROI
is calculated and continuously slides upward for the update.
Finally, the midpoints of each ROI are fitted to make a navigation
line. This method does not fully extract crop information when
dealing with discrete characteristics of plants.

1.3. The Deep Learning Method
During the past decades, deep neural networks (DNNs) have
made great success in field detection. Bah et al. (2020)
combined Convolutional Neural Networks (CNN) and the
Hough transform to detect crop rows in the field. Adhikari et al.
(2020) used a deep network to learn semantic images, which
makes the input images directly output detection lines as tractor
control signals. Lac et al. (2022) first used a deep neural network
to detect the plant stem and then used an aggregation algorithm
to refine the localization of the crop further. Ponnambalam
et al. (2020) divided the image into a vehicle driving area and
a crop area using semantic segmentation based on CNN, and
feature points are extracted. They further fitted the feature points
derived from the multi-ROI to plan the crop rows detection lines.

Although DNNs have good performance in accuracy, they really
require large computing resources, and this limits their practical
applications (Zhang et al., 2018a; Roy et al., 2019; Pan et al., 2021).

1.4. Integrated Approaches
Yu et al. (2021) proposed a treble classification and two-
dimensional clustering-based crop rows detection in paddy fields
for the problem of numerous weeds and floating weeds in the
paddy fields. This method used a triple Otsu’s (Otsu, 2007)
method approach for segmentation and fitted the detection
lines after selecting the misleading points by a two-dimensional
adaptive clustering method. This method needs to be improved
in terms of real-time performance. Jiang et al. (2015) integrated
the crop rows with close geometric features in the robot walking
area by multi-ROI for optimization and extraction of the crop
rows centroids by clustering method. The detection lines were
extracted by the linear regression method. Tenhunen et al. (2019)
segmented the green objects after segmentation and obtained the
direction and distance information between crop rows using a
two-dimensional Fourier transform, then performed a clustering
operation and finally obtained the location of the crop row. This
algorithm is still deficient in coping with strong illumination
conditions. Rabab et al. (2021) investigated adaptive crop row
detection in variable field environments without the need to
determine the number of crop rows by clustering. The method
has good adaptability. Zhang et al. (2018b) defined clusters of
feature points and fitted crop rows detection lines through a
clustering algorithm and optimal path selection.

1.5. Our Contributions
In this study, we propose a new crop rows detection method for
real-time navigation in maize fields during the tasseling stage.
The article makes the following main contributions.

(1) To solve the difficulty of segmentation caused by the
concentrated distribution of each color component in the image,
we propose an image enhancement method based on logarithmic
transformation, which well increases the contrast between the
tassels and the background.

(2) We propose a method to determine ROI (Montalvo et al.,
2012) by two steps of approximate selection and update, which
overcomes the problem that ROI cannot achieve adaptivity in
extracting information from skewed crop rows images.

(3) To verify the performance of the proposed method, various
experiments are conducted to analyze the effect of parameters
and make a comparison with the existing related studies. The
experimental results demonstrate the advantages of this study in
terms of accuracy and real-time performance.

Specifically, this study demonstrates the possibilities and
prospects of feature extraction algorithms for extracting
navigation lines in the tasseled maize field. We have overcome
the problems of complex tassels segmentation and non-adaptive
ROI. The whole process of this algorithm is shown in Figure 1.
Our proposed model consists of two main parts: image
preprocessing and determination of navigation lines. In image
preprocessing: First, the logarithmic transformation is applied
to augment this capture images. Second, these images are
transformed into HSV space and segmented the tassels from
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FIGURE 1 | Flowchart of the whole extract navigation line algorithm.

the background by grayscaling and Otsu’s method. Finally,
the binarised image is morphologically processed to decrease
impulse noise. In the part of the determination navigation line:
First, we divide the image into multiple horizontal strips, and
then the initial ROI is determined using the bounding box.
Second, continuously slide up the bounding box and update it
until the whole image is completed to get the multi-ROI. Then,
dividing the micro-ROIs to extract the feature points. Finally, the
detection lines of the crop rows aremade by using the least square
method to fit these points. We further compute the bisector of
the acute angle formed by the two detection lines and use it as the
navigation line.

