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Functional analysis of the BEige 
and Chediak-Higashi domain 
gene MpSPIRRIG in Marchantia 
polymorpha
Eva Koebke , Lisa Stephan , Markus G. Stetter * and 
Martin Hülskamp *
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BEige and Chediak–Higashi domain containing proteins (BDCPs) have been 

described to function in membrane-dependent processes in eukaryotes. 

This role was also observed for the BDCP SPIRRIG (SPI) in the model plant 

Arabidopsis thaliana in the context of cell morphogenesis. Additionally, AtSPI 

was found to control salt stress resistance by mediating mRNA stability and 

salt stress-dependent processing body formation. In this work, we  utilize 

an evolutionarily comparative approach to unravel conserved, basal BDCP 

functions in the liverwort Marchantia polymorpha. Our phenotypic and 

physiological analyses show that MpSPI is involved in cell morphogenesis 

and salt resistance regulation, indicating that both functions are evolutionarily 

conserved between the two species. Co-localization was found with 

endosomal and P-body markers, suggesting links to membrane-dependent 

processes and mRNA metabolism. Finally, we  present transcriptomics data 

showing that AtSPI and MpSPI regulate orthologous genes in A. thaliana and 

M. polymorpha.
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Introduction

Beige and Chediak-Higashi (BEACH) domain containing proteins (BDCPs) represent 
a conserved gene family in eukaryotes. BDCPs function as scaffolding proteins in 
membrane fission and fusion events, including vesicle transport, receptor signaling, 
apoptosis, and autophagy (Cullinane et  al., 2013). Genetic and molecular studies in 
A. thaliana revealed a role in vacuolar and Endosomal Sorting Complex Required for 
Transport (ESCRT)-mediated membrane trafficking of the BDCP gene AtSPIRRIG (AtSPI; 
Saedler et al., 2009; Steffens et al., 2017). AtSPI exhibits the classical BDCP domain structure 
with the characteristic and highly conserved C-terminal end, comprising a pleckstrin 
homology (PH) domain to bind phospholipids (Cullinane et al., 2013); the BEACH domain, 
which potentially serves as a ligand-binding site by interacting with the PH domain 
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(Jogl et al., 2002); and WD40 repeats to mediate protein–protein 
interactions (Stirnimann et al., 2010).

Atspi mutants were initially isolated in an EMS mutagenesis 
screen due to their weak, distorted trichome phenotype 
(Hülskamp et al., 1994). Further phenotypic characterization of 
the mutants revealed Atspi to exhibit trichomes with shorter 
branches and reduced stalk length, less complex epidermal 
pavement cells, and shorter root hairs and hypocotyls (Saedler 
et al., 2009). AtSPI has a function in maintaining vacuolar integrity 
(Saedler et  al., 2009) and endosomal transport via ESCRT-
mediated membrane trafficking through direct interaction with 
components of the machinery (Steffens et al., 2017). In addition, 
a role of AtSPI in salt stress-dependent mRNA regulation was 
uncovered (Steffens et  al., 2015): AtSPI interacts with the 
processing body (P-body) component DECAPPING PROTEIN 1 
(AtDCP1) and localizes to and promotes the assembly of P-bodies 
under salt stress conditions (Steffens et al., 2015). Furthermore, 
AtSPI was demonstrated to be  involved in stabilizing and 
recruiting salt stress-dependent mRNAs to P-bodies (Steffens 
et al., 2015). Finally, the finding that mutations in AtSPI lead to 
salt hypersensitivity proved a biologically relevant function of 
AtSPI in the A. thaliana salt stress response (Steffens et al., 2015).

Evolutionary comparison of SPI between A. thaliana and 
Arabis alpina demonstrated that the role of SPI in cell 
morphogenesis and endosomal pathways is conserved between 
these two Brassicaceae species (Stephan et  al., 2021). This is 
evident from SPI co-localization and interaction with ESCRT 
components and a similar range of phenotypes. Moreover, a link 
to P-bodies is suggested by direct protein–protein interaction with 
P-body markers (Stephan et al., 2021).

