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dynamic changes in secondary 
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Sophora japonica L. is widely consumed in China because of its medicinal 

and nutritional value. Its quality is greatly affected by the accumulation of 

metabolites, which varies with the stage of flower development. However, 

changes in the characteristics of the secondary metabolites during flower 

maturity remain unclear. Ultra-high-performance liquid chromatography 

coupled with electrospray ionization-triple quadrupole-linear ion trap mass 

spectrometry (UPLC–ESI–QTRAP–MS/MS) revealed dynamic changes in the 

secondary metabolites of S. japonica during the five flower-maturity stages. 

We monitored 331 metabolites and screened 164. The differential metabolites 

showed seven trends during flower maturation, with flavonoids and phenolic 

acids having the most varied expressions. Flower buds (S2–S3) are rich in 

flavonoids and are thus suitable for use in high-quality medicine or industrial 

extraction. Our study provides an empirical basis for the informed harvesting 

of S. japonica based on its mode of utilization.
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Introduction

Sophora japonica Linn., also known as the pagoda tree, is a tall perennial tree 
belonging to the Leguminosae family and is widely cultivated in East Asia, especially 
China. It is valued for its ornamental, medicinal, and edible properties. In northern China, 
S. japonica is often cultivated as an urban tree to absorb dust and beautify the environment 
(Yu et al., 2021b). In southern China, S. japonica is an economically important plant, and 
the flower/flower bud (FFB-SJ) is used to extract rutin (Horosanskaia et al., 2017) and 
produce natural dyes (Chen et al., 2010). FFB-SJ is used in food production and for the 
treatment of hematochezia, hemorrhoids, uterine hemorrhage, hematemesis, epistaxis, 
exuberant liver fire, dizziness, and giddiness (Chinese Pharmacopoeia Commission C.P, 
2020). As early as the Ming Dynasty (ca. 1,406 AD), FFB-SJ consumption was recorded in 
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“Jiu Huang Ben Cao” (Zhu et al., 2015). FFB-SJ is increasingly 
used in the food industry, including as a preservative in sausages 
(Tang et al., 2019), additives for color and flavor in rice wine 
(Yang et al., 2021), components of the fat structure in yogurt 
(Tang et al., 2020), and as an edible packaging film material (Guo 
et al., 2020).

FFB-SJ is valued for its beautiful appearance, aromatic smell, 
unique taste, and excellent healthcare function. Previous 
pharmacological studies have demonstrated that FFB-SJ ameliorates 
oxidative stress (Mihaylova and Schalow, 2013), regulates anti-
melanin precipitation (Lo et al., 2009), ameliorates diabetes (Park 
et al., 2009), repairs cells damaged by ultraviolet radiation (Li et al., 
2019), and improves prostate hypertrophy (Elberry et al., 2020). All 
of these medicinal functions are related to the composition of the 
active ingredients of S. japonica. FFB-SJ mainly contains flavonoids 
(Xie et al., 2014), volatile oils (Yao et al., 2011), and polysaccharides 
(Li et  al., 2019). Flavonoids comprise the largest proportion of 
bioactive compounds in FFB-SJ and are also the most 
comprehensively studied (Hendrich et al., 2002; Sun et al., 2007; Xie 
et al., 2014; Maksimenko et al., 2019). Flavonoids are the material 
basis for Sophorae Flos, used to treat hemorrhage (Sachetto et al., 
2018), exuberant liver fires (Wu et al., 2017), and cardiovascular and 
cerebrovascular diseases (Annapurna et al., 2009)—and are also 
used as quality control indicators (Chinese Pharmacopoeia 
Commission C.P, 2020). Flavonoids and phenolic acids are 
outstanding antioxidants because of their phenolic hydroxyl 
structures that can bind to free radicals (Gao et  al., 2022). 
Traditionally, flowers and flower buds have been used for this 
purpose. However, the accumulation of metabolites is affected by 
flower maturity, and biological activity is further affected by changes 
in chemical composition. Abudayeh et al. (2015) found that the 
essential oil components of S. japonica were affected by the harvest 
period and that the volatile oil content was highest in the buds. The 
lectin activity and protein content of S. japonica also decrease as the 
flower buds mature (Cholak et al., 2016). Our previous study showed 
that the flavonoid content in S. japonica extract varied across the five 
flower-maturity stages, along with variations in antioxidant and 
tyrosinase inhibition activities (Wang et al., 2019). Candidate genes 
involved in anthocyanin biosynthesis in wild-type and mutant-type 
S. japonica during different developmental stages were identified 
based on transcriptomics by Guo et  al. (2022). However, most 
studies have focused on the activities of specific components, while 
the composition of secondary metabolites at different developmental 
stages of S. japonica has not been fully elucidated.