2. METHODS

While the deep learning-based methods achieve good
performance in image processing and crop rows detection,
they usually require a lot of computing resources, such as
graphics processing units and GPU clusters. Based on image
enhancement, selection of ROI, and delineation of horizontal
strips, we propose an accurate and fast method for crop rows
detection in the maize field during the tasseling stage. This
section will introduce two main modules of our proposed
method: image pre-processing and the determination of the
navigation line.

2.1. Image Pre-processing
2.1.1. Pixel Value Modification
The distribution between crop rows in the upper part of the image
is very concentrated, making it challenging to distinguish crop

rows when extracting crop information. Additionally, the upper
part of the image is not very meaningful for navigation; we only
need the lower part of the image as the navigation area. Thus,
the lower 3/4 of the image is taken as the processing object, and
then the image is partially cropped to remove the redundant
information. Finally, the size of the pixel value of the image is
modified to 600×600 pixels.

2.1.2. Logarithmic Transformation
The grayscale processing (Liu et al., 2010, 2020; Laursen
et al., 2014) is mainly performed using the excess green
(ExG) (Comba et al., 2015; Tang et al., 2016; Chen et al.,
2020) feature operator when segmenting the crops with the
background at the early stage. However, ExG was not effective
in processing maize at the tasseling location. The logarithmic
function shows a nonlinear feature is uniformly increasing the
independent variable. Additionally, the magnitude of change
gradually decreases. Based on this, we adopt the logarithmic
transformation for the pixel values of each pixel point in the
image under RGB color space, which can augment the distinction
between the tassels and background and realize the segmentation
of the picture. When establishing the logarithmic function, the
following factors are considered: (1) Transformation should
avoid negative results after the logarithmic operation; (2) The
effect of differentiation between the tassels and the background
is augmented after the logarithmic operation. The logarithmic
function established is Equation (1).

Out = C × log(1.0+ p), (1)
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where Out is the result of the pixel value operation of the pixel
point; p is the pixel value of the pixel point in the image to be
processed; and C is a constant.

2.1.3. Building Masks and Morphological Processing
The images calculated in the way of 2.1.2 are transformed
from RGB to HSV color space. We will determine the suitable
threshold to build the mask through subsequent experiments.
The mask images are converted to grayscale images, and Otsu’s
method (Cellini et al., 2017) is performed to extract the tassels.
At the end of this part, it is necessary to select the appropriate
kernels for the morphological processing of the image.

2.2. Determination Navigation Line
In this section, we describe how to determine a navigation
line. It mainly contains two parts: selecting ROIs and planning
navigation lines.

2.2.1. Select ROIs
The algorithm addresses the problem of navigation line
extraction for field vehicles. We believe that the crop rows in the
traveling area (the two crop rows in the center of the image) are
valid for navigation, while the crop rows at the image boundary
can be disregarded. Due to the perspective principle, the crop
rows are not parallel in the image, bringing more significant
difficulties to feature point extraction. Therefore, we extracted
feature points by selecting ROIs.

To determine the ROI of an image, we specify a bounding
box, which is described as follows: The coordinates of point q0
(Xr, Yr) are used as the origin, L1+L2 (L1=45pix, L2=55pix) as
the width andH (20pix) as the height to determine the bounding
box shown in Figure 2. Since L1, L2, and H are all constants and
only the coordinates of the center point q0 are variable. Thus, the
location of the bounding box is expressed in Equation (2).

B = (Xr ,Yr). (2)

2.2.1.1. Divide the Image Band
We divide the binarized images according to the following way:
The image is divided into left and right areas using the line
x=center (260pix) as the dividing line. The areas are labeled as
Left and Right. The algorithm uses the same approach for Left and
Right, thus, we only describe the process of Left in the following
step. On Left, eight horizontal strips are divided in step length
of 1h (20pix) from bottom to top, each strip was numbered Ks
(s=1,2,3...,8). The resulting model is shown in Figure 3.