In this study, we characterize a spirrig T-DNA mutant in the 
liverwort Marchantia polymorpha (Mpspi), isolated by Honkanen 
et al. (2016). During the last decade, M. polymorpha has been 
established as a new molecular model organism to assess 
comparisons over large evolutionary distances (Mishler and 
Churchill, 1984; Shimamura, 2016). It enables researchers to study 
the evolution of land plants, and concomitantly, learn about the 
basal, minimal genetics coming along with land colonization 
(Bowman et al., 2007; Ishizaki et al., 2016). The relatively small, 
fully sequenced genome with a low level of redundancy (Bowman 
et al., 2017), combined with the dominant, haploid gametophytic 
life phase of M. polymorpha, offers optimal genetic and 
morphological conditions for reverse and forward genetics. 
Moreover, M. polymorpha can be  transformed using 
Agrobacterium (Ishizaki et al., 2008; Kubota et al., 2013), and it is 
accessible for genome editing via homologous recombination 
(Ishizaki et  al., 2013) and CRISPR/Cas9 (Sugano et  al., 2014, 
2018). Finally, quick and easy tools to analyze the localization, 
interactions, and functions of proteins of interest, as well as cell 
morphology, using transient biolistic transformation and staining 
methods, are available (Westermann et al., 2020).

Here, we present an evolutionarily comparative functional 
study of MpSPI. We show that mutant plants are hypersensitive to 
salt stress, indicating that the dual role of AtSPI in cell 

morphogenesis and salt stress response is evolutionarily 
conserved. In addition, using a comparative RNAseq approach, 
we  present a common set of homologous genes regulated by 
A. thaliana and M. polymorpha SPI, strongly suggesting functional 
conservation of BDCP function between the two species.

Materials and methods

Plant materials, growth conditions, and 
stress treatments

The T-DNA insertion in the Mpspirrig mutant (corresponding 
designations: Mpspi-2 and ST17-11; Honkanen et al., 2016) was 
confirmed by sequencing the amplicon generated with the gene-
specific primer 5′-CGAGCCGACTTACCCCTAAT-3′ and the 
T-DNA (pCAMBIA 1300) left border primer 
5′-CAGATAAGGGAATTAGGGTTCCTATAGG-3′. The male sex 
of the mutant line was confirmed with the male-specific primer 
pair 5′-CCAAGTGCGGGCAGAATCAAGT-3′ and 
5′-TTCATCGCCCGCTATCACCTTC-3′, amplifying rbm27 
(Fujisawa et al., 2001).

Plants of the mutant line, the corresponding male ecotype 
Tak-1, the female ecotype Tak-2, and F1 crossings of Tak-1 and 
Tak-2 (Tak-1 × Tak-2) were propagated vegetatively under axenic 
conditions by growing gemmae on Johnson’s medium (Johnson 
et al., 1957) supplemented with 0.8% plant agar under long-day 
conditions (16 h light/8 h darkness cycle) and white light 
(60 μmol m−1 s−1) at 21 ± 2°C.

In order to assess the rhizoid growth, gemmae were grown 
vertically on solid Johnson’s medium without supplements or 
supplemented with 50 mM NaCl under normal conditions 
for 7 days.

Cloning and plasmids

Total RNA was extracted from 14-day-old Tak-1 thalli using 
TRI reagent (Ambion Life Technologies). RNA was treated with 
DNaseI (Thermo Scientific) and subjected to oligo(dT)20 cDNA 
synthesis using the SuperScript™ III First-Strand cDNA Synthesis 
Kit (Thermo Scientific). Coding sequences of MpSPI PBW 
(Mp2g15800), MpSPI PBWF (Mp2g15800), MpLIP5 
(Mp1g06880), and MpSKD1 (Mp8g01610) were amplified from 
Tak-1 cDNA (Primer list, Supplementary Table S6). MpDCP2 
(Mp8g16420), MpRAB5, and MpARA6 plasmids have been 
described before (Westermann et al., 2020). mCH-AtUBP1B was 
kindly provided by A. Steffens. AtKRP1-CFP was kindly provided 
by M. Jakoby. Coding sequences were cloned into Gateway vectors 
pDONR201 and pDONR207 (Invitrogen) and subsequently 
transferred to respective expression vectors: for localization 
studies, we used pENSG-YFP/CFP, pEXSG-YFP/CFP (Feys et al., 
2005), pAMARENA/pAUBERGINE (M. Jakoby, GenBank ID: 
FR696418) and pMpGWB406 (Ishizaki et  al., 2015); yeast 
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two-hybrid assays were performed using pAS/pACT (Clontech); 
and Bimolecular Fluorescence Complementation (BiFC) was 
performed using pSYN/pSYC (Jakoby et  al., 2006) and 
pCL112/113 (provided by J. F. Uhrig).