Metabolomics, which is characterized by rapid, convenient, and 
high-throughput data generation, can be used to qualitatively and 
quantitatively analyze metabolites in whole organisms or cells (Feng 
et  al., 2020) and to determine related metabolic processes 
(Mohammat et al., 2017; Long et al., 2021). With new analytical 
technologies and comprehensive compound mass spectrometry 
databases, metabolomics has become an important tool for studying 
plant physiology, especially in the study of plant stress resistance 
(Zhao et al., 2021), flower and fruit development (Yang et al., 2019; 
Yu et al., 2019), and food quality dynamics (Xiao et al., 2021).

This study aimed to describe the dynamic changes in 
secondary metabolites in S. japonica during the five stages of 
flower maturation using ultra-high-performance liquid 
chromatography coupled with electrospray ionization-triple 
quadrupole-linear ion trap mass spectrometry (UPLC–ESI–
QTRAP–MS/MS). Our study provides a qualitative and 
quantitative view of the variation in metabolite composition 
during flower bud development and can be used to inform the 
industry of the best harvesting practices for high-quality FFB-SJ.

Materials and methods

Chemicals and reagents

Acetonitrile, methanol, acetic acid, and ethanol were 
chromatographically graded and were obtained from Merck 
KGaA (Darmstadt, Germany). Deionized water was obtained 
using a Milli-Q system (Millipore, Burlington, MA, United States).

Plant material

FFB–SJ were collected from the Da Zu district (29°56′N, 
105°68′E), Chongqing, China, at an altitude of 379 m. According to 
their appearance and color, flowers were divided into five 
developmental stages (S1–S5); the classification criteria are 
described in our previous article (Wang et al., 2019). The appearance 
of the FFB–SJ at different growth stages is shown in Figure 1A. Three 
biological replicates were examined for each stage, and each 
replicate comprised at least 100 flowers collected from one tree. All 
samples were harvested on the same day. All materials were washed 
with distilled water, frozen in liquid nitrogen, and stored at −80°C.

Extraction

The samples were freeze-dried and crushed using a mixer mill 
(MM 400, Retsch GmbH, Haan, Germany) with zirconia bead for 
1.5 min at 30 Hz. We extracted 100 mg of dry powder from each 
sample overnight at 4°C using a tenfold (1.0 ml) volume of 70% 
ethanol. The flower residues were removed by centrifugation at 
10,000 × g for 10 min, and the supernatants were cleaned by solid-
phase extraction (CNWBOND Carbon-GCB SPE Cartridge, 
250 mg, 3 ml; ANPEL, Shanghai, China) and filtered before 
UPLC–MS/MS analysis.

UPLC and ESI–QTRAP–MS/MS 
conditions

To detect secondary metabolites in the FFB–SJ extract, 
we  injected 5 μl of the working solution into a UPLC system 
(Shim-pack UFLC SHIMADZU CBM30A, SHIMADZU, Kyoto, 
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Japan) coupled with an API 4500 Q TRAP (AB Sciex, 
Framingham, MA, United States). A C18 reversed-phase column 
(2.1 × 100 mm, 1.8 μm; Acquity UPLC HSS T3 C18, Waters 
Corporation, Milford, MA, United  States) was used for the 
stationary phase at 40°C. An acetonitrile aqueous solution 
containing 0.04% (v/v) acetic acid (A) and 0.04% (v/v) aqueous 
acetic acid (B) were used as the mobile phase at a flow rate of 
0.4 ml/min. Gradient elution was performed as follows: 0 min, 
0% A; 0–11.0 min, 0–95% A; 11.0–12.0 min, 95% A; 12.0–
12.1 min, 95–5% A; and 12.1–15.0 min, 5% A. Secondary 
metabolites were additionally detected using an API 4500 Q 
TRAP LC/MS/MS system equipped with linear ion trap (LIT) 
and triple quadrupole (QQQ) scans. The ESI source was operated 
as follows: collision activation parameter, 6; air curtain gas, 
25 psi; atomization gas (GS1), 55 psi; auxiliary gas (GS2), 60 psi; 

ion spray voltage (IS), −5,500 V; ion source temperature (TEM), 
550°C. Positive and negative ion multi-reaction monitoring 
(MRM) mode with collision gas (nitrogen, 5 psi) was used for the 
QQQ scan. A specific set of MRM transitions was monitored 
based on the metabolites at each elution stage. The declustering 
potential (DP) and collision energy (CE) were determined 
through optimization.