The unstable environment such as light and weeds makes the
work hard of getting crop rows information, we determine the
ROI by approximate selection and update. The primary choice
is completed first. The bounding box is applied to frame the
approximate position of the initial ROI. Then this ROI is updated
according to its local pixel distribution to obtain a more accurate
result of the initial ROI.

We start by approximately selecting the initial ROI with a
bounding box, marking it as B1, and the process is as follows:
First, we set the threshold Y=15. The cumulative valueM(j) of the
number of white pixels in each column of the strip is calculated

FIGURE 2 | The structure of the bounding box.

FIGURE 3 | Image division processing. The green part is the binarized image.

W and H is the image pixel value of width and high.

using Equation (3) sequentially in the order of the labels until
the maximum value of M(j) ≥ Y in the Ks strip, and this strip
is name Kj. The values of columns whose coordinates are higher
than Y are counted, and it is stored in list Q. In Q, the closest
value to the center is the horizontal coordinate of the origin of
the initial bounding box, and the lower boundary of the strip is
the vertical coordinate of the origin of the initial bounding box.
The coordinates of the origin of the bounding box are given by
Equation (4), then B1 is framed.

M(j) =

∑
1h
i=1 p(i,j) = 255

255
, j ∈ {1, 2, ...,w} , (3)

where j is the column coordinate of the pixel point of the image
strip; i is the row coordinate of the pixel point of the image strip;
p(i,j) is the pixel value of the coordinate; w is the horizontal pixel
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FIGURE 4 | Image captured by CMOS. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

size of the strip.

(js,W − (Ks − 1)×△h). (4)

2.2.1.2. The Method of Updating Bounding Box
To achieve a more accurate location of the ROI, we propose an
updated method, and the steps are as follows.

(1) First, the number of white pixels in each column of the
bounding box is counted using Equation (5). Mark the horizontal
coordinate of the lower boundary of the bounding box as xp
(xp=1,2,3..., L1+L2). The distribution of white pixels in the
bounding box for the part of the horizontal coordinate less than
xp and more than xp are expressed respectively as Equation (6)
and Equation (7).

Z(v) =

∑
1h
u=1 p(u,v) = 255

255
, v ∈ {1, 2, ..., L1+ L2}, (5)

where u is the row coordinate of the pixel point within the ROI; v
is the column coordinate of the pixel point within the ROI; p(u,v)
is the pixel value of this point.

Il =

xp∑

v=1

Z(v)× (xp − v ), (6)

Ir =

L1+L2∑

v=xp+1

Z(v)× (v− xp ), (7)

where Z(v) is calculated by Equation (5) v is the column
coordinate of the pixel point of the image strip; L1+L2 is the
width pixel value of the bounding box.

(2) To find a point in the bounding box that makes the
distribution of pixels balanced, we build an evaluation function
f(xp), which is shown as Equation (8). For the second-order
partial derivative (Equation (9) of f(xp). Since Equation (9) >0,
there is a minimum value of f(xp). The horizontal coordinates of
the bounding box are updated to the horizontal coordinates of
the lowest point of f(xp) which is determined by Equation (10),
and the vertical coordinates are unchanged.

f (xp) = |Il − Ir| , (8)

∂
2f (xp)

∂x2p
= 2, (9)

jk = argminf (xp). (10)

2.2.1.3. Determining the Final Result of the Initial ROI
By means of 2.2.1.2 [Due to the white pixels of B1 are already
calculated by Equation (3) and do not need to be repeated by
Equation (5)], the bounding of B1 is updated, and the coordinate
origin of the result is (jk1, W-(Ks-1)×1h) [jk1 is the result of the
calculation of Equation (10)]. This bounding box determines the
final outcome of the initial ROI, marked as D1.