Protein–protein interaction assays

The protocols for yeast two-hybrid assays were described 
before (Gietz et al., 1995). Positive interactions were selected on 
plates containing dropout interaction media lacking leucine, 
tryptophan, and histidine, supplemented with increasing 
concentrations of 3-Amino-1,2,3-Triazole (3-AT) up to 
50 mM. BiFC assays were performed as described previously 
(Westermann et al., 2020).

Plant transformation

Transient biolistic transformation of M. polymorpha thalli was 
performed as described before (Westermann et al., 2020). Stable 
transformation of regenerating M. polymorpha thalli fragments 
with Agrobacterium tumefaciens (GV3101 pMP90RK) was 
conducted as described by Kubota et al. (2013).

Staining procedures

Fluorescein diacetate (FDA) stainings of young gemmae 
(5 days old) were performed as described before (Westermann 
et al., 2020).

Microscopic analysis

Microscopic observation was carried out with a Leica MZ 16F 
fluorescence binocular or a Leica TCS SP8 confocal laser scanning 
microscope using an HC PL APO 20 ×/0.75 IMM CORR CS2 
objective. The excitation and emission of the different fluorophores 
were performed as described before (Westermann et al., 2020).

Transcript analysis

Total RNA was extracted from three biological replicates of 
14-day-old Tak-1 and Mpspirrig thalli grown under normal 
conditions using TRI reagent (Ambion Life Technologies). RNA 
integrity was confirmed on a bleach gel (Aranda et al., 2012). 
1 μg of DNaseI-treated RNA was subjected to oligo(dT)20 cDNA 
synthesis using the SuperScript™ III First-Strand cDNA 
Synthesis Kit (Thermo Scientific). Quantitative Real-Time PCR 
(RT-qPCR) was performed in a QuantStudio 5 System (ABI/Life 
Technologies) using plates (96 well, 0.2 ml) and cover foil (Opti-
Seal Optical Disposable Adhesive, BIOplastics) and SYBR 

Green reagent (Thermo Fisher Scientific). Subsequent analysis 
was conducted with the QuantStudio TM Design and Analysis 
Software version 1.4.1 (ABI/Life Technologies) and Excel 2016. 
The average of three biological and three technical replicates 
was calculated. Primer efficiencies were determined using a 
cDNA dilution series of 1:10, 1:20, 1:40, 1:80, 1:160, and 1:320. 
Reference gene primers MpADENINE PHOSPHORIBOSYL 
TRANSFERASE 3 (MpAPT3) and MpACTIN7 (MpACT7) were 
described before (Saint-Marcoux et al., 2015). The efficiency of 
the primer pair for MpSPIRRIG (Primer list, supplemental) was 
accepted with an efficiency of 80–120% and a correlation 
between −1 and − 0.99. Normalization against two reference 
genes was performed according to the geNorm manual 
(Vandesompele et al., 2002).

