
Frontiers in Plant Science | www.frontiersin.org 1 May 2022 | Volume 13 | Article 916081

ORIGINAL RESEARCH
published: 26 May 2022

doi: 10.3389/fpls.2022.916081

Edited by: 
Jen-Tsung Chen,  

National University of Kaohsiung, 
Taiwan

Reviewed by: 
Pablo Bolaños-Villegas,  

University of Costa Rica, Costa Rica
 Sagheer Ahmad,  

Guangdong Academy of Agricultural 
Sciences, China

 Pandiyan Muthuramalingam, 
Gyeongsang National University, 

South Korea

*Correspondence: 
Hong Ge  

gehong@caas.cn  
Ruidong Jia  

jiaruidong@caas.cn

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Plant Development and EvoDevo,  
a section of the journal  

Frontiers in Plant Science

Received: 08 April 2022
Accepted: 03 May 2022
Published: 26 May 2022

Citation:
Cheng H, Xie X, Ren M, Yang S, 

Zhao X, Mahna N, Liu Y, Xu Y, 
Xiang Y, Chai H, Zheng L, Ge H and 

Jia R (2022) Characterization of Three 
SEPALLATA-Like MADS-Box Genes 
Associated With Floral Development 

in Paphiopedilum henryanum 
(Orchidaceae).

Front. Plant Sci. 13:916081.
doi: 10.3389/fpls.2022.916081

Characterization of Three 
SEPALLATA-Like MADS-Box Genes 
Associated With Floral Development 
in Paphiopedilum henryanum 
(Orchidaceae)
Hao Cheng 1,2†, Xiulan Xie 2†, Maozhi Ren 2, Shuhua Yang 1, Xin Zhao 1, Nasser Mahna 3, 
Yi Liu 2, Yufeng Xu 1, Yukai Xiang 4, Hua Chai 4, Liang Zheng 4, Hong Ge 1*  and Ruidong Jia 1*

1 Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, 
Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China, 2 National Agricultural Science 
& Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China, 
3 Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran, 4 Department of High-
Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China

Paphiopedilum (Orchidaceae) is one of the world’s most popular orchids that is found in 
tropical and subtropical forests and has an enormous ornamental value. SEPALLATA-like 
(SEP-like) MADS-box genes are responsible for floral organ specification. In this study, 
three SEP-like MADS-box genes, PhSEP1, PhSEP2, and PhSEP3, were identified in 
Paphiopedilum henryanum. These genes were 732–916 bp, with conserved SEPI and 
SEPII motifs. Phylogenetic analysis revealed that PhSEP genes were evolutionarily closer 
to the core eudicot SEP3 lineage, whereas none of them belonged to core eudicot 
SEP1/2/4 clades. PhSEP genes displayed non-ubiquitous expression, which was 
detectable across all floral organs at all developmental stages of the flower buds. 
Furthermore, subcellular localization experiments revealed the localization of PhSEP 
proteins in the nucleus. Yeast two-hybrid assays revealed no self-activation of PhSEPs. 
The protein–protein interactions revealed that PhSEPs possibly interact with B-class 
DEFICIENS-like and E-class MADS-box proteins. Our study suggests that the three SEP-
like genes may play key roles in flower development in P. henryanum, which will improve 
our understanding of the roles of the SEP-like MADS-box gene family and provide crucial 
insights into the mechanisms underlying floral development in orchids.

Keywords: expression analysis, flower development, gene cloning, Paphiopedilum, SEPALLATA-like MADS-box 
genes

INTRODUCTION

Paphiopedilum Pfitzer (Orchidaceae), commonly known as “slipper orchid,” is one of the world’s 
most popular orchids in the Orchidaceae family, owing to its remarkable diversity in terms 
of the shape, size, and color of flowers (Ng and Mohd Saleh, 2011; Zeng et  al., 2013; Guo 
et  al., 2021). This orchid can be  mainly found in tropical and subtropical forests extending 
from Asia to the Pacific Islands. More than 18 species are widely distributed across Southwest 
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China (Guan et al., 2011). Paphiopedilum henryanum, a species 
threatened with extinction, mainly occurs in the crevices of 
shady cliffs or rocks and well-drained habitats of the mountains 
along the Sino-Vietnamese border (Xu et al., 2018). The perianth 
of the Paphiopedilum flower consists of two petal-like sepals 
(whorl I), two lateral petals, and a highly diversified lip (whorl 
II). The inner fertile organ is adapted to represent gynostemium 
(whorl III; Pi et  al., 2009). The reproductive organ of this 
ornamental plant is highly diversified and thus may serve as 
models for studying the molecular development of flowers 
in monocots.

Flower formation is known to be  controlled by different 
regulatory genes, including several MADS-box family members 
(Ma et  al., 2019). These MADS-box genes can be  divided into 
two lineages, Type I  and Type II, originating from a single-
gene duplication that occurred before the divergence of plants 
and animals (Alvarez-Buylla et  al., 2000). MADS-box proteins 
contain a highly conserved motif of 55–60 amino acids known 
as the MADS domain, which is essential for DNA-binding 
activity (De Bodt et  al., 2003). As important transcriptional 
factors, MADS-box genes participate in various plant 
developmental processes, including the regulation of floral organ 
identity, inflorescence meristem identity, fruit ripening, and 
several other processes (Goto and Meyerowitz, 1994; Mandel 
and Yanofsky, 1995; Liljegren et  al., 2000; Guo et  al., 2017).

The developmental pathways for determining floral organ 
identity have been well-studied in several eudicot model species, 
such as Arabidopsis thaliana and Antirrhinum majus (Schwarz-
Sommer et al., 1990; Coen and Meyerowitz, 1991). The ABCDE 
model of floral development was established as unifying paradigm 
and underlying principle of flower development and evolution. 
This model comprises five major classes of homeotic genes: 
A, B, C, D, and E. Except APETALA2 (AP2), all of these 
genes belong to MADS-box genes (Theißen, 2001; Mondragõn-
Palomino and Theißen, 2011). According to this model, the 
expression of A- and E-class genes leads to the development 
of sepals; the expression of A-, B-, and E-class genes give rise 
to petals; the expression of B-, C-, and E-class genes in the 
meristematic regions allows the development of stamens; carpels 
are formed when the C- and E-class genes are expressed; and 
ovules develop when the D- and E-class genes are expressed 
(Ditta et al., 2004; Theissen and Melzer, 2007; Pu and Xu, 2021).

SEPALLATA (SEP) are E-class MADS-box genes that act 
as important mediators of the higher-order complex and 
participate in various aspects of plant development together 
with B-, C-, and D-class MADS-box genes (Becker and Theißen, 
2003; Immink et  al., 2009; Pu et  al., 2020). SEP genes have 
undergone two gene duplications during their evolution; the 
first duplication preceded the origin of the extant angiosperms, 
resulting in two clades, AGL2/3/4 (SEP1/2) and AGL9 (SEP3). 
Subsequent duplications have occurred independently within 
these clades after the divergence of eudicots and monocots 
(Shan et  al., 2009). As for eudicots, SEP genes have been 
reported in tomatoes (Solanum lycopersicum), petunias (Petunia 
hybrida), and orchids (Ferrario et al., 2003; Uimari et al., 2004). 
Moreover, members of the SEP family have been identified in 
monocots, such as maize and rice (Becker and Theißen, 2003; 

Cui et  al., 2010). In Arabidopsis, four SEP genes (AtSEP1, 
AtSEP2, AtSEP3, and AtSEP4) play a role in the development 
of all floral whorl and meristem determinacy (Ditta et al., 2004).

In orchids, the function of some MADS-box genes has been 
reported, and a specific model was established (Mondragón-
Palomino, 2013). According to the “Homeotic Orchid Tepal” 
(HOT) model, the B-class genes in combination with genes of 
other classes, such as the E-class genes, regulate the complexity 
of sepal, petal, and lip identity (Pan et  al., 2011). However, few 
SEP-like genes have been identified in orchid species, such as 
AdOM1 in Aranda, DcSEP1 in Dendrobium crumenatum, 
DOMADS1 and DOMADS3 in Dendrobium grex Madame Thong-
IN, and PeSEP1/2/3/4 in Phalaenopsis equestris (Lu et  al., 1993; 
Xu et  al., 2006; Pan et  al., 2014). In Dendrobium, DcOSEP1/
DcOPI/DcOAP3A or DcOAP3B (SEP-like/PI-like/AP3-like) could 
form multimeric proteins (Hsu et  al., 2015). Functional analysis 
showed that virus-induced silencing of PeSEP3 in P. equestris 
could alter the epidermal identity of tepals and the contents of 
anthocyanin and chlorophyll, causing tepals to become leaf-like 
organs (Pan et  al., 2014). Agreeing well with research from 
Phalaenopsis, defects of CeSEP1/3-clade genes of the Chinese 
orchid Cymbidium ensifolium contributed to the leaf-like flower 
phenotype in the mutant, indicating that SEP paralogs differed 
in their ability to regulate floral organ specificity (Wei et  al., 
2020). Interestingly, CeSEP-2 is important for the development 
of a specialized lip in Cymbidium orchids, while its downregulation 
resulted in the formation of a peloric flower shape in C. ensifolium 
(Ai et al., 2021). Further study revealed that the E-class MADS-box 
protein PeMADS8  in P. equestris could also interact with the 
Bsister protein PeMADS28, and a higher-order protein complex 
formed by C-E-D-Bsister genes (PeMADS1-PeMADS8-PeMADS-
PeMADS28) was likely to be associated with regulation of orchid 
ovule development (Shen et  al., 2021). In Habenaria radiata, 
the SEP-like gene HrSEP1 plays an important role in column, 
lip, and petal development. The mutation in this gene can cause 
the greenish flower phenotype of H. radiata (Mitoma and Kanno, 
2018). In contrast with the four genes found in other orchids, 
only two SEP transcripts were expressed in the inflorescence of 
Orchis italica, and both genes were detectable in all floral organs, 
which was consistent with the expression pattern in all the floral 
whorls of class E genes involved in the formation of all the 
organs of the flower (Valoroso et  al., 2019). Moreover, SEP-like 
genes were also involved in orchid fruit development. In Erycina 
pusilla, the SEP-like genes EpMADS8 and −  9 were expressed 
throughout fruit development, and protein–protein interaction 
studies revealed that MADS domain complexes comprised of 
SEP, FRUITFULL (FUL), and AGAMOUS (AG)/SHATTERPROOF 
(SHP) orthologs can also be  formed in E. pusilla (Lin et  al., 
2016; Dirks-Mulder et  al., 2019). To date, no SEP genes have 
been identified in Paphiopedilum. In addition, the flowers of 
Paphiopedilum contain a pocket-like lip and synsepal, distinguishing 
them from those of other orchids. Therefore, it is necessary to 
isolate and characterize the E-class genes of Paphiopedilum and 
address their developmental role in perianth identity.

In the present study, three SEP-like MADS-box genes were 
isolated from P. henryanum. The sequences of these genes and 
their encoded proteins were analyzed. Moreover, the expression 
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patterns of PhSEP genes were explored using quantitative real-
time PCR (qRT-PCR) performed on different tissues and organs 
and across various floral bud developmental stages. The 
subcellular localization and self-activation of the corresponding 
proteins were also investigated using the gene gun-mediated 
transformation and yeast two-hybrid system, respectively. In 
addition, the identification of PhSEPs’ binding sites was predicted 
by the DeepMind’s AlphaFold2 program. Thus, the present 
study aimed to establish a foundation for further studies by 
elaborating the molecular mechanisms of floral organ 
determination in slipper orchids.

MATERIALS AND METHODS

Plant Material and Bacterial Strains
The P. henryanum plants used in this study were grown in a 
greenhouse at the Institute of Vegetables and Flowers, Chinese 
Academy of Agricultural Sciences. Floral buds representing 
developmental stages B1–B4 (stage B1: 2.0–3.0 mm in length; 
stage B2: 3.0–4.0 mm in length; stage B3: 4.0–5.0 mm in length; 
stage B4: 5.0–6.0 mm in length), various floral organs of mature 
flowers (sepal, petal, lip, ovary, gynostemium, and bract), scape, 
roots, and leaves were collected, immediately frozen in liquid 
nitrogen, and then stored at −80°C. Plasmid pEASY®-T3 
(Takara, Japan) was used to clone the cDNA sequences, whereas 
the pBI221-EGFP and pGBKT7 (Clontech, United States) vectors 
were modified to clone overexpression constructs. Escherichia 
coli DH5α and Saccharomyces cerevisiae AH109 were used for 
transformation and self-activation, respectively.

Cloning and Characterization of PhSEP 
Genes From Paphiopedilum henryanum
To identify, clone, and characterize the SEP-like genes of 
P. henryanum, total RNA was extracted from the harvested 
tissues using the RNAprep Pure Plant Kit (TIANGEN Biotech 
Co., Ltd., Beijing, China), according to the manufacturer’s 
instructions. Reverse transcription was carried out with 1.0 μg 
of each RNA sample using the FastQuant RT Kit (with gDNase; 
TIANGEN Biotech Co., Ltd., Beijing, China). Three SEP-like 
genes were identified from the transcriptome of P. henryanum 
(Accession nos. SRP131426 and PRJNA431671, available at the 
Sequence Read Archive (SRA) of the National Center for 
Biotechnology Information (NCBI) database). Based on the 
sequences retrieved, specific primer pairs (PhSEP1-F/PhSEP1-R, 
PhSEP2-F/PhSEP2-R, and PhSEP3-F/PhSEP3-R; 
Supplementary Table S1) were designed for cloning the coding 
sequences (CDS) of PhSEP genes. The amount of 1–2 μl of 
the synthesized cDNA (100 ng/μL) was used for PCR with 
primers and the high-fidelity Taq DNA polymerase (Ex Taq, 
TaKaRa Bio, Japan). The amplified products were evaluated 
by agarose gel electrophoresis and then cloned into the 
pEASY®-T3 vector. The recombinant clones were selected for 
amplification and identification. The nucleic acid sequences 
obtained were then compared with the homologous gene 
sequences retrieved from GenBank using Blastn. Open reading 
frame (ORF) search was performed using the online server 

getorf;1 the molecular weights and isoelectric points of the 
predicted proteins were analyzed using ProtParam,2 whereas 
their hydrophilicity was assessed using ProtScale;3 and the 
amino acid signal peptides and subcellular localization were 
predicted using SignalP3.04 and PSORT,5 respectively.

Multiple Sequence Alignment and 
Phylogenetic Analysis
SEP-like genes and AP1/SQUA-like genes were retrieved from 
previously published studies and other publicly available databases 
using BLAST searches (Pan et  al., 2014). During the BLAST 
searches, multiple genes of the each subfamily from different 
lineages were used as queries. The following databases were used 
in the search: NCBI. Each of the databases was searched using 
TBLASTN. We  obtained the sequences whose E-values were 
below le–5 and redundant sequences with identity of at least 
95% were removed from our data set (Supplementary Table S2). 
Protein sequences were first aligned with MEGA11.6 Sequences 
of the alignment were ordered according to their phylogenetic 
placements in the preliminary tree, then, they were aligned 
manually using MEGA11and DNAMAN version 4.0 (Lynnon 
Biosoft Company; Kumar et  al., 2016).

Phylogenetic analyses about SEP3 were conducted using 
DNA alignments that included the conserved M-, I-, and 
K-domain regions and the C-terminal residues with higher 
than 12 quality scores. The quality score for each residue was 
estimated in CLUSTALX 2.1(Thompson et al., 1997). The PhyML 
software was used to construct ML tree with the most appropriate 
model, GTR + I + C, which was estimated by running 
MODELTEST version 3.06 and 1,000 bootstrap replicates (Posada 
and Crandall, 1998; Guindon and Gascuel, 2003). Bootstrapping 
was performed by resampling the data 1,000 times. Tree files 
were viewed using iTOL (Letunic and Bork, 2021).