2.2.1.4. Sliding of Bounding Box
After obtaining the initial ROI, the ROI named B2 is determined
by sliding the bounding box of the initial ROI in the negative
direction along the y-axis in step length1h. The coordinate of the
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FIGURE 5 | Statistics of color components in RGB space. (A) Color grade in original picture Type-1 field (illumination: 130800 lx). (B) Color grade in original picture

Type-2 field (illumination: 101700 lx).

FIGURE 6 | Statistics of color components after logarithmic transformation. (A) Color grade by transformation Type-1 field (illumination: 130800 lx). (B) Color grade by

transformation Type-2 field (illumination: 101700 lx).

bounding box origin of B2 is (jk1, W-Ks×1h). T1 is the number
of white pixel points inside B2, calculated by Equation (11).

T1 =

L1+L2∑

n=1

1h∑

b=1

p(b, n) = 255, (11)

where b is the row coordinate of the pixel point; n is the column
coordinate of the pixel point. p(b,n) is the value of the pixel point
in B2.

The algorithm updates the bounding box of the optimized B2
to obtain the updated resultD2 by establishing a thresholdT0. We
take T0 as 20 and offset d=20 in this article. The updated resultD2

for B2 is derived and framed. The updating method is as follows:
(1) T1 < T0: B2 is judged to be a sparse crop area. Considering

that the distribution of the crop rows in the image is skewed,
we slide the bounding box of B2 in the image coordinate system
along the x-axis toward the line x=center by sliding step of offset
d, and the result of D2 is determined.

(2) T1 ≥ T0: B2 is determined as a feature region. The
bounding box of B2 is updated by the method of 2.2.1.3 to give
the coordinates of the origin as (jk2, W-Ks×1h), and the result
frame D2 [jk2 is the result of the calculation of Equation (10)].

2.2.1.5. Determination of Multi-ROI
There is a tendency for the crop rows to converge in the image.
Based on this feature, the steps in 2.2.1.4 are repeated. The
process is as follows. First, The bounding box of the current
ROI(De) (subscript e is the number of the ROI, e=1,2,3...) is
slid up to determine the subsequent ROI (Be+1) in the strip.
Then Be+1 is updated and optimized to obtain. De+1 until the
multi-ROI is reached.

2.2.2. Planning Navigation Line by Getting

Micro-ROIs
The part marked as Right are processed using the methods in
2.2.1.1, 2.2.1.3, 2.2.1.4, and 2.2.1.5 in sequence. Therefore, all the
ROI of the whole picture are determined.
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FIGURE 7 | Images in HSV color space. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 8 | Distribution interval of H, S, and V at sampling points. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 9 | Binary images. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

This algorithm extracts feature points by building micro-
ROIs. The method is as follows: Each ROI (D1, D2,...) is
divided into 10 x 2 grids, each with a 10(pix)×10(pix)

micro-ROI. We set the threshold for the number of white
pixels in the micro-ROI H0=20 and calculate the number
of white pixels Hn in the individual micro-ROI. When
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FIGURE 10 | Results of morphological processing. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 11 | The projected image of the Kj strip (Kj is calculated in 2.2.1.1).

Hn >H0, the geometric midpoint of the micro-ROI is a
feature point.

Finally, these feature points are fitted using least squares
to get the crop rows detection lines. The angle bisector at
the intersection of the two identification lines is used as the
navigation line.

3. EXPERIMENTAL RESULT AND
DISCUSSION

In this section, we first introduce image acquisition. Then the
results of each step are described. Finally, the performance of this
article and existing algorithms is shown.