Qualitative and quantitative analysis of 
metabolites

Qualitative primary and secondary mass spectrometry 
detection was performed using public and in-house databases  
of metabolite information (MetWare Biological Science and 

A

B C

FIGURE 1

Principal component analysis (PCA) and heat map analysis of metabolites in five developmental stages of the flower of Sophora japonica. 
(A) Phenotypic features of S. japonica in the five developmental stages of the flower (S1–S5). (B) PCA score plot. (C) Clustered heat map of all 
metabolites. A column represents a sample, and a row represents each metabolite. The abundance of each metabolite is represented by a bar with 
a specific color; red indicates high abundance, whereas metabolites with a low relative abundance are shown in green (color key scale is right of 
the heat map).
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Technology, Wuhan, China).1 In the analysis of metabolite 
structure, we referred to the Mass Bank,2 KNAPSAcK,3 HMDB,4 
METLIN,5 and MoTo DB6 public databases. Quantitative analysis 
of metabolites was performed using QQQ MRM mode analysis. 
After obtaining the spectrum data for all samples, the mass 
spectrum peaks were integrated for all metabolites and those for 
the same metabolite were integrated and corrected (Fraga et al., 
2010). Metabolite content was expressed as chromatographic peak 
area integrals.

Statistical analysis

All data are log2-transformed and reported as the 
mean ± standard deviation of three independent experiments. 
Mass spectral data were processed using Analyst 1.6.3 software 
(AB Sciex, Framingham, MA, United States). The differences in 
metabolite composition from S1–S5 were analyzed using 
hierarchical clustering analysis (HCA), principal component 
analysis (PCA), orthogonal partial least squares discriminant 
analysis (OPLS-DA), and K-means cluster analysis with R 3.5.1 
software (The R Foundation, Vienna, Austria). Differential 
metabolites were screened based on variable influences in 
projection (VIP) and fold change (FC) values. To determine the 
corresponding metabolic pathways, differential metabolites were 
annotated using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG7) database. The network of differential metabolites and 
pathways was constructed using the Cytoscape 3.80 software 
(Cytoscape, Boston, MA, United States).

Results

Mass spectrometry of secondary 
metabolites

The total ion current (TIC) plots and multi-peak detection 
plots of one quality control (QC) sample are shown in 
Supplementary Figure S1. Overlay analysis of the QC TIC and 
sample multi-peak detection diagrams (Supplementary Figure S2) 
showed good repeatability and reliability of the data. A total of 331 
secondary metabolites were detected (Supplementary Table S1; 
Supplementary Figure S3), including 173 flavonoids, 53 phenolic 
acids, 29 organic acids, 23 alkaloids, 15 terpenes, 11 lignans, 
coumarins, six tannins, and 21 other metabolites.

1 http://www.metware.cn/ (Accessed July 22, 2022).

2 http://www.massbank.jp/ (Accessed July 22, 2022).

3 http://kanaya.naist.jp/KNApSAcK/ (Accessed July 22, 2022).

4 http://www.hmdb.ca/ (Accessed July 22, 2022).

5 http://metlin.scripps.edu/index.php (Accessed July 22, 2022).

6 http://www.ab.wur.nl/moto/ (Accessed July 22, 2022).

7 http://www.genome.jp/kegg/ (Accessed July 22, 2022).

Multivariate analysis revealed differences 
in metabolite composition

PCA and HCA
PCA converts a multidimensional variable system to a 

low-dimensional variable system with higher accuracy. A principal 
component score map was used to determine the distribution of 
each sample to simplify its classification. Based on the UPLC–ESI–
QTRAP–MS/MS data, we  identified two principal components 
(PC1 and PC2), reflecting a total variance of 33.85 and 17.80%, 
respectively. Metabolite composition changed significantly between 
S1 and S5 (Figure 1B). The data for the three biological replicates of 
samples S2 and S3 were closely distributed, suggesting that their 
metabolites were similar. The data are easily distinguishable from 
the other consecutive stages.