RNA sequencing and transcriptome 
analysis

Total RNA for RNAseq analysis was extracted from three 
biological replicates of 14-day-old Tak-1 and Mpspirrig 
thalli grown under control conditions using TRI reagent 
(Ambion Life Technologies). Two μg of DNaseI-treated, 
quality-controlled RNA (RIN > 7, OD260/280 = 1.8–2.1, 
OD260/230 > 1.5) were sent to the Cologne Center for Genomics 
(CCG) for paired-end 100 bp short-read sequencing. Raw reads 
were filtered and trimmed using trimmomatic (v 0.39) with 
SLIDINGWINDOW:4:15 MINLEN:35 LEADING:5 
TRAILING:5 (Bolger et al., 2014), and data quality was assessed 
using MultiQC (v 1.7; Ewels et al., 2016). Filtered reads were 
aligned to the MpTak1_v5.1 reference genome (Montgomery 
et al., 2020) using STAR (v 2.7.3a; Dobin et al., 2013), and reads 
per gene were counted using the htseq-count function of HTSeq 
(v 0.11.3; Anders et  al., 2015). We  further used DESeq2 (v 
1.24.0; Love et al., 2014) to compare read counts between Tak-1 
and the Mpspirrig mutant. We filtered genes for a minimum of 
ten reads in at least three of the six samples. Differentially 
expressed genes (DEGs) were filtered using the adjusted value 
of p cutoff of 0.01 and a log2 fold change of 1. To test the overlap 
between DEGs in the Mpspirrig mutant and DEGs in Atspirrig, 
we used PhytoMine (v.13)1 through the intermine (v 1.11.0) 
Python API to identify homologs between M. polymorpha and 
A. thaliana and applied a hypergeometric test for overlap in 
R. Sequence reads are available on the European Nucleotide 
Archive under project number PRJEB51622. M. polymorpha 
Gene Ontology (GO) term enrichment analysis was performed 
as previously described (Busch et al., 2019) with agriGO v.2 
(standard settings; http://systemsbiology.cau.edu.cn/agriGOv2/; 
Tian et  al., 2017) using gene IDs for the MpTak1_v3 
reference genome.

1 https://phytozome-next.jgi.doe.gov/phytomine
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Results

The Marchantia polymorpha Mpspi 
mutant

The BEACH domain proteins in eukaryotes cluster into four 
groups (A–D; Saedler et al., 2009) with similar domain structures 
(Supplementary Figure S1). AtSPI belongs to group A and is well 
conserved throughout the plant kingdom 
(Supplementary Figure S1; Stephan et  al., 2021). Group A 
members share a Laminin G/Concanavalin A superfamily domain 
but lack additional domains found in the other groups. BLAST 
analysis (marchantia.info, MpTak1v5.1) revealed a total of five 
BDCPs in M. polymorpha, and phylogenetic tree construction 
indicates that MpSPI is the closest homolog to AtSPI 
(Supplementary Figure S1).

The overall structure of the MpSPI gene is similar to the 
previously investigated plant SPI homologs of A. thaliana and 
A. alpina; however, MpSPI has an additional FYVE domain 
downstream of the PBW domain (Figure 1A). FYVE domains are 
known to target membranes by binding to phosphatidylinositol 3 
phosphate (PtdIns(3)P) and are functionally connected to 
vacuolar protein sorting and endosome function (Gaullier 
et al., 1998).

The male T-DNA mutant line Mpspi, isolated by Honkanen 
et al. (2016), harbors a single T-DNA insertion in the 15th exon of 
MpSPI (Honkanen et al., 2016; Figure 1B) upstream of the region 

coding for the characteristic C-terminal PBW domain. RT-qPCR 
experiments using primers located downstream of the insertion 
site revealed no significant differences between wild type and 
mutants (Supplementary Figure S2A), indicating that this 
insertion does not affect the expression levels of MpSPI. The 
produced RNA, however, is incomplete. This is evident from 
qualitative RT-PCR data, showing that a primer pair spanning the 
T-DNA insertion site generates no bands in Mpspi 
(Supplementary Figure S2B).

Morphological phenotypes of Mpspirrig 
gemmae

Honkanen et al. (2016) initially identified Mpspi by its short 
rhizoid phenotype. We  confirmed this phenotype in seven-
day-old gemmalings. Mpspi showed a clear reduction in rhizoid 
length compared to Tak-1 (3.6 fold), Tak-2 (2.1 fold), and 
Tak-1xTak-2 F1 gemmalings (2.8 fold; Figure  2A). Statistical 
analysis revealed that this reduction is significant (p  ≤ 0.001; 
Figure 2B).

As Atspi mutants in Arabidopsis display fragmented vacuoles 
(Saedler et  al., 2009), we  stained five-day-old gemmae with 
fluorescein diacetate (FDA). Vacuoles in rhizoids were 
indistinguishable between Tak-1, Tak-2, Tak1 × Tak-2 crossings, 
and Mpspi (Supplementary Figure S3), similar as found for 
A. alpina spirrig mutants (Stephan et al., 2021).

A

B

FIGURE 1

Gene and protein structure of MpSPIRRIG. (A) Comparison of the MpSPIRRIG, AtSPIRRIG, and AaSPIRRIG protein structures. Sizes are indicated by 
amino acid (aa) numbers. The three homologs are similar in length: MpSPI (3,766 aa), AtSPI (3,601 aa), AaSPI (3,570 aa). ARM = Armadillo repeats, 
ConA = Concanavalin A-like lectin domain, PH = pleckstrin homology domain, BEACH = BEige and Chediak-Higashi domain, WD40 = WD40 repeats, 
FYVE = FYVE domain. (B) Gene structure of MpSPI including the T-DNA insertion site in Mpspi. MpSPI has 20 exons (indicated in blue). The T-DNA 
insertion is indicated by the triangle, R and L mark the T-DNA borders. Gray boxes show UTRs and black lines depict introns. The arrows indicate 
primer pairs used for RT-PCR (black) and qPCR (gray).
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Salt stress phenotype of the Mpspirrig 
mutant

A. thaliana and A. alpina spirrig mutants show a 
hypersensitive response to salt stress. In order to investigate 
whether MpSPI is involved in the M. polymorpha salt stress 
response, we examined the effect of 50 mM NaCl on the rhizoid 
length of Mpspirrig. Rhizoid length was analyzed after 7 days. 
We found a significant reduction of the rhizoid length under 
salt stress conditions (Figure 3). This indicates that Mpspi is salt 
hypersensitive and that MpSPI is relevant for the salt stress 
response in M. polymorpha.

A

B

FIGURE 2

Mpspi has a severe short-rhizoid phenotype. (A) Representative 
images of gemmalings grown vertically on Johnson‘s medium 
for 7 days. Scale bar: 2 mm. (B) Rhizoid length of seven-day-old 
gemmalings. N ≥ 240. Significance was tested by ANOVA at 
p ≤ 0.001 (***).

A

B

FIGURE 3

Mpspirrig is salt hypersensitive. (A) Rhizoid growth is strongly 
impaired in 4-day-old gemmalings of Mpspirrig compared to 
Tak-1, Tak-2, and Tak1xTak-2. Scale bar: 2 mm. (B) Comparison of 
rhizoid growth under salt stress (n ≥ 160) and control conditions 
(n ≥ 240) on 7-day-old gemmalings. Significance was tested by 
ANOVA at p ≤ 0.001 (***).
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MpSPI interacts with ESCRT components

The association of A. thaliana and A. alpina SPI with 
membrane-dependent processes is suggested by co-localization 
and direct protein–protein interactions with ESCRT components 
(Steffens et al., 2017; Stephan et al., 2021). To test whether SPI in 
M. polymorpha shares this behavior, we  first performed 
co-localization assays in M. polymorpha epidermal cells. Toward 
this end, we focused on MpSPI, MpLIP5, and MpSKD1, for which 
co-localization and interactions were reported for A. thaliana and 
A. alpina (Steffens et al., 2017; Stephan et al., 2021).