3.1. Image Acquisition and Processing
Equipment
The subject of this study is the images of maize crops in
the tasseling stage. The image acquisition device is a CMOS

(Complementary Metal-Oxide-Semiconductor) machine vision
camera, which is installed at a height of 2.9 m from the ground
with a tilt angle of 20◦ the ground and calibrated using the camera
imaging principle. The camera resolution is 1,920× 1,080 pixels.
Video is collected in Gu’an County, Hebei Province, China. The
crops are planted at a row spacing of 60 cm, and the plant
height was 2.7 m. The programming software was python 3.7
IDE, PyCharm professional 2020 compiler. The image processing
hardware used AdvantechMIC-7700 IPC, processor Intel Corei5,
main frequency 2.5GHz, graphics card for NVIDIA GTX 1650,
video memory 8G. The video was saved in AVI format. The video
was collected on 8 July 2020 (illumination:101700 lx) and 11 July
2020 (illumination:130800 lx).

3.2. The Performance of the Proposed
Model
In this part, we will use these images as examples to describe the
result of every step. Example images are shown in Figure 4. In
Figure 4, the illumination of the Type-1 field and Type-2 field
are 130800 (lx) and 101700 (lx) respectively. First, the pixels of
the two images are modified by way of 2.1.1. Then the results are
processed in the following steps.

3.2.1. The Result of Logarithmic Transformation
The processing results of Figure 4 are plotted with the frequency
statistics of each color component (R, G, B) as shown in Figure 5.
It can be found that the distribution of each color component
is concentrated, indicating that the differentiation between the
tassels and the backgrounds, such as leaves and soil, is not
obvious under natural illumination, which makes it challenging
for subsequent segmentation work. To determine the value of
C in Equation (1), the experiment methods are as follows:
We transformed the images by Equation (1), and the results
of C taking values in the range 1 to 100 were observed. We
found that the frequency distribution has clear discrimination
when C is taken as 48. The statistical results are shown in
Figure 6. Comparing the statistical results in Figures 5, 6, the
application of logarithmic transformation significantly enhances
the distinction between the tassels and the background, which
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FIGURE 12 | Distribution of the judging function.

FIGURE 13 | The result of multi-ROI extraction. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

provides the necessary conditions for the subsequent image
segmentation, so we determine the value of C is 48.

3.2.2. Result of Masks and Morphological Operations
Images are transformed to HSV color space, and the result is
shown in Figure 7. Fifty frames are randomly selected, and 50
sampling points are chosen on each of the tassels to count the
distribution of H, S, and V. The statistical results are shown in
Figure 8. Based on the statistical results, we set the threshold
of H as [80,121], S as [250, 255], and V as [240, 255]. By these
thresholds, the masks are built, mask images are transformed into
grayscale images, and Otsu’s method is performed to extract the
tassels. The result is shown in Figure 9.

There is impulse noise in the binary images, and the feature
pixel values of maize tassels are too small, making it challenging

to extract feature points. It is necessary to performmorphological
operations. Thus, we use a convolutional kernel of size 3×3
to inflate the image once morphologically. Then use a median
filter with a convolutional kernel of size 9 to the noise for the
inflated image. The morphological processing results are shown
in Figure 10.

3.2.3. The Result of Dividing Image, Initial ROI, and

Second ROI
By the method of 2.2.1.1 to 2.2.1.3, the result of every step is
as follows: Take Figure 10B as an example. We find the ks=1
horizontal strip. Its statistical graph of the number of white pixel
dots in the column is shown in Figure 11. With the assistance
of this graph, the rough initial ROI B1 is determined, and the
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FIGURE 14 | Fitting results for feature points. (A) Type-1 field (illumination: 130800 lx). (B) Type-2 field (illumination: 101700 lx).

FIGURE 15 | Calculated angles in the illumination of 101700(lx).

result is shown in Figure 11. By intercepting the curve inside B1
in Figure 11, we plot the distribution function of f(xp) as shown
in Figure 12, and find the horizontal coordinate of the lowest
point is jk1. The coordinates of the origin point of the bounding
box are (jk1, W-(Ks-1)×1h). We use the bounding box to frame
the final result of the initial ROI D1. Next, the second ROI can
be determined by the method proposed in 2.2.1.4. The results are
shown in Figure 13.