According to the HCA, the replicates for the S1, S4, and S5 
samples were grouped into one category on the abscissa axis 
(Figure 1C). The classification results were highly correlated with 
the degree of phenotypic differences between developmental stages. 
The main difference in morphology between the S2 and S3 samples 
was the appearance of small petals on the top of the flower bud 
(Wang et al., 2019). Nine major categories were identified on the 
ordinate axis, according to the accumulation of secondary 
metabolites. The metabolites in category 1 accumulated at the 
highest levels in S1, followed by S2 and S3, and at the lowest levels 
in S4 and S5. Metabolites in category 2 accumulated at the highest 
levels in S1, S2, and S3 and the lowest levels in S4 and S5. Metabolites 
in categories 7 and 8 accumulated at the highest levels in S4 and S5, 
and the lowest levels in S1, S2, and S3. Metabolites in category 9 
showed significant accumulation in S5, whereas metabolites in 
categories 3 and 4 showed more accumulation in S2 and S3.

PCA and HCA results showed that the changes in secondary 
metabolites during flower maturation could be roughly divided into 
three major stages (S1, S2–S3, and S4–S5).

OPLS-DA
We used OPLS-DA models to further compare the differences 

between the groups (Figures 2A–D; Supplementary Figures S4A–F). 
The Q2 value of all models exceeded 0.8 (S1 vs. S2, 0.982; S2 vs. S3, 
0.870; S3 vs. S4, 0.971; S4 vs. S5, 0.924; S1 vs. S3, 0.987; S1 vs. S4, 
0.992; S1 vs. S5, 0.994; S2 vs. S4, 0.987; S2 vs. S5, 0.992; S3 vs. S5, 
0.986), indicating suitable model reliability. According to the 
direction of the abscissa, the samples from consecutive and 
non-consecutive stages were clearly separated, indicating that the 
metabolite composition changed significantly during the five stages 
of development. Contrary to the results of PCA and HCA, the S2 
and S3 samples were separated in the OPLS-DA model.

Differential metabolite screening

Differential metabolites between groups were screened 
based on FC (FC ≥ 2 or FC ≤ 0.5) and VIP (VIP ≥ 1) values 
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(Figures  2E–I; Supplementary Figures S4G–M). A total 
of 164 differential metabolites were identified across 
developmental stages S1–S5 and were distributed across 
eight categories (Supplementary Table S2). We  identified 
60 differential metabolites between S1 and S2 (48 
upregulated and 12 downregulated), 10 between S2 and S3 
(8 upregulated and 2 downregulated), 49 between S3 and S4 
(21 upregulated and 28 downregulated), and 34 between S4 
and S5 (27 upregulated and seven downregulated). Unlike the 
unique differential metabolites found in each comparison 
(Figure  2I), we  did not identify any common differential 
metabolites between the five consecutive stages, indicating 
that different secondary metabolites participate throughout 
flower maturation.

Regarding non-consecutive developmental stages, 
we  identified 84 differential metabolites between S1 and S3 
(62 upregulated and 22 downregulated), 101 between S1 and 
S4 (65 upregulated and 36 downregulated), 102 between S1 
and S5 (69 upregulated and 33 downregulated), 71 between S2 
and S4 (29 upregulated and 42 downregulated), 94 between 
S2 and S5 (52 upregulated and 42 downregulated), and 81 
between S3 and S5 (45 upregulated and 36 downregulated). As 
the interval between the growth periods increased, the number 
of differential metabolites increased. A total of 35 differential 
metabolites were common to S1 and S2, S1 and S3, S1 and S4, 
and S1 and S5. Meanwhile, 2, 8, 4, and 17 unique differential 
metabolites were identified in the same comparisons 
(Supplementary Figure S4M).

A

D

G

B

E

H

C

F

I

FIGURE 2

Differential secondary metabolite analysis of the samples in five developmental stages of the S. japonica flower. (A−D) Orthogonal partial least 
squares discriminant analysis (OPLS-DA) model plots for the following comparisons: S1 vs. S2, S2 vs. S3, S3 vs. S4, and S4 vs. S5, respectively. (E−H) 
Volcano plots showing the expression levels of the differential secondary metabolites in the comparisons S1 vs. S2, S2 vs. S3, S3 vs. S4, and S4 vs. 
S5, respectively. Red dots indicate upregulated, differentially expressed metabolites; green dots indicate downregulated, differentially expressed 
metabolites; and black dots indicate detected metabolites with insignificant differences in expression. (I) The Venn diagram indicates the common 
and unique metabolites in the comparison groups.
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Dynamics of the different metabolites 
during flower maturation

Based on the K-means cluster analysis, the 164 differential 
metabolites were divided into seven subclasses containing 10, 19, 
21, 17, 35, 43, and 19 metabolites (Figure 3; Supplementary Table S3). 
Subclasses 1, 3, and 7 showed downward trends from S1 to S5, 
whereas subclasses 5 and 6 showed upward trends from S1 to S5. 
In subclasses 2, 3, and 4, the metabolites first increased and then 
decreased, and the cumulative amount was the highest at S2 or S3. 
From S3 to S5, 88 metabolites from subclasses 1, 5, and 6 were 
upregulated, including all anthocyanins (5/5), lignans (3/3), most 
organic acids (12/16), and flavonols (16/19). All coumarins (2/2) 
and proanthocyanidins (6/6) were downregulated. The regularity 
of other types of compounds was not obvious.