Co-localization experiments were done with protein fragments 
of MpSPI as we were not able to construct the about 12 kb long 
full-length CDS. The fragments were chosen to fit Arabidopsis and 
Arabis fragments used in previous studies to facilitate comparison. 
MpSPI PBW alone localizes to distinct cytoplasmic dots in 
transient assays as well as in stably transformed Tak-1 thalli 
(Figures 4A,E). The localization was neither dependent on the 
position of the fluorescent tag nor on the presence of the 
C-terminal FYVE domain (Figures  4B,C). This localization 
behavior differs from AtSPI to AaSPI, which are evenly distributed 
in the cytoplasm (Steffens et al., 2017; Stephan et al., 2021). To test 
whether this is a property of MpSPI or the cellular environment, 
we  studied MpSPI localization in transiently transformed 

A. thaliana epidermal cells. Here as well, MpSPI was localized to 
dots indicating that the localization behavior is not primarily 
triggered by the cellular environment (Figure 4D).

MpLIP5 and MpSKD1 both localize to cytoplasmic, 
dot-like structures (Figures 5A,B), which co-localize entirely 
with MpSPI PBW in double transformations (Figures 5C,D). 
In contrast, co-localization experiments with the endosomal 
marker proteins MpRas-related in brain 5 (MpRAB5) and 
MpARA6 (also known as RABF1) revealed only partial overlap 
supporting a direct interaction of MpSPI with MpLIP5 and 
MpSKD1, rather than a general localization to endosomal 
structures (Supplementary Figure S4, S5).

To test this, we assessed direct protein–protein interactions of 
MpSPI with ESCRT components in pairwise yeast two-hybrid 
assays. While no interaction between MpSPI PBW/PBWF and 
MpSKD1 was detectable, we found a strong interaction between 
MpSPI PBW/PBWF and MpLIP5 (Supplementary Table S1). 
However, this interaction could not be independently confirmed. 
Bimolecular fluorescence complementation (BiFC) assays in cells 
of M. polymorpha (Supplementary Figure S6), A. thaliana, 
A. porrum, and N. benthamiana showed no interactions of MpSPI 
PBW with MpSKD1 or MpLIP5. Moreover, Förster Resonance 
Energy Transfer-Acceptor Photobleaching (FRET-AP) and pull-
down assays experimentally did not succeed in our hands. 

A

B

C

D

E

FIGURE 4

MpSPI PBW localizes to dot-like structures under non-stress conditions. (A) Transiently expressed, CFP tagged MpSPI PBW localizes to punctate 
structures in Tak-1 epidermal cells under normal conditions (B) irrespective of the position of the fluorescent tag and (C) the addition of the FYVE 
domain. Scale bars: 25 μm. (D) Transiently expressed, CFP tagged MpSPI PBW localizes to punctate structures in A. thaliana Col-0 epidermal cells 
under normal conditions. Scale bar: 25 μm. (E) Citrine tagged MpSPI PBW was stably transformed into regenerating Tak-1 thalli. Image shows a 
5-day-old gemmae derived from the stable line. Scale bar: 25 μm.
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Expressed MpLIP5 was non-specifically bound by any protein tag, 
and it was not possible to detect MpSPI PBW in protein extracts 
of a stably transformed M. polymorpha line or to simultaneously 
detect MpSPI PBW and MpLIP5 in protein extracts of transiently 
transformed N. benthamiana leaves by immunoblotting.

MpSPI localizes to P-bodies

In A. thaliana, the PBW domain of SPI localizes to P-bodies 
under salt stress and differentially regulates the stability of RNAs 
in this context (Steffens et al., 2015). To test whether this is also 
the case in M. polymorpha, we transiently co-expressed MpDCP2 
and MpSPI PBW. We found a strong co-localization in punctate 
structures under normal conditions (Figure 6A). However, the 
number of P-bodies labeled by MpSPI PBW was not altered by salt 

stress (150 mM NaCl for 60 min; Figures. 6A,B). Interestingly, the 
stress granule marker AtUBP1B, which localizes to dots upon 
stress in A. thaliana (Nguyen et  al., 2016), is also present in 
granules already under non-stress conditions in M. polymorpha 
(Supplementary Figure S7).

To further support an association of MpSPI with P-bodies, 
we tested protein–protein interactions of MpSPI with MpDCP1. 
However, we found no interaction in pairwise yeast two-hybrid 
and BiFC assays in M. polymorpha.

Differentially expressed genes (DEGs) 
overlap in Mpspirrig and Atspi mutants

The finding that MpSPI is relevant for morphogenesis and salt 
stress, similar to Arabidopsis thaliana and Arabis alpina, raised the 

A

C

D

B

FIGURE 5

MpSPI PBW co-localizes with ESCRT components in M. polymorpha. (A) Dot-like localization of transiently expressed mCherry-MpSKD1 in Tak-1 
epidermal cells. (B) Dot-like localization of transiently expressed MPLIP5-YFP in Tak-1 epidermal cells. (C) Transient co-expression of MpSPI PBW 
and MpLIP5-YFP in Tak-1 epidermal cells. (D) Transient co-expression of MpSPI PBW and MpSKD1 in Tak-1 epidermal cells. Arrowheads indicate 
areas of co-localization. Scale bars = 20 μm.
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A

B

FIGURE 6

MpSPI PBW co-localizes with P-Bodies in M. polymorpha. Transient co-expression of MpSPI PBW with MpDCP2 in Tak-1 epidermal cells (A) under 
non-stress conditions and (B) salt stress (150 mM NaCl for 60 min). MpSPI PBW granule number in the co-bombardment shown in A and B was 
determined in n = 14 cells before and after salt treatment. No significant difference in granule number was detected with a two-tailed, unpaired 
Student’s t-test at p < 0.05. Arrowheads indicate areas of co-localization. Scale bars: 20 μm.

question of whether SPI regulates common downstream genes. 
Previous experiments have shown that many genes are 
differentially expressed when comparing wild type and spi 
mutants in A. thaliana (Steffens et  al., 2015). To explore this, 
we employed a comparative, genome-wide transcriptome analysis 
of Mpspi and wild type plants. Total RNA of both plant lines was 
extracted from three biological replicates of 14-day-old plants 
grown under normal conditions and subjected to RNAseq. All six 
samples had over 30 million reads each, with at least 19.5 million 
reads mapping to exonic regions. All samples clustered according 
to the genotype based on read counts (Supplementary Figure S8). 
Of the 20,574 expressed genes, 13,607 genes were retained after 
filtering (minimum ten reads in at least three samples; Figure 7). 
We identified 442 significantly DEGs (p < 0.01), comprising 104 
upregulated and 338 downregulated genes, with at least 2-fold 
expression change between wild type and mutant 
(Supplementary Figure S9, Figure 7 and Supplementary Table S2). 
Consistent with our RT-qPCR analysis, the read count of MpSPI 
was not significantly different in Mpspirrig samples and the wild 
type (Supplementary Figure S10).

To determine common involvement in biological processes 
among the DEGs, we analyzed enriched GO terms (Figure 8). 
Among 217 M. polymorpha genes with annotated terms, we found 

a total of 20 significantly enriched GO terms in the category 
biological processes (FDR < 0.05, Figure 8). Interestingly, the six 
most strongly enriched GO terms oxidation–reduction process, 
single-organism metabolic process, response to oxidative stress, 
response to stress, response to stimulus, single-organism process, 
in that order (FDR < 5E–05, Supplementary Table S3) are present 
among the most strongly enriched GO terms of significant DEGs 
in A. thaliana spirrig mutants as well (FDR < 5E–05, 
Supplementary Table S4, derived from RNAseq data of Steffens 
et al., 2017). Next, we compared the set of significant DEGs (fold 
change > 2) in Mpspirrig to all significant DEGs in A. thaliana 
spirrig mutants (RNAseq data of Steffens et al., 2017). For 127 of 
the 442 DEGs, we could identify an A. thaliana ortholog using 
PhytoMine. Finally, we  found a highly significant overlap 
(p  = 4.08e–10) of 20 DEGs between Mpspirrig and Atspirrig 
(Supplementary Table S5).

Discussion

In this work we studied the molecular and biological function 
of MpSPI in the liverwort Marchantia polymorpha to enable an 
evolutionary comparison with two other plant species in which 
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the homolog gene was characterized, Arabidopsis thaliana and 
Arabis alpina.

Is MpSPI a homolog of the Arabidopsis 
SPI gene?

We consider MpSPI as an AtSPI homolog based on the finding 
that it clusters in the same group in a phylogenetic tree considering 
the BEACH domain (Supplementary Figure S1). MpSPI differs, 
however, from BDCPs in angiosperms at the structural level as it 
exhibits a FYVE domain in the C-terminus. FYVE domains target 
membranes by binding to phosphatidylinositol 3 phosphate 
(PtdIns(3)P; Gaullier et  al., 1998). Both the human BDCP 
HsWDFY3/autophagy-linked FYVE protein (ALFY) and its 
Drosophila ortholog Blue cheese (Bchs) carry a FYVE domain 
downstream of the PBW domain and are involved in the clearance 
of aggregated proteins for autophagic degradation. In A. thaliana, 
none of the BDCP family members exhibit a FYVE domain (Teh 
et al., 2015). Recently, Agudelo-Romero et al. (2020) argued that 
the FYVE domain has been lost during land plant evolution 
because it has lost its essential function. This is consistent with our 
finding that protein fragments with and without the FYVE 
domain showed the same localization behavior. However, a more 

detailed molecular analysis would be  necessary to explore 
this question.

The dual role of SPI in morphogenesis 
and salt resistance Is evolutionary 
conserved

The Arabidopsis SPI gene has been described to be important 
in two processes that appear to be unrelated: cell morphogenesis 
and salt resistance (Steffens et al., 2015). The finding that a second, 
evolutionary distant Brassicaceae species, Arabis alpina, shows 
similar phenotypes in both processes suggested that the dual 
function is evolutionary conserved within that family (Stephan 
et  al., 2021). The data reported in this study suggest that also 
MpSPI in Marchantia polymorpha is involved in both processes. 
We found a clear hypersensitive response to salt stress. The role of 
MpSPI in cell morphogenesis is evident from the short root hair 
phenotype. While the latter was reported in two independent 
alleles, we could only analyze one allele with respect to its response 
to salt stress. Our attempts to generate a second allele by CRISPR 
or to rescue the mutant phenotype failed for technical reasons. 
Therefore, we cannot exclude that the salt stress phenotype is due 
to a background mutation.

The association of SPI with endosomal 
structures and P-bodies is evolutionary 
conserved

The molecular analysis of SPI in A. thaliana has revealed the 
co-localization of SPI protein with endosomes and P-bodies 
(Steffens et al., 2015, 2017). In addition, physical interactions of 
SPI with canonical endosomal proteins such as LIP5 and SKD1 
and the P-body protein DCP1 were found suggesting that SPI 
exerts a molecular function in the two compartments (Steffens 
et al., 2015, 2017). We found no convincing evidence supporting 
the direct interaction of MpSPI with the interactors found in 
Arabidopsis. However, co-localization experiments with MpSPI 
revealed clear association with MpSKD1 and MpLIP5. This 
co-localization appears to be  specific to a subpopulation of 
endosomes as the endosomal marker MpARA6 and MpRAB5 
revealed only partial co-localization. This selective binding to 
MpSKD1 and MpLIP5 labeled endosomes may reflect a functional 
link. This may occur through MpLIP5 for which we found an 
interaction in yeast two-hybrid assays. Similarly, the 
co-localization of MpSPI with the P-body marker MpDCP2 may 
reflect a functional association, though the molecular basis 
remains elusive without the identification of an interaction 
partner. It is interesting to note, that in contrast to Arabidopsis, 
the association of MpSPI to P-bodies is not stress-dependent. 
Given that also the stress granule marker is associated in granules 
under non-stress conditions, it is likely that P-bodies and stress 
granules are constitutively present.

FIGURE 7

Volcano plot of differentially expressed genes between Tak-1 wild 
type and Mpspirrig. Data from three biological replicates per 
genotype. Of 20,574 expressed genes, 13,607 remained after 
quality filtering (> 10 reads across samples). Of these, 442 were 
differentially expressed at a