3.2.4. The Result of Multi-ROI
The final multi-ROI can be determined by the method proposed
in 2.2.1.5, the result is shown in Figure 13. The tassel feature
pixels that deviate from the path appear during the upward
sliding of the bounding box, as shown in the red box in
Figure 13A. According to the original images, the pixels in this
region correspond to tassels deviated from the crop rows, so
this region is judged as deviated and will not be processed. Our
proposed method allows the ROI always to follow the crop rows

FIGURE 16 | Calculated angles in the illumination of 130800(lx).

TABLE 1 | The performance of different methods in indicators of time,error angle,

accuracy, and FPS compared with those in the literature.

Methods
Average

time(s)

Maximum

angle(θ )

Minimum

angle(θ )

Average

angle(θ )

Accuracy

(%)
FPS

This study 312.3 3.88 1.04 1.49 98.6 4.4

Algorithm-1 1000.2 12.82 8.69 8.36 70.1 2.1

Algorithm-2 828.4 9.24 5.88 6.89 88.5 3.8

Algorithm-3 459.9 4.95 3.28 3.78 93.6 2.9

Algorithm-4 610.4 10.4 7.77 8.59 84.9 2.6

trend and guarantees the reliability of the subsequent feature
point extraction work as much as possible.

3.2.5. The Result of Feature and Navigation Line
By the method proposed in 2.2.2, feature points are extracted.We
further plan the crop rows detection lines and the field navigation
line. The result is shown in Figure 14.
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FIGURE 17 | Results of comparative data. (A) The data of angle, (B) the data of accuracy, and (C) the data of time.

3.3. Results and Discussion
To verify the accuracy of the detection results. We designed an
experiment as follows: Since the navigation line is calculated by
crop rows detection lines, only the declination angle θ between
the navigation line and the manually drawn navigation lines is
needed to evaluate the detection accuracy of the algorithm. If θ is
less than 5◦, the detection result for navigation can be considered
accurate. As the speed of agricultural machinery in the field is
very slow, nomore than 0.5m/s, we considered that the algorithm
can meet the basic real-time requirements when the frames per
second (FPS) is greater than 4. A total of 1,000 frames of video
taken in the field were randomly selected for the experiment.
Among this video, 500 frames are in 101700(lx) illumination,
and others are in 130800(lx) illumination. Average processing
time, θ , and FPS were calculated for each frame selected. The
error angles in different illumination are shown in Figures 15, 16,
respectively. The performance of this algorithm is shown in
Table 1.

To further verify the reliability and real-time performance of

this study it is compared with the methods proposed by Hough

(1962) (Hough Transform) (Algorithm-1), Ji and Qi (2011)
(Algorithm-2), Zhou et al. (2021) (Algorithm-3), and Zhang
et al. (2018b) (Algorithm-4). Additionally, we will analyze the
results of the performance among different methods in terms of
accuracy and processing time. The Hough transform is a very
classical algorithm. After the images are segmented using the
pre-processing method proposed, we used the Hough transform
to detect the crop rows and record the data. Algorithm-2
mapped the coordinates of the image space to the parameter
space through random numbers. The parameter space feature
points disappeared when dealing with the case of divergence
of tassels, resulting in significant deviations in the Hough line
detection process, and the navigation line’s average error angle
reached 6.89◦. Moreover, Algorithm-2 used the Hough transform
algorithm, which had a higher computational cost, and the
average time to process a frame was more than 800 ms, which
could not meet the real-time requirements of field navigation. In
response to the problems of Algorithm-2, the proposed algorithm
took the left and suitable regions of the image and obtained the
multi-ROI by sliding off the bounding box to extract the feature