Differential metabolic pathways among 
the S1–S5 samples

Between consecutive stages, 36 differential metabolites were 
distributed across 58 pathways (Figure  4), 17 differential 
metabolites between S1 and S2 were distributed in 27 pathways, 2 
between S2 and S3 were distributed in 4 pathways, 19 between S3 
and S4 were distributed in 45 pathways, and 13 between S4 and S5 
were distributed in 36 pathways (Supplementary Table S4). 

Regarding samples from nonconsecutive stages, we identified 20 
additional metabolic pathways, 15 of which were marked from S1 
to S4, four from S1 to S5, one from S2 to S4, four from S2 to S5, 
and three from S3 to S5. No additional metabolic pathways were 
identified in S1 to S3 (Supplementary Table S4).

Three metabolic pathways were involved in four consecutive 
stages (ko01110, biosynthesis of secondary metabolites; ko00941, 
flavonoid biosynthesis; and ko01100, metabolic pathways; Figure 4), 
indicating that these metabolic pathways were active and played 
important roles throughout flower maturation. In particular, 23 
metabolic pathways were identified between consecutive stages (8, 
S1 vs. S2; 0, S2 vs. S3; 11, S3 vs. S4; 4, S4 vs. S5). These pathways 
could be used as markers for studying phenotypic development in 
FFB-SJ. Notably, metabolic pathways related to the biosynthesis of 
flavonoids, including “anthocyanin biosynthesis,” “flavonoid 
biosynthesis,” and “isoflavonoid biosynthesis,” were significantly 
enriched (p < 0.05) in the early stages of flower development (S1 to 
S3; Supplementary Figures S5A,B). From S3 to S4, the differential 
metabolites were enriched in the pathways for “phenylalanine, 
tyrosine, and tryptophan biosynthesis,” “phenylalanine metabolism,” 
“microbial metabolism in diverse environments,” and “biosynthesis 
of plant hormones” (Supplementary Figure S5C). In S4–S5, the 
differential metabolites were enriched in the “microbial metabolism 
in diverse environments” pathway as well as pathways related to 
chemical structure transformation, such as “phenylpropanoid 

FIGURE 3

Dynamics of the differential metabolites in S. japonica flowers during maturation. Based on K-means cluster analysis, 164 differential metabolites 
were divided into seven subclasses containing 10, 19, 21, 17, 35, 43, and 19 metabolites.
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biosynthesis,” “metabolic pathways,” and “degradation of aromatic 
compounds” (Supplementary Figure S5D). From S3 to S5, 
metabolite pathways related to flower maturation, including 
“GABA-ergic synapse,” “cAMP signaling pathway,” “estrogen 
signaling pathway,” and “biosynthesis of plant hormones,” were 
significantly enriched (p < 0.05).

Discussion

The quality of FFB–SJ is closely related to its chemical 
components, the composition of which varies with flower maturity. 
During plant growth, the accumulation of secondary metabolites is 
determined by the environment, which in turn affects the value of 
raw materials. We propose that by elucidating the development and 
metabolism of S. japonica one could determine the mechanisms 
affecting the quality of FFB-SJ and inform resource utilization.

We identified 164 differential metabolites among the different 
growth stages of S. japonica. When comparing consecutive stages, S1 
and S2 showed the largest difference in metabolite composition, 
reflected in the number of metabolites per type, indicating that 
metabolism plays an important role in the early stages of flower bud 

development. Although the differences in phenotype during  
this period were mainly related to the size of the flower buds,  
many flavonoids and phenolic acids were also upregulated 
(Supplementary Table S2). The most common secondary metabolites 
in FFB–SJ are flavonoids, which protect young organs from 
environmental stresses (Shah and Smith, 2020). Phenolic acids are 
directly involved in plant growth regulation (Yu et al., 2021a) and are 
important precursors of flavonoid synthesis (Chen et al., 2021). Both 
flavonoids and phenolic acids are used in clinical applications in 
humans (Sharma et al., 2020). A total of 37 flavonoids or phenolic 
acids showed the highest accumulation at S2 and S3 (included in 
sub-classes 2, 3, and 4). Most of these components have positive 
therapeutic effects on cardiovascular and hepatic diseases. For 
example, genistein (El-Far et  al., 2022), epigallocatechin gallate 
(George et al., 2022), pinocembrin (Cao et al., 2022), and p-coumaric 
acid (Bal et al., 2022) of Flos Sophorae Immaturus are effective in 
treating liver-related diseases, clearing the liver, and ameliorating 
hepatic fire. Genistin (Gu et al., 2016), catechin (Rodriguez et al., 
2006), and cinnamic acid (Luan et  al., 2022) complement the 
treatment of cardiovascular diseases by cooling the blood and 
inhibiting hemorrhage. From S2 to S3, most metabolites remained 
unchanged, whereas anthocyanins were upregulated. The change in 

FIGURE 4

Network visualization of the differential metabolites and metabolic pathways during five developmental stages of the flowers of S. japonica. 
The purple ovals represent the unique differential metabolites for each comparison, green diamonds or ellipses represent the differential 
metabolites corresponding with multiple comparisons, and green-filled ovals (purple border) represent the differential metabolites for the 
comparison of stages 2 and 3 (S2 vs. S3).
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anthocyanins is mainly related to the composition of the petal color, 
with the petals gradually sprouting from the top of the calyx during 
this period (Figure 1A).

During the middle and late stages of flower development 
(S3–S5), the flower phenotype changed considerably. During 
this period, the upregulation of anthocyanins and 
downregulation of proanthocyanidins generates the beautiful colors 
of S. japonica flowers (Guo et  al., 2022). The vast majority of 
differential organic acids and flavonols were upregulated (Figure 3; 
Supplementary Table S3). Some organic acids participate in 
regulating flower development. For example, γ-aminobutyric acid, 
which was upregulated in S3–S5 samples, promotes pollen tube 
formation and regulates the opening and closing of the corolla (Yu 
et al., 2014). Shikimic acid and 2-methylglutaric acid are associated 
with the flower phenotype of S. japonica; these metabolites are 
intermediate substances in the metabolic pathways of biological 
regulatory processes (Yokoyama et al., 2021). Owing to the absence 
of a large substituent at the 3-hydroxyl group, the 4-carbonyl-5 
hydroxyl structure of flavonols can easily bind to enzymes to promote 
antioxidant and anti-tyrosinase activity (Xue et al., 2011). In addition, 
phenolamines were downregulated, which improved overall taste.

As the flower matures, FFB-SJ yield increases. The dried weight 
of 1,000 grains of FFB–SJ varied significantly among the five stages 
(Supplementary Table S5), with the highest yields observed at S4–S5. 
Quality and yield are important indicators of plant value, particularly 
in the medical and food industries. Our previous study showed that 
the total flavonoid content from S1 to S3 was higher than that in S4 
and S5 (Wang et al., 2019), but S1 buds generated far lower yields 
than S2 and S3 (Supplementary Table S5). In S2 and S3, the flower 
buds expanded and became rich in flavonoids; thus, these buds are 
suitable for use in high-quality medicines or industrial extraction of 
flavonoids. Indeed, S. japonica should be  harvested when it is 
immature (Liao and Cheng, 2012). Compared with the bud (S2–S3), 
the fully developed flower (S4–S5) has obvious advantages in terms 
of yield, but the total flavonoid content and biological activities are 
diminished (Cholak et al., 2016; Wang et al., 2019).

Conclusion

Due to its quality, S. japonica has attracted increasing attention 
as a raw material for medicine and food. We  used targeted 
metabolomics technology to analyze secondary metabolites in 
S. japonica during the five stages of flower maturation. We monitored 
331 metabolites and screened 164 differential metabolites that 
showed seven distinct trends between the stages of development. 
Polyphenols, including flavonoids and phenolic acids, are major 
metabolites. The variation in these metabolites corresponds to the 
developmental requirements of S. japonica and affects the quality of 
FFB–SJ as a medicinal and industrial material. Flower buds (S2–S3) 
contain a rich variety of polyphenols; the high total flavonoid content 
at this stage increases the medicinal and industrial value of the buds. 
Although we  examined trends in metabolite composition, the 
mechanisms underlying this variation remain unclear. In future 

studies, multi-omics analysis should be employed to determine the 
regulatory mechanisms of these metabolites and how they respond 
to varying environmental conditions.
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