Gene Expression Analysis via qRT-PCR
To investigate the spatio-temporal expression patterns of the 
SEP genes, a quantitative reverse transcription PCR (qRT-PCR) 
was performed as described previously (Pan et al., 2014; Omondi 
et  al., 2015; Shen et  al., 2021) using tissues of roots, stems, 
leaves, floral organs of mature flowers, and developing floral 
buds at different stages. Gene-specific primers (qSEP1-F/qSEP1-R, 
qSEP2-F/qSEP2-R, and qSEP3-F/qSEP3-R) were designed within 
the non-conserved C-terminal region for each gene 
(Supplementary Table S1) using the Primer 5 software. The 
expected size of amplification products was 100–150 bp. TB 
Green® Premix Ex Taq™ II (Tli RNaseH Plus; TaKaRa, Japan) 
was used for transcript quantification. The cycling program 
was as follows: an initial denaturation step at 95°C for 30 s, 
followed by 40 cycles of denaturation at 95°C (5 s), annealing 
at 60°C (30 s), and extension at 72°C (30 s). The relative mRNA 

1 http://emboss.bioinformatics.nl/cgi-bin/emboss/getorf
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3 https://web.expasy.org/protscale/
4 http://www.cbs.dtu.dk/services/SignalP-3.0/
5 https://www.genscript.com/psort.html
6 https://www.megasoftware.net/
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abundance of the SEP genes and the reference gene, Actin, 
was analyzed using the 2−ΔΔCt method (Livak and Schmittgen, 
2001). Three independent biological replicates and three technical 
replicates were used for each experimental or control sample.

Subcellular Localization of PhSEP Genes
To examine the subcellular localization of SEP genes, a gene 
gun was used for introducing DNA into onion (Allium cepa) 
inner epidermal cells as described previously by Wang et  al. 
(2016) and modified by Li et  al. (2020). To do this, the coding 
regions of PhSEP genes were amplified using KAPA HiFi™ 
HotStart DNA polymerase (KAPA Biosystems, United  States), 
with the primers (DWSEP1-F/DWSEP1-R, DWSEP2-F/
DWSEP2-R, DWSEP3-F/DWSEP3-R) listed in 
Supplementary Table S1. After purification, the PCR products 
were cloned downstream of the synthetic green fluorescent 
protein (EGFP) reporter gene in the pBI221-EGFP binary vector 
using the SE Seamless Cloning and Assembly Kit (Zomanbio, 
Beijing, China). The recombinant vector harboring the SEP 
fusion and the negative control (empty pBI221-EGFP vector) 
were used to transform living onion epidermal cells by biolistic 
bombardment using a Biolistc® PDS-1000/He Particle Delivery 
System (Bio-Rad Laboratories, CA, United  States) according 
to the manufacturer’s instructions (helium pressure, 9 MPa; Yu 
and Goh, 2000). Fluorescence was observed using a fluorescence 
microscope (BX53 Upright Microscope, Olympus, Tokyo, Japan).

Yeast Assay and Protein–Protein 
Interactions Prediction
The yeast two-hybrid assay is a powerful and classic method of 
screening protein–protein interactions (Hu et al., 2021). To screen 
protein–protein interactions, a yeast two-hybrid assay was performed 
as described by Dirks-Mulder et  al. (2019). The CDS of SEP 
genes were cloned in-frame downstream of the GAL4-binding 
domain of the pGBKT7 vector (Clontech, USA) after amplification 
with the primers (BDSEP1-F/BDSEP1-R, BDSEP2-F/BDSEP2-R, 
BDSEP3-F/BDSEP3-R) listed in Supplementary Table S1. The 
constructs were prepared using the SE Seamless Cloning and 
Assembly. The recombinant plasmids and the negative control 
(empty pGBKT7 vector) were used to transform S. cerevisiae 
AH109 competent cells according to the Yeast Protocols Handbook 
(Clontech, United  States; De Folter and Immink, 2011). The 
cultures were serially diluted at a ratio of 1:10. Thereafter, 2 μl 
aliquots of the undiluted, 1:10, and 1:100 diluted cell cultures 
were spotted onto a non-selective medium, that is, the synthetic 
dropout medium without leucine and tryptophan (SD-LW), and 
selective media, including SD-LWH +3-AT (SD–leucine–
tryptophan–histidine+5 mM 3-AT) and SD-LWHA (SD–leucine–
tryptophan–histidine–adenine). The respective plates were incubated 
at 30°C for 7 days before being photographed. The self-activation 
of each protein was evaluated for its host status (Yeast Protocols 
Handbook; Clontech). AlphaFold2 (AF2) is a protein structure 
prediction model developed by DeepMind, which can predict 
the protein–protein complex structures and interaction accurately 
(Pozzati et al., 2021; Bryant et al., 2022). To predict the interaction 
ability of SEP proteins, a poly-glycine linker was added between 

each chain before running it as a single chain through the 
AlphaFold model (Humphreys et  al., 2021; Tsaban et  al., 2022). 
Molecular modeling was performed using the PyMOL molecular 
viewer for visualizing hydrogen bond interactions.

RESULTS

Identification of SEP Genes From 
Paphiopedilum henryanum and Sequence 
Analysis
Three SEP-like genes were isolated from P. henryanum and 
named PhSEP1, PhSEP2, and PhSEP3 (GenBank accession nos. 
MN274961, MN274962, and MN809620, respectively; Figure 1). 
PhSEP1 was 916 bp in length and contained an ORF of 732 bp. 
PhSEP2 was 839 bp in length and contained an ORF of 726 bp, 
whereas PhSEP3 was 889 bp in length with a 732 bp ORF. PhSEP1 
shared 86% identity with its P. equestris homolog, PeSEP1. 
PhSEP2 and PhSEP3 independently showed 81% identity with 
PeSEP2 and PeSEP1, respectively. The predicted proteins showed 
length of 241 (PhSEP2) and 243 (PhSEP1/3) amino acids and 
pI ranging between 8.71 (PhSEP2) and 8.94 (PhSEP1). Further 
bioinformatics analysis showed that these PhSEP proteins 
displayed a theoretical molecular mass of 28 kDa and harbored 
a nuclear localization signal. In addition, these proteins lacked 
transmembrane domains. Multiple sequence alignment with 
homologous SEP proteins from orchids (Figure  2) indicated 
that PhSEPs harbored a conserved MIK domain and divergent 
C-terminal domain with conserved SEP I  and SEP II motifs, 
which are characteristic of E-class MADS-box proteins.

Phylogenetic Analysis of SEP-Like Genes
To determine the evolutionary relationships of the SEP subfamily 
within orchids and with other angiosperms, we  constructed a 
phylogenetic tree using nucleic acid sequences. Totally, 35 SEP 
genes from orchids, other monocots, asterids, and rosids were 
obtained (Supplementary Table S2). We  then performed 
phylogenetic analyses on the nucleotide sequences of these genes 
using Maximum Likelihood (ML), with 3 AP1/SQUA-like genes 
as the outgroups. The phylogenetic tree showed that SEP genes 
from monocots formed a well-supported single clade (Figure  3). 
They were divided into two major clades, M1 and M2, with 
strong supporting values. The clade M1 (including PhSEP1 and 
PhSEP3) was clustered together with the SEP3 genes of eudicots, 
leaving the clade M2 (including PhSEP2) alone (well-supported), 
suggesting a duplicate event before the separation of monocots 
and eudicots. Monocots SEPs selected were not included in core 
eudicot SEP1/2/4, differently from previous study (Pan et  al., 
2014). A neighbor-joining based phylogenetic tree of 50 SEP-like 
genes showed that PhSEP1 and PhSEP3 were included in the 
SEP3 clade while PhSEP2 was grouped into the SEP1/2/4 clade 
(Supplementary Figure S2).

Expression Analysis of PhSEP Genes
qRT-PCR was performed to determine the spatio-temporal 
expression pattern of PhSEP genes across different tissues and 
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organs of P. henryanum (Figures 4A–D). As shown in Figure 4E, 
the expression of PhSEP1 was specific to reproductive tissue and 
was especially high in the gynostemium and synsepal. In contrast, 

its expression was negligible in vegetative tissues, including the 
scape, roots, and leaves. PhSEP2 was expressed in all reproductive 
tissues and the scape. However, it displayed negligible expression 

FIGURE 1 | Amplification of three PhSEP genes from Paphiopedilum henryanum.

FIGURE 2 | Amino acid sequence alignment of PhSEPs and closely related homologs in orchids using the MEGA11 and DNAMAN version 4.0. The PhSEP1/2/3 
proteins of P. henryanum are highlighted by yellow triangles.
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in the roots and leaves. PhSEP3 was predominantly expressed 
in the petals, dorsal sepals, ovaries, and especially lips. We examined 
the temporal expression pattern of PhSEP genes in floral buds 
at four developmental stages (Figures  4D,F). Abundant PhSEP 
transcripts were found throughout floral development, whereas 
stage B2 showed the highest transcript accumulation. Overall, 
the expression patterns of PhSEP genes indicated that PhSEP 
genes play multiple roles in the flower development of P. henryanum.

Subcellular Localization of PhSEP Proteins
To investigate the subcellular localization of PhSEP proteins, 
the EGFP–PhSEP fusion constructs and EGFP control were 
cloned in pBI221 under the regulatory control of the CaMV35S 
promoter. These constructs were transiently expressed in 
onion epidermal cells and analyzed by fluorescence microscopy. 

It was found that the PhSEP1–GFP, PhSEP2–GFP, and PhSEP1–
GFP fusion proteins harboring nuclear localization signals 
were targeted to the nucleus, whereas the control GFP protein 
was localized in the cytosol and nucleus (Figure  5). These 
results indicated that PhSEPs are in fact nuclear proteins, 
in agreement with their role as transcription factors (TFs).

Self-Activation Detection and Protein–
Protein Interaction Prediction
To investigate whether PhSEPs could be  self-activated, 
we  analyzed the ability of PhSEPs to activate the reporter 
genes LacZ, TRP1, LEU1, and ADE2 in budding yeast. To this 
end, the CDS of the PhSEP genes were fused to the GAL4 
DNA-binding domain, and their ability to activate transcription 
from the GAL4 upstream activation sequence (UAS) was assessed 

FIGURE 3 | Phylogenetic analysis of SEP-like genes with SQUA genes as an outgroup. The topology of this tree was generated using PhyML. ML bootstrap 
support (MLBS) values are indicated on each branch. Thick branches indicate high support values with MLBS ≥ 70. PhSEPs are marked with red dots.
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in terms of yeast growth. The yeast cells contained individual 
PhSEP plasmids and the control plasmid were sustained well 
on the non-selective SD-LW medium, whereas growth was 
absent on the selective SD-LWH + 3-AT or SD-LWHA medium, 
suggesting that no self-activation activity of PhSEPs was 
confirmed in yeast cells (Figure  6). In addition, the change 

in the color of the colonies from pink to red further indicated 
that the ADE2 reporter gene was not expressed.

The neural network AlphaFold2 developed by the artificial 
intelligence company DeepMind was trained using multiple 
sequence alignments (MSA) and experimental protein structures 
deposited before April 30, 2018. It could be  used to predict 

A

E F

B C

D

FIGURE 4 | Transcript levels of PhSEP genes in different tissues and organs and at different developmental stages of floral buds of P. henryanum. (A) A flower 
dissected as follows: Dorse, dorsal; sepal; Synse, synsepal; Pe, petal; Lip; Gyn, gynostemium; Bra, bract; Ova, ovary. (B) Mature flowers. (C) Vegetative tissues 
dissected as follows: R, root; Sca, scape; L, leaf. (D) Floral buds at different developmental stages. (E) Relative expression patterns of PhSEP1, PhSEP2, and 
PhSEP3 in different tissues and organs. (F) Relative expression patterns of PhSEP1, PhSEP2, and PhSEP3 at four stages of floral development. Scale bars: 10 mm; 
The values are means of three replicates ± SE. Statistical analysis was performed using one-way ANOVA test (p < 0.05). Different letters represent significant 
difference. The expression level of gene in Dorse or at stage B1 was set to 1, and those of others were normalized to it.
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the protein structure at the atomic level with high accuracy. 
Besides, the protein–protein interactions could be also predicted 
by AlphaFold2 (Tunyasuvunakool et  al., 2021; Hegeds et  al., 
2022). In this study, three SEP proteins, DEFICIENS-like protein 
(AKC93996.1) and flower meristem identity protein LEAFY 
(AKC94104.1) in P. henryanum were selected for the prediction 
of the protein–protein interactions (Figure  7). The structural 
models of the protein complexes revealed that PhSEP1-PhSEP2, 
PhSEP1-PhSEP3, and PhSEP2-PhSEP3 interaction were likely 
to have existed (Figure  7A). Besides, we  also demonstrated 
that PhSEPs might interact with DEFICIENS-like proteins 
(Figure  7B). In Figure  7C, the structure of PhSEPs-LEAFY 
complexes was dispersed, and no hydrogen bonds were observed 
between the proteins, which indicates a potential lack of 
protein–protein interactions between PhSEPs and the central 
floral development protein LEAFY.

DISCUSSION

With more than 25,000 species, orchids are the second-largest 
plant family (Stokstad, 2015; Andriamihaja et al., 2021). They 
have a unique zygomorphic floral structure, including three 
sepals, two petals, and a highly diversified lip (Rudall and 
Bateman, 2002). The highly specialized and diverse morphology 
of flowers in orchids makes them excellent models for 
examining the complex network of regulatory genes involved 
in floral morphogenesis (Pan et  al., 2011). Recently, SEP-like 
genes have been identified and characterized in a wide range 
of eudicots and monocots, including Arabidopsis, rice, and 
orchid (Pu et  al., 2020; Adal et  al., 2021; Zhu et  al., 2022). 
Numerous reports have shown that these genes are instrumental 
in the floral evolution of diverse plants and play fundamental 
roles in floral organ fate determination during development 

FIGURE 5 | Subcellular localization of the putative PhSEPs in onion (Allium cepa) inner epidermal cells. The onion epidermal cells transiently expressing PhSEP1–
GFP, PhSEP2–GFP, and PhSEP1–GFP fusion proteins and the EGFP control were visualized through fluorescence microscopy. In each horizontal panel, the extreme 
left represents GFP fluorescence, the middle image represents bright field, and the right image represents an overlay of the other two images.
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by interacting with other MADS-box gene products, such 
as those from A-, B-, and C-class genes (Malcomber and 
Kellogg, 2005; Mitoma and Kanno, 2018; Qi et  al., 2020; 
Pu and Xu, 2021).

In the present study, three SEP-like genes, PhSEP1, PhSEP2, 
and PhSEP3, were cloned from Paphiopedilum orchid. Sequence 
and phylogenetic analysis revealed that PhSEP genes from 
Paphiopedilum were highly conserved. In addition, the 
predicted amino acid sequences of PhSEPs showed a high 
degree of identity with homologous proteins from P. equestris, 
Cymbidium goeringii, and A. thaliana (Ditta et  al., 2004; 
Pan et  al., 2014; Yang et  al., 2021). In general, a similar 
primary structure of proteins represents a relatively close 
evolutionary relationship, analogous structure, and identical 
functions (Ma et  al., 2019). Furthermore, the conservation 
of SEP I and SEP II motifs in the highly variable C-terminus 
of PhSEPs supported their characterization as E-class floral 
meristem identity genes and suggested a similar functionality 
to their orthologs in other plants. Duplication events are 
common in MIKC-type MADS-box TFs and many MIKC-
type homoeologs are functionally important and not redundant 
(Shan et  al., 2009; Schilling et  al., 2020). Consistent with 
this fact, several duplication events have been reported in 
the evolutionary lineages of SEP genes in both eudicots and 
monocots, resulting in four SEP members in Arabidopsis, 
Cymbidium, and Phalaenopsis (Ditta et al., 2004; Chang et al., 
2009; Mondragón-Palomino, 2013; Pan et al., 2014). Extensive 
duplication of MADS-box genes and the resulting subfunctional 
and expressional differentiation were associated with regulation 
of species-specific flower traits, such as floral patterning, 
seasonal flowering, and ecological adaption (Yang et  al., 
2021). Phylogenetic analysis showed that the three PhSEP 
genes were sorted into two diversified clades (M1 and the 
M2 clade in monocots), in consistent with the findings of 

previous studies reporting the phylogeny of SEP-like genes 
from P. equestris and C. goeringii. According to the phylogenetic 
tree, three PhSEP genes from Paphiopedilum were clustered 
together with SEP1/2/3 genes from other P. equestris and 
C. goeringii, respectively (Pan et  al., 2014; Yang et  al., 2021), 
so it is quite possible to clone PhSEP4, the orthologous 
orchid SEP4 gene. Hence, according to our analysis result, 
the monocots SEPs did not belong to SEP1/2/4 from eudicots, 
differently from previous study (Pan et  al., 2014). 
We  speculated that there might be  more unidentified SEP 
genes in orchids if they were not lost in plants evolution. 
The frequent duplication of SEP genes might be  one of the 
main cause of diversity of flower structure in angiosperms.

SEP-like genes encode MADS transcription factors required 
for the formation of all the organs of the flower and for 
the determinacy of the floral meristems (Valoroso et  al., 
2019; Pu and Xu, 2021). In this research, the PhSEP genes 
displayed differential spatial expression patterns in vegetative 
and reproductive tissues of P. henryanum. PhSEP genes were 
collectively expressed in all flower organs, as observed earlier 
in other plants (Xu et  al., 2006; Pan et  al., 2014; Adal et  al., 
2021). The expression levels of PhSEP genes in roots and 
leaves were negligible. These findings suggest that the SEP-
like genes in orchids are involved in the specification of 
floral organ identity. Interestingly, PhSEP1 displayed expression 
patterns complementary to those of PhSEP2. While high 
expression levels of PhSEP1 were noted in the synsepal, lip, 
gynostemium, and ovary, SEP2 showed high expression levels 
in bracts and scapes. This result agreed well from research 
from C. ensifolium. The expression of the CeSEP1/3-clade 
genes TDN29274 and TDN28990, the orthologs of PeSEP1 
and PeSEP3, respectively, was obviously reduced. However, 
the other two CeSEP genes showed equal or slightly higher 
expression in the leaf-like flower mutant of C. ensifolium 

FIGURE 6 | Evaluation of the self-activation ability of PhSEPs in budding yeast. The yeast cells of strain AH109 harboring the indicated plasmids were grown on 
non-selective (SD-LW) or selective (SD-LWH + 3-AT and SD-LWHA) media. Decreasing cell densities represent the 10-fold dilution series. BD in the last row 
represents an empty GAL4 DNA-binding domain containing a vector.
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(Wei et  al., 2020). Similarly, the expression levels of 
BroaSEP1/2/3 genes from Brassica oleracea were very different 
at different developmental stages, also in the wild type, 
mutant flower with increased petals, and mutant flower with 
decreased petals, which indicated that different patterns of 
gene expression may cause the flowers to increase or decrease 
the petal number (Xiang et al., 2020). Moreover, the expression 
patterns of PhSEP2 were reminiscent of those of its orthologs 
CgSEP2 and PeSEP2, which also display substantial expression 
in sepals and petals and are minimally expressed in the lip 
(Pan et  al., 2014; Yang et  al., 2021). The non-overlapping 
expression profiles of the PhSEP genes indicate possible 
functional divergence. One possible reason for this divergence 
may be  problems caused by changes in the exon–intron 
structure of the SEP subfamily (Yu et  al., 2016; Schilling 
et al., 2020). SEP3 and its orthologs, such as FBP2 (petunia), 
TM5 (tomato), WSEP (wheat), and EScaAGL9 from the basal 
eudicot California poppy (Eschscholzia californica), are only 
expressed in the inner three whorls of the flower (Angenent 
et al., 1992, 1994; Pelaz et al., 2000). In contrast, the PhSEP3 
transcripts were detected in all floral organ whorls, especially 
in lip, indicating that PhSEP3 might be  the key gene 
associated with the lip; thus, the mRNA expression pattern 
of PhSEP3 was slightly different from that of its aforementioned 
orthologs. This finding may be  attributed to the remarkable 
similarity between the sepals and petals of the flowers of 
P. henryanum, implying that the genes that control petal 
formation in slipper orchids might be  similarly expressed 
in sepals (Chang et  al., 2009).

TFs, a major driver in evolution and in domestication, 
can facilitate or obstruct the access of RNA polymerases to 
the DNA template in association with other transcriptional 
regulators, including chromatin-remodeling/modifying proteins 
(Udvardi et  al., 2007; Martínez-Ainsworth and Tenaillon, 
2016). MADS-box genes constitute one of the largest families 
of plant TFs (Riechmann et  al., 2000). The SEP genes, which 
are E-class MADS-box TFs, play vital roles in various aspects 
of plant growth and development (Qi et  al., 2020). In this 
study, three PhSEPs were located in the nucleus, indicating 
the possible involvement of these TFs proteins in the regulation 
of the expression of downstream genes associated with floral 
development. Recent yeast two-hybrid experiments 
demonstrated that SEP proteins have conserved interactions 
with other MADS-box proteins of the SQUA, DEF/GLO, and 
AG subfamilies (Zahn et al., 2005). Moreover, SEP-like proteins 
can interact with FUL-like proteins during fruit patterning 
of E. pusilla (Dirks-Mulder et  al., 2019). Consistent with this 
role, PhSEPs were incapable of self-activation and the prediction 
of protein–protein interactions by AlphaFold2 showed that 
PhSEPs might interact with PhSEPs and B-class DEFICIENS-
like proteins. Furthermore, the central floral development 
protein LEAFY is necessary in triggering flower formation 
on inflorescences, while the SEP family can reprogram cauline 
leaves into the floral organs. LEAFY promotes floral fate 
through upregulation of the floral commitment factor A-class 
APETALA1 (AP1; Jin et  al., 2021). We  found that LEAFY 
might not interact with E-class SEP proteins in P. henryanum. 

A

B

C

FIGURE 7 | The prediction of protein–protein interactions by DeepMind’s 
AlphaFold2 program. (A) The prediction of PhSEPs-PhSEPs interactions. 
(B) The prediction of PhSEPs-DEFICIENS interactions. (C) The prediction of 
PhSEPs-LEAFY interactions. The red chain represents the structure of the 
PhSEP1 protein. The magenta chain represents the structure of the PhSEP2 
protein. The green chain represents the structure of the PhSEP3 protein. The 
wheat chain represents the structure of the DEFICIENS-like protein. The cyan 
chain represents the structure of the LEAFY protein. The blue chain 
represents the linker. The yellow stick represents the hydrogen bonds 
between any of the two proteins. In (A,B) each horizontal panel, the left image 
represents the predicted structure of the protein complex, and the right image 
represents the predicted protein interaction sites.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Cheng et al. SEPALLATA-Like Genes in Paphiopedilum henryanum

Frontiers in Plant Science | www.frontiersin.org 11 May 2022 | Volume 13 | Article 916081

Previous studies reported that the greenish flower phenotype 
of Habenaria radiata (Orchidaceae) is caused by a mutation 
in the SEP-like MADS-box gene HrSEP-1 (Mitoma and Kanno, 
2018). In Lavandula angustifolia, the expression of lavender 
SEP-like genes promote early flowering and alter leaf 
morphology in A. thaliana (Adal et  al., 2021). In Apostasia 
shenzhenica, the adaxial petal does not differentiate into a 
specialized lip due to the loss of class B-AP3 and E-class 
genes (Zhang et  al., 2017). Although there was no loss of 
B and E clade genes in C. ensifolium, transcriptomic analysis 
showed that the upregulation of CeSEP-2 is necessary for 
the development of a specialized lip in Cymbidium orchids, 
while its downregulation results in the formation of a peloric 
flower shape (Ai et al., 2021). In addition, CsSEP4 was originally 
found to positively regulate gynostemium development in 
Cymbidium sinense. The gene was ectopically expressed in 
the gynostemium of the wild-type flower and expended to 
all floral organs of a gynostemium-like perianth variant in 
C. sinense, and the 35S:CsSEP4 Arabidopsis showed a severe 
flower phenotype whereas the 35S:CsSEP3 had an abnormal 
stamen and ovule (Yang et  al., 2021). These results reveals 
that SEP-like genes are associated with the development of 
flower organs, especially for the lip. Thus, PhSEP1/2/3 genes 
might have a similar function in floral organ identity. As in 
planta transformation of Paphiopedilum maudiae by 
agrobacterium-mediated ovary-injection was established, FT 
(Flowering Locus T) functional genes of P. maudiae were 
transformed into Paphiopedilum to elucidate their role during 
floral bud development and shorten the juvenile phase (Luo 
et  al., 2020). This may be a useful way for the transformation 
of PhSEP genes in P. henryanum. There are differences in 
expression patterns and functional differentiation among 
paralogous genes or even among orthologous genes in closely 
related species (Morel et al., 2019; Yang et al., 2021). Functional 
differentiation might exist within the three SEP-like genes 
of P. henryanum.

The molecular basis of orchid flower development is 
accomplished through a specific regulatory program, and SEP-
like genes enrich the molecular program underpinning the 
orchid perianth development, resulting in the expansion of 
the original “orchid code” in an even more complex gene 
regulatory network (Lucibelli et  al., 2021). According to the 
quartet model, E-class genes are essential for the formation 
of quaternary complexes (Mitoma and Kanno, 2018). 
We  suspected that PhSEPs genes may act as the “glue” for 
MADS-box transcription factor complex formation to regulate 
perianth formation in P. henryanum. In recent years, the 
genomes of some orchids including Apostasia shenzhenica, 
Phalaenopsis aphrodite, Vanilla planifolia, C. goeringii, 
Dendrobium chrysotoxum, Platanthera zijinensis, and Platanthera 
guangdongensis were published (Zhang et al., 2017, 2021; Chao 
et  al., 2018; Hasing et  al., 2020; Sun et  al., 2021; Li et  al., 
2022). By contrast, the occurrence of whole-genome duplication 
in Paphiopedilum results in a genome that is very large and 
complex Besides, A-, B-, C-, D-class MADS-box genes in 
P. henryanum have not been systematically identified, which 
restricts the analysis of the protein–protein interaction network. 

Moreover, the tissue culture and genetic transformation systems 
are not applied widely in Paphiopedilum industry, and the 
mutant of this flower is difficult to be obtained and preserved. 
More functional data are required to validate our orchid 
flower regulatory model, such as breeding PhSEP genes-
overexpressing and gene-silenced mutants by virus-induced 
gene silencing and transgenic technology, protein–protein 
interaction validation by yeast two-hybrid system and 
bimolecular fluorescence complementation, and downstream 
target genes detection by chromatin immunoprecipitation, 
electrophoretic mobility shift assay, and dual-luciferase. The 
biological function of PhSEP genes still needs to be  evaluated 
in the Paphiopedilum or model plant Arabidopsis. Further 
research is required to explore the mechanisms underlying 
floral development.

CONCLUSION

In this study, three SEP-like MADS-box genes in slipper 
orchids were identified for the first time, and the characteristics 
and expression patterns of the gene and protein sequences 
were systematically analyzed. All three homologs were 
structurally conserved and were characterized as E-class 
MADS-box transcription factors. Phylogenetic analysis revealed 
that PhSEP1, PhSEP2, and PhSEP3 were evolutionarily 
closer to the core eudicot SEP3 lineage, whereas none of 
them belonged to core eudicot SEP1/2/4 clade. PhSEP genes 
were expressed during flower development and exhibited 
non-ubiquitous expression patterns. All SEP proteins were 
localized to the nucleus. Furthermore, we  observed no self-
activation of SEP proteins and the prediction of protein–
protein interactions by AlphaFold2 revealed that SEP proteins 
might interact with SEP and DEFICIENS-like proteins. 
Consequently, these results illustrate three SEP-like MADS-box 
genes PhSEP1, PhSEP2, and PhSEP3 might play a vital role 
in flower development in P. henryanum. Future research needs 
to be  conducted to further elucidate the regulatory networks 
underlying the floral development and organ identity in the 
slipper orchid.
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