points, which effectively calculated the navigation line under
the dense conditions of crop rows distribution. The average
error angle of the navigation line calculated by Algorithm-3
is 3.78◦. This error is because the ROI window proposed in
the paper could not completely cover the tassels after the ROI
window was slid upward when the tassels were bifurcated during
the extraction process, which led to deviations in the fitting.
Furthermore, the algorithm selects the appropriate feature points
by the center of each ROI. However, the navigation lines were
biased due to the problems of forked tassels. The algorithm in
this article deals with the deviation points by fixed-size ROI
and the ROI optimization to extract the tassels completely.
Algorithm-4 removed feature points by selecting the midpoints
of the left and right edge points in the image strips. This
approach had better performance when dealing with small target
plants, but when dealing with more oversized tassels, especially
the characteristic tassels with bifurcation, the feature points
calculated in this way did not express the crop distribution in this
region, resulting in a significant error in the subsequent detection
lines extraction. The proposed algorithm extracted feature points
more completely by dividing micro-ROIs, avoiding the above
problems. By comparison, the algorithm of this study has high
accuracy and real-time performance in crop row detection in
maize fields at the tasseling stage.

The performance of each algorithm is shown in Table 1. The
main parameters are shown in Figure 17 so that they can be
more intuitive. Compared to current popular algorithms, we have
improved accuracy by at least 5% and single-frame processing
time by at the least 62.3%. The processing results of this algorithm
are shown in Figure 18. The results of the above comparison
experiment are shown in Figure 19.

4. CONCLUSION AND FUTURE STUDY

Based on machine vision, we propose a real-time method for
the extraction of navigation lines in the maize field during the
tasseling stage. Field navigation line extraction in the maize crop
rows during the tasseling phase is challenging because the tassels
are hard to be segmented from the background, and extracting
their information is difficult. We propose a real-time crop rows
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FIGURE 18 | Experimental results of crop rows detection. The blue lines are the manual calibration lines, the white lines are the algorithmic crop rows identification

lines, and the pink lines are the algorithmic navigation lines. (A) Type-1 field, (B) Type-2 field, (C) Type-3 field, (D) Type-4 field, (E) Type-5 field, and (F) Type-6 field.
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FIGURE 19 | Extraction results comparison between literature and algorithm in this article. This algorithm’s crop rows detection lines are white, the manually calibrated

navigation line is yellow, and the corresponding algorithm’s navigation line is pink. (A) Algorithm of this paper, (B) Algorithm-2, (C) Algorithm of this paper, (D)

Algorithm-3, (E) Algorithm of this paper, and (F) Algorithm-4.
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detection algorithm based on logarithmic transformation and
micro-ROI in the field during the tassel period to address these
issues. After cutting the image captured by the CMOS camera
(RGB) to obtain a 600×600 (pix) image, the algorithm performs
a logarithmic transformation to augment the distinction between
the tassel and the background. This research converted the
image to the HSV color space. Additionally, the background
of the tassels was created as a mask. After the lower part of
the image is divided into eight horizontal strips, we use the
bounding box to determine the initial ROI by selecting the
starting point. The final result of the initial ROI is determined
by updating its bounding box position. The current bounding
box is slid along the negative direction of the y-axis of the
image coordinate system in steps 1h and updated until the
multi-ROI is reached. The ROI is divided into cells to get the
micro-ROIs, and then the feature points are extracted. Feature
points are fitted to derive crop row detection lines, on which the
navigation lines are then calculated. We fit the feature points to
make crop rows detection and navigation line. The error in the
navigation line of this algorithm is stable at 1.49◦, and the average
computational time of the single frame is 312.3 ms. The accuracy
is reaching 98.6%. After the Comparison experiment, the
algorithm proves to have a clear advantage in terms of real-time
and accuracy.

However, there are still some limitations to this method,
such as different climates and different crop row spacing, which
can reduce the accuracy of the algorithm. In the future, we
will focus on new methods of feature extraction (Xue et al.,
2021b), image augments (Sui et al., 2020), and ROI adaptability
to segment a variety of tasseled plants and calculate adaptive

ROI with a wide range of planting rows. In addition, how

to apply the energy-efficient spiking neural networks to crop
rows detection is another interesting topic. Because the SNNs
hold the potential to provide a good performance equivalent to
that of DNNs while with low latency and high computational
efficiency (Feldmann et al., 2019; Zhang et al., 2021; Luo et al.,
2022).
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