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One fundamental component of Integrated pest management (IPM) is field monitoring
and growers use information gathered from scouting to make an appropriate control
tactics. Whitefly (Bemisia tabaci) and thrips (Frankliniella occidentalis) are two most
prominent pests in greenhouses of northern China. Traditionally, growers estimate the
population of these pests by counting insects caught on sticky traps, which is not
only a challenging task but also an extremely time-consuming one. To alleviate this
situation, this study proposed an automated detection approach to meet the need
for continuous monitoring of pests in greenhouse conditions. Candidate targets were
firstly located using a spectral residual model and then different color features were
extracted. Ultimately, Whitefly and thrips were identified using a support vector machine
classifier with an accuracy of 93.9 and 89.9%, a true positive rate of 93.1 and 80.1%,
and a false positive rate of 9.9 and 12.3%, respectively. Identification performance was
further tested via comparison between manual and automatic counting with a coefficient
of determination, R2, of 0.9785 and 0.9582. The results show that the proposed
method can provide a comparable performance with previous handcrafted feature-
based methods, furthermore, it does not require the support of high-performance
hardware compare with deep learning-based method. This study demonstrates the
potential of developing a vision-based identification system to facilitate rapid gathering
of information pertaining to numbers of small-sized pests in greenhouse agriculture and
make a reliable estimation of overall population density.

Keywords: pest detection, sticky trap, small objects detection, image processing, machine learning

INTRODUCTION

Integrated pest management (IPM) has been widely applied to the agricultural practices in the field
to minimize yield loss and reduce the use of chemical insecticides (Boissard et al., 2008; Espinoza
et al., 2016; Rustia et al., 2020). This approach utilizes underlying presence of natural enemies, or
likelihood of presence in the field (Wen and Guyer, 2012; Yang et al., 2021). Therefore, the accurate
detection of pest species is essential for maximizing the successful IPM.
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In greenhouses, one of the most common approaches used
for pest detection is using sticky traps to capture insects and
subsequently count the presence (and number) of target pest
species on these traps. Based on the density and severity of
pests in the greenhouse, growers apply appropriate control
tactics (Ebrahimi et al., 2017). However, traditional manual
identification and counting of insects on a trap is a time-
consuming and labor-intensive task. Given these underlying
challenges associated with the identification and counting of
insect pests in the greenhouse, an automatic pest detection
approach is vital to the modern agricultural production.

With advancements in imaging technology and computer
software, image-based approaches have been developed in recent
years for the detection of small-sized pests in greenhouse
agriculture, including traditional machine learning and deep
learning methods. In the term of traditional machine learning,
Solis-Sánchez et al. utilized shape features (e.g., eccentricity
and area) and adaptive threshold discriminant method to
detect whiteflies (Solis-Sánchez et al., 2010). To improve feature
robustness, they extracted invariant features to discriminate and
identify different insect species and an improved precision was
achieved compared to previous work (Solis-Sánchez et al., 2011).
Besides, Xia et al. (2012) introduced a multifractal analysis
approach for detecting whiteflies on a sticky trap in situ using
a mobile robot to collect insects. Furthermore, to improve pest
counting efficiency, Xia et al. (2015) proposed an automatic pest
identification method suitable for long term monitoring in situ
with less computational cost by applying YCbCr color space
for segmentation and Mahalanobis distance for identification
of pest species (Xia et al., 2015). Espinoza et al. proposed an
image processing system that involved object segmentation, as
well as morphological and color property estimations, to detect
whitefly and thrips (Espinoza et al., 2016). However, these
color-based object segmentation methods were not robust to
various conditions in the field, such as variable illumination and
sticky glue degeneration. Rather than directly counting the pests
captured on the traps, Sun et al. presented a counting algorithm
to treat trapped pests as “noise” in a two-dimensional (2D) image
with two-dimensional Fourier transform (2DFT) serving as a
specific noise collector (Sun et al., 2017), but it could not separate
pests from real environmental noises and thus did not resolve
the species identification problem. In contrast to conventional
machine learning methods, deep learning methods automatically
ascertain the comprehensive features from the training dataset,
avoiding complex image processing procedures during object
segmentation and labor-intensive feature engineering to meet
various outdoor conditions. Rustia et al. developed a cascaded
approach that detects and filters out non-insect objects from the
detected objects using a convolutional neural network (CNN)
detector in the first stage and then further classifies the obtained
insect objects into different species using a multi-class CNN
classifier (Rustia et al., 2020). Li et al. (2021) proposed a deep
learning model on the basis of the Faster R-CNN architecture to
optimize the detection accuracy of tiny pests in sticky trap images
from agricultural greenhouses.

Although the above-mentioned studies have achieved good
performance and solved some special problems, there is still space

for improvement in this area of research. For instance, these
methods based on traditional machine learning are not flexible
due to the object segmentation bases on threshold strategies. In
deep learning area, the typical classification models using the
CNN structure rely on large datasets to train the models, but
actually, it is hard to obtain a large labeled dataset in many
cases (Li and Yang, 2020). Furthermore, greenhouse pests such as
whitefly (Bemisia tabaci) and western flower thrips (Frankliniella
occidentalis) are small in size, which will cause information loss
during the multi-layer convolution in deep learning architecture.
Although many object detectors based on deep learning perform
well on medium and large objects, they perform poorly on
the task of detecting small objects (Tong et al., 2020). This
is because small objects lack appearance information needed
to distinguish them from background or similar categories.
However, comparing to image background, these tiny pests could
be regarded as many “novelty” objects in the sticky trapping
images. Since the spectral residual model is independent of
features, categories, or other forms of prior knowledge of the
objects, it has been widely in small object detection (Zhou and
Zhang, 2007; Cui et al., 2012; Deng and Duan, 2013). Therefore,
we investigate whether it can be also applied to detect very small
pests under natural greenhouse conditions.

In this study, we propose a spectral residual model-
based method in combination with a support vector machine
(SVM) classifier to identify the most important pests in
greenhouse of northern China, namely whitefly (Bemisia tabaci)
and thrips (Frankliniella occidentalis). This work provides
a major step toward population estimation in greenhouses
and providing accurate, rapid and reliable results to aid in
decision making processes for pesticide application and pest
management approaches.

MATERIALS AND METHODS

Data Collection
Red-green-blue (RGB) color images were captured automatically
by a pest monitoring device (Figure 1) in a greenhouse
located in Fangshan district, Beijing, China (39◦38′19.29′′N,
116◦01′29.98′′E). The device consisted of a solar panel, sticky
trap, image acquisition module and storage battery. The device
was deployed in the center of the greenhouse, and the height
of the sticky trap (25 × 30 cm, Pheorbio R©) was above the
crop at 1.5 m from ground level. The sticky trap is a typical
attractant trap used widely for collection of pests of interest
whereby insects became adhered to the sticky surface. The
experiment was carried out on green pepper plants cultivated
under greenhouse conditions.

Two species, adult-stage whitefly (B. tabaci) and thrips
(F. occidentalis) were selected as the detection target in this study.
Solid-color traps were used to avoid “noise” in the digital images
caused by grids, as previously reported elsewhere (Xia et al.,
2015; Espinoza et al., 2016). Images of the sticky trap (25 ×
20 cm) were collected and transmitted to a remote server at
2,560 × 1,920 pixels every 2 h daily (8:00 a.m. to 18:00 p.m.).
Generally, the sticky paper is replaced every 6 days to maintain
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FIGURE 1 | Image acquisition equipment and sticky trap for detection of
insect pests in greenhouse conditions (Li et al., 2021).

good trapping effectiveness. Therefore, in this study, eighteen
original images were selected to extract training samples from
six consecutive days, that is, three original images were selected
each day in the period (one image in the morning, midday, and
afternoon, respectively). Likewise, eighteen original images were
selected to create test samples from another six consecutive days.
Thereafter, sample images of three classes, two target species
and background, were extracted with a square box of 32 × 32
pixels manually from the original images. Ultimately, 500 sample
images for each class, totally 1,500 sample images, were randomly
selected from the first eighteen original images to construct the
training dataset. And all target species (whitefly and thrips) on
the second eighteen original images were used as test dataset.

Detection Method
The proposed detection method consisted of three stages:
candidate object location, feature extraction and multi-class
recognition. The candidate object location is a pipeline to detect
the location of objects (section “Candidate Object Location”),
feature extraction devotes to extract feature of the detected
objects (section “Feature Extraction”) and these obtained objects
were then further classified into whitefly, thrips and background
in the stage of multi-class recognition (section “Multi-Class
Recognition Model”). These procedures are outlined in the
following subsections.

Candidate Object Location
Before performing feature extraction and pattern recognition, the
locations of candidate targets within the image are determined.
The locationpipeline in the sticky trapping images involved
several subroutines, as shown in Figure 2. First, a color-based
segmentation approach is design to extract the sticky paper
region from the original image. Then, the sticky trapping image

is divided into sub-block images and objects in each sub-block
image are locally detected using a saliency region detection
model. Subsequently, a threshold is determined and used to
obtain the location of the objects.

Extraction of Sticky Paper Region
The sticky paper region, denoted as the region of interest
(RoI) in this study, is extracted from the original image. First,
the original image (Figure 3A) is transformed into YCbCr
color space from the RGB color space and the RoI could be
distinguished from background based on the Cb component of
YCbCr color space (Figure 3B). Subsequently, the Cb component
is processed into a binary image (Figure 3C) using the Ostu
method (Otsu, 1979) and a morphological fill operation. Finally,
the RoI image (Figure 3D) is obtained by performing a logical
conjunction between the original image (Figure 3A) and the
binary image (Figure 3C).

Image Blocking
The small-sized insect pests in this study can be distinguished
more accurately at a small scale as opposed to a global (i.e., whole
RoI) image. Thus, the RoI image is divided into multiple sub-
blocks using a sliding window and each block size was 64 × 64
pixels, as shown in Figure 4.

Saliency Region Detection
In the sub-block image, small-size insects in local window were
regarded as “novelty” objects or saliency regions. These insects
can be identified and localized using the saliency region detection
method. In this study, a spectral residual model (Zhou and
Zhang, 2007) is used to locate the small-size insects in each sub-
block image. To construct the saliency map, the spectral residual
is extracted by analyzing the log-spectrum of the input sub-block
image. Given a sub-block image I(x), the saliency map image S(x)
can be obtained using the following equations:

A(f ) = | F[I(x)] | (1)

P(f ) = ϕ(F[I(x)]) (2)

L(f ) = log(A(f )) (3)

R(f ) = L(f ) − hn(f )∗L(f ) (4)

S(x) = g(x)∗F−1
[exp(R(f )+ iP(f ))]2 (5)

where F and F−1 denote the Fourier Transform (FT) and Inverse
Fourier Transform (IFT), respectively. A(f ) and P(f ) denote the
amplitude and phase spectrum of the image, respectively. L(f )
and R(f ) denote the log spectrum and spectral residual. hn(f )
and g(x) denote local average and Gaussian filter, respectively.

The pipeline of saliency region detection is illustrated in
Figure 5. First, the log-spectrum using two-dimensional fast
Fourier transform (2DFFT) and a logarithm to the input sub-
block image (Figure 5A) are calculated. As shown in Figure 5B,
most of the log-spectrum distribute in the low frequency portion
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FIGURE 2 | Flow chart of the candidate object location pipeline from source image to detection results.

FIGURE 3 | Illustration of the sticky trap region extraction using image processing technology: (A) original image, (B) Cb component in YCbCr color space, (C)
binary image, and (D) extraction result of the specific region of interest.

FIGURE 4 | Image blocking diagram. (A) This sticky trapping image is divided into a specific region of interest with a specific scale and (B) an illustration of an
enlarged sub-block image.

FIGURE 5 | Illustration of saliency region detection for insect pests collected on sticky traps and identified with image acquisition software: (A) a sub-block image
from the sticky trap, (B) log-spectrum distribution of the sub-block, (C) the spectral residual image, (D) a saliency map of the insect pests and (E) binary image of
the saliency map.
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(white regions of the center), which represents the input image
includes slowly changing background and a few salient objects.
The spectral residual is obtained by the log-spectrum minus
the average spectrum which can be approximated using a
local average filter (e.g., step size = 3). However, it can be
found from Figure 5C that the spectral residual contains high
frequency information, which is sharply different from the
log-spectrum. After using a two-dimensional inverse Fourier
transform (2DIFFT), the saliency map in spatial domain is
constructed and the novelty objects (candidate insects in this
study) of the image can be seen more clearly in the saliency
map (Figure 5D).

Image Binarization
The saliency map is an explicit representation of candidate insects
in the image. Furthermore, there may be multiple objects within a
saliency region. In this section, a threshold segmentation method
combined with watershed theory (Meyer, 1994; Dorj et al., 2017)
is designed to detect insects within this saliency region. First,
the saliency map image is transformed into a binary image
using an adaptive threshold value and then watershed algorithm
(Tarabalka et al., 2010; Zhang et al., 2014) is selected to segment
multiple objects. Since the intensity of the histogram of the
saliency map only had a peak and the peak is close to the darkest
side, as shown in Figure 6, the threshold value is adaptively
determined by using a triangle theory. The steps are as followed:

S1: Constructing a line from the peak to the first darkest point
on the intensity histogram.

S2: Calculating the distance from each point of
histogram to the line.

S3: The location Ta which has the largest distance d is the
threshold value.

A binary image could be obtained by using the proposed
threshold method. Furthermore, the size of target pests is
approximately from 5 pixels to 25 pixels in a sub-block image.
Therefore, non-target objects whose sizes are less than 5 pixels
or more than 25 pixels are removed from the binary image.
Ultimately, the remaining isolated individuals represent the
location results (Figure 5E).

Feature Extraction
To identify insect species on the RoI image, all isolated insects
are segmented and their features are extracted from sub-
block images. As shown in Figure 7, the sample pest i on
a sub-block image (Figure 7A) could be segmented into an
isolated pest (Figure 7C) by performing a logical conjunction
operation between the sub-block image and the detected region
(Figure 7B). As shown in Figure 7C, the shape of segmented
object is different from its original appearance because of
inaccurate segmentation for some pixels of the insects, especially
in the boundary of insect region. Therefore, the insect contours
are not smooth and the insects can’t be accurately identified
based solely on shape feature. However, for the two species
(whitefly and thrips), different color variation occurs as shown
in Figure 4B. Therefore, the color feature is a critical factor

to identify the insect species. To determine the optimal color
feature, four color models widely used in computer vision-based
applications (Kurtulmus et al., 2011; Hu et al., 2012; Reyes
et al., 2017; Tan et al., 2018) are evaluated: RGB (red, green and
blue), HSV (hue, saturation and value), YCbCr (luminance, blue-
difference and red-difference) and L∗a∗b∗ (lightness, green-red,
and blue-yellow).

The features of each segmented sample are represented by
average values of R, G, and B components in RGB space, H, S,
and V component in HSV space, Y, Cb, and Cr components in
YCbCr space, L∗, a∗, and b∗ in L∗a∗b∗ color space, respectively.
The transformations are shown in Eqs (6)–(9).

R =
∑nj

i=1 Ri

nj
, G =

∑nj
i=1 Gi

nj
, B =

∑nj
i=1 Bi

nj
(6)

H =
∑nj

i=1 Hi

nj
, S =

∑nj
i=1 Si

nj
, V =

∑nj
i=1 Vi

nj
(7)

Y =
∑nj

i=1 Yi

nj
, Cb =

∑nj
i=1 Cbi

nj
, Cr =

∑nj
i=1 Cri

nj
(8)

L∗ =
∑nj

i=1 L
∗

i
nj

, a∗ =
∑nj

i=1 a
∗

i
nj

, b∗ =
∑nj

i=1 b
∗

i
nj

(9)

where R, G, B, H, S, V , Y , Cb, Cr L∗, a∗, and b∗ denote the
average value of corresponding color component over all pixels.
nj denotes the number of image pixel of the jth segmented
insect sample. The three average components of a sample in each
color space constructed a three-dimensional vector fi1, fi2, fi3
, as shown in Figure 7D, which is used as the input of the
classifier (discussed in Section “Multi-Class Recognition Model”)
for species classification.

Multi-Class Recognition Model
After features extraction, a following step is to develop an
efficient model to identify different insect species. In this study,
the supervised learning model, support vector machine (SVM)
(Chen et al., 2010; Li et al., 2010; Saruta et al., 2013), is used
as a classifier to discriminate objects between whitefly, thrips or
background. For the SVM model, all samples are viewed as points
in p-dimensional space and these points in separate categories are
divided through a clear gap that is as wide as possible (Rumpf
et al., 2010). New examples are then mapped into the same space
and predicted to a certain category based on which side of the
gap they fall (Larese et al., 2014). In this study, each sample in
the training set is marked as belonging to a whitefly, a thrips
or background object and all samples are formed into pairs
of features-label examples such

{
xi, yi

}
, where xi is the three-

dimensional feature vector and yi is a class label. Our ultimate
goal is to find the “maximum-margin hyperplane” that can divide
the groups of samples. One of many possible hyperplanes can be
expressed by the following equation:

f (xi) = wTxi + b = 0 (10)
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FIGURE 6 | Determination of the threshold value for each saliency map.

FIGURE 7 | Images documenting feature extraction of individual insects. (A) Sub-block image, (B) a detected region, (C) an isolated insect, (D) feature vector in
color space.

where w ∈ Rd and b ∈ R. A support vector classifier selects
the hyperplane that maximizes the margin. This optimization
problem can be posed as follows:

min
w,b

∣∣∣∣w∣∣∣∣, yi(wTxi + b)− 1 ≥ 0 (11)

In this study, the LIBSVM package (Chang and Lin, 2015),
which supports support vector classification (C-SVC, mu-SVC)
and regression (epsilon SVR, nu-SVR), is used to conduct the
identification model development.

Performance Evaluation
The detection results are evaluated using metrics, such as
the true positive rate (TPR), false positive rate (FPR) and
detection accuracy. These metrics have been widely used in object
classification and detection areas (Xia et al., 2012; Nasirahmadi
et al., 2017; Shrestha et al., 2018). TPR refers to the effectiveness
of a classifier to identify positive samples, whitefly and thrips in
this study. A high TPR value means that most of the positive

samples are detected successfully. While FPR indicates that how
effectively a classifier could identify negative samples. A low FPR
value indicates the identification results contain a low percentage
of false alarms and a high percentage of true positives. These
parameters are calculated as follows:

TPR =
TP

TP + FN
(12)

FPR =
FP

TN + FP
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

where TP, TN, FP, and FN denote true positive (correctly
identified), true negative (correctly rejected), false positive
(incorrectly identified) and false negative (incorrectly
rejected), respectively.
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FIGURE 8 | Feature distribution of all the training samples. (A) Sample distribution in RGB color space, (B) sample distribution in L*a*b* color space, (C) sample
distribution in YCbCr color space, and (D) sample distribution in HSV color space.

RESULTS

Sample Distribution in Different Color
Space
After saliency region detector scanning across all images, the
locations of most potential objects are detected. To identify those
objects into different species, the feature distribution of whitefly,
thrips and background are analyzed in four color spaces. The
component of R, G, a∗, b∗, Cb, Cr, H, S in RGB, L∗a∗b∗, YCbCr
and HSV color space are illustrated in Figure 8. The distributions
of different features showed that there is considerable overlap
between targets (whitefly and thrips) and background in the RGB
color feature space. Therefore, it is difficult to classify whitefly and
thrips from the background category (Figure 8A). As shown in
Figure 8B, whitefly can be separated from background category
in L∗a∗b∗ color space but thrips still can’t be separated from
background category. Furthermore, the distribution of YCbCr
features was similar to L∗a∗b∗ color space and thrips can’t be
separated from category. In addition, there is some confusion
between whitefly and thrips (Figure 8C). Figure 8D documents
the distribution of the three categories in HSV color space, which

shows that it is relatively easy to classify the three categories.
Therefore, the components of H, S and V are used to detect
different insect species in current study.

Detection Results
The images captured from the field are complicated due to
variable conditions such as unstable illumination, light reflection
and various objects. Figure 9 shows some examples of insect
detection of different species in three sub-blocked images with
different image quality.

As shown in Figure 9A, it is a good-quality image with
smooth background. However, most of background in Figure 9B
is whitened because of the sticky glue degenerated over time,
and light reflection causes low-quality image in Figure 9C, which
brings difficulties to the insect detection. The location results
using the saliency region detection method are numbered as
shown in Figures 9D–F, respectively. Every identified object is
located using a bounding box, red for thrips, blue for whitefly
and green for background category (non-target) in Figures 9G–I,
respectively. The results showed that all whiteflies and thrips
in Figure 9A are detected successfully. However, there were
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FIGURE 9 | Original images, location results and detection results of three image samples with different quality. (A,D,G) Are for sample 1, (B,E,H) are for sample 2,
(C,F,I) are for sample 3.

some missing detections marked with black ellipse in Figure 9B.
Furthermore, some spots (marked with black rectangle) caused
by sticky glue are falsely classified as whiteflies in Figure 9C.

The insect detection performance is evaluated using TPR,
FPR and accuracy which are described in section “Performance
Evaluation.” Initially, the two pest species in the testing dataset
are separately marked manually and subsequently the evaluation
metrics are calculated according to the detection results using
Eqs (11)–(13). The overall detection performance on the three
categories is shown in Table 1. The TPRs for whitefly and
background categories were over 90% and the lowest TPR rate
of 80.1% is obtained by the thrips category. The reason may

be that some insects are attached to the sticky traps for a long
time, and they became obscure due to weathering and dryness
causing lack of detection. Additionally, the size of thrips is
particularly small, ranging from 5 pixels to 20 pixels, such that
it merged with the background thereby becoming indistinct. The
feature distribution between the background and thrips in section
“Sample Distribution in Different Color Space” may further verify
the result. However, these recently trapped insects are easier to
locate and identify.

The detection method for all categories produced false
positives. The lowest FPR of 9.9% is for whitefly but is higher
for thrips (12.3%) and background detection (11.6%). These are
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TABLE 1 | Detection performance for small-size pests (whitefly and thrips) by the
SVM classifier using field sticky trap images (n = 18, mean ± SD).

Objects Performance metrics

TPR FPR Accuracy

Whitefly
Thrips
Background

0.931 ± 0.031
0.801 ± 0.037
0.930 ± 0.021

0.099 ± 0.019
0.123 ± 0.039
0.116 ± 0.037

0.939 ± 0.015
0.898 ± 0.022
0.933 ± 0.014

typically caused by degeneration of glue on the sticky trap and
these produced “noise” in the form of point, stripe and bulk spot.
The latter two noises could be easily filtered by this proposed
location method. However, spot noises are easier misclassified
into pest targets, especially whiteflies due to their size and color
being similar to the targets.

The accuracy metric for whitefly is the highest at 93.9%
followed by 93.3% for background category and 89.8% for thrips.
The identification accuracy is further evaluated by correlation
analysis between the proposed method and manual counting,
as shown in Figure 10. The coefficient of determination, R2,
reached values of 0.9785 and 0.9572 for whitefly and thrips in
the test dataset, respectively. Compared with manual counting,
the proposed detection algorithm tended to overestimate the
abundance of whitefly and underestimate thrips. Additionally,
there are higher FPR for whitefly and increased TPR for thrips
in the test dataset.

DISCUSSION

Principle and Feasibility Analysis
This study clearly demonstrates the utility of using a remote
imaging approach combining image processing and pattern
recognition technology to locate and identify whitefly and thrips
on sticky trap in greenhouse conditions. The detection of
whitefly and thrips on the sticky trap is primarily composed
of two procedures: candidate target location and subsequent
identification. Compared with detection in a large image, the
small-sized whiteflies and thrips are more accurately recorded
on small visual areas. The image blocking procedure is included
in the study to split original image into small sub-blocking

images to increase area occupancy rate. From the perspective of
information theory, an image consists of two parts: the novelty
part (saliency regions) and redundant information (Zhou and
Zhang, 2007). The background in a sub-blocking image is the
statistical redundant component and whitefly and thrips in the
image could be regarded as the novelty component. There are
different spectral responses for the novelty and redundant parts of
the frequency domain. After removing the frequency response of
the redundant part from the whole spectrum, the novelty part can
be obtained. The most important advantage is that the saliency
region detection model is independent of species, features, or
other forms of prior knowledge of the objects.

The second step after object location is multi-class
identification. The segmented objects in the first step not
only contain whitefly and thrips, but also include the non-target
category. However, the identification of whiteflies and thrips
from non-targets is challenging and feature extraction is a
key step in the classification process. Similar studies on the
insect detection extracted shape features such as size, body
eccentricity and solidity to classify species (Solis-Sánchez et al.,
2011; Wang et al., 2012; Espinoza et al., 2016). However, due
to the small size characteristics of whiteflies and thrips, the
contours of the pests are not smooth after they are extracted
from background and could not be accurately identified based
on shape features. Despite the challenges, color feature analysis
revealed different feature distribution in HSV color space and
three color components (H, S, and V) are used as feature input of
SVM classifier to identify whiteflies and thrips in this study.

Robustness Analysis
The image-based pest identification method has previously
demonstrated high performance on collected images in the
laboratory conditions (Cho et al., 2007; Boissard et al., 2008).
However, field condition are very different from the laboratory
environment since the sticky trap images captured in greenhouse
can be influenced by various factors including sticky glue
degeneration, light reflection and unstable variable illumination
conditions (Xia et al., 2012). For example, Cho et al. (Cho et al.,
2007) utilized the RGB and YUV color model to separate three
different species. In addition, insect segmentation by YCbCr color
model has revealed better results than other methods among
different color models (Xia et al., 2015), but these segmentation
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FIGURE 10 | Comparison of results between the proposed detection method and manual counting for (A) whitefly and (B) thrips using the testing dataset.
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FIGURE 11 | Pest segmentation results of a sub-blocking image with noise by different methods. (A) Original image, (B) segmentation result of YCbCr color model,
(C) segmentation result of the proposed method.

TABLE 2 | Comparison between the proposed and previous methods for detection of whitefly and thrips using sticky trap images.

Method Imaging
scene

Segmentation Features Classification
method

Pest species Average
accuracy (%)

Qiao et al. (2008) Field-based Thresholding Color and size Comparative method Whitefly 76.9

Xia et al. (2015) Lab-based Thresholding Color and size Mahalanobis distance Whitefly, aphids,
thrips

91.0

Espinoza et al. (2016) Lab-based Thresholding Morphology and color ANN Whitefly and
thrips

94.0

Li et al. (2021) Field-based No Deep learning automatically Softmax Whitefly and
thrips

94.4

The proposed method Field-based Spectral residual model Color SVM Whitefly and
thrips

91.9

methods based on the color model have some shortcomings when
applied into field images. As shown in Figure 11A, there is some
noise in upper part of the image caused by degeneration of sticky
glue and light reflection. The segmentation result (Figure 11B)
using the YCbCr color model shows these objects (marked with
black ellipse in Figure 11A) are entirely missed. However, these
objects in the noise region still can be segmented by the proposed
method (Figure 11C). Although the multifractal analysis method
was designed against noise when used under field conditions and
showed high performance regarding accuracy, only one species
of pest, whiteflies, had been detected and the image collected
device and procedure was relatively complex (Xia et al., 2012).
Rather than directly counting the pests captured on the traps, Sun
et al. (2017) treated trapped pests as noise with 2DFT serving
as a noise collector. This method obtained a high correlation
with human counting when there was no other noise, but the
Fourier transform in a case when there are noise and pests at low
population density is similar to another case when pests at high
population density and no noise. In addition, it could not address
the problem associated with multi-class identification.

In current study, the pests are regarded as novelty objects
and located by the saliency region detection method which is
independent of color features and other forms of prior knowledge
of the objects. Therefore, good robustness of pest segmentation in
field images could be obtained by the proposed method.

Conversely, since some pests are attached to the trap for a
long time, there is limited resolution in the imaging and the
pest region in the saliency map is unclear, which will cause
missing detection after binary image processing. Contrasting
with the Otsu algorithm (Otsu, 1979), the threshold selected by
the triangle method (section “Candidate Object Location”) can
improve the detection rate since it utilized the single-peaked
feature of a histogram, but there are still some pests with low
novelty that are not reliably detected. In actual application, the
optimal option is replacement of the sticky trap on schedule
to avoid loss of resolution and missing data due to sticky
trap degeneration.

Comparisons With Previous Methods
Regarding to insect pest detection using sticky traps, several
image-based methods had been reported, including handcrafted
feature-based and deep learning-based methods. However, it is
difficult to compare the performances of these previous studies
with the proposed one quantitatively because of the use of
different dataset which is not publicly available. Therefore, a
qualitative analysis had been made in this study. Comparisons
of the proposed approach with some methods for detecting
greenhouse pests, such as whitefly and thrips, using sticky
trap images are summarized in Table 2. Two previous method
proposed by Xia et al. (2015) and Espinoza et al. (2016) used
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images scanned in the laboratory as research materials, but the
comparison showed that the prediction results of the proposed
method outperformed the method of Xia et al. (2015). While
the detection results reported by Espinoza et al. (2016) presented
the higher accuracy, the study used thresholding method to
segment targets, which causes the results were likely influenced
by the segmentation threshold. Qiao et al. (2008) reported a fact
that a small threshold loses relevant information, while a large
threshold produces more noise, so its accuracy is much lower
than that of the proposed method. It must be acknowledged
that the performance of the proposed model is lower than that
of deep-learning-based method reported by Li et al. (2021),
however, the method based on deep learning technology has high
complexity and depends on high-performance hardware, such
as GPUs1.

Pest Identification and Management
During our experiments in a greenhouse planted with pepper,
whitely and thrips are the two main pests. Although only whitefly
and thrips are identified in this study, the proposed method can
have additional applications into the detection of multiple pests
in greenhouse agriculture. The methodology for the detection of
more than three species is similar to that proposed in section
“Detection Method” except that more categories will be required
to extract information to allow for the construction of a new
baseline dataset.

In ecological studies, IPM usually relies on pest population
density assessment in a given area and is often estimated based on
trap counts (Petrovskii et al., 2012; Pinto-Zevallos and Vänninen,
2013). Therefore, precision identification and counting of pests
in a sticky trap image is of critical importance for the estimation
of population density. However, the relationship between trap
counts of whitefly and thrips and the actual population
density in the greenhouse is not clear. Such validation studies
would form a critical future basis for pest management using
image processing of pest populations in greenhouses (or open
field situations).

CONCLUSION

This study proposed a novel approach for the detection of adult-
stage whiteflies and thrips on sticky traps in greenhouses. The
approach consisted of three modules: object location, feature
1 https://www.nvidia.cn/

extraction and multi-class recognition. The sticky trap image was
divided into sub-block images and novelty objects within each
sub-block image were located using a saliency region detection
model. Furthermore, average values of three components in HSV
color space were extracted to train a SVM classifier. Ultimately,
HSV color features were calculated and used as input of the
trained SVM model to identify whether a detected object was a
whitefly or a thrips.

The study shows that adult thrips can be identified with a
TPR of 80.1%, FPR of 12.3% and accuracy of 89.8%. Better
performance is attained for the identification of whitefly, with a
value of 93.1% for TPR, 9.9% for FPR, and 93.9% for accuracy.
The proposed method in this study provides the possibility of
counting different species of pests in greenhouse conditions
by an automated pipeline, alleviating the time-consuming and
inaccurate approach associated with grower-based identification
of minute insect pests. The findings of the study contribute
valuable information pertaining to population density estimation
of small insect pests in greenhouse conditions and have broad
utility to other systems allowing for decision making processes
regarding integrated pest management approaches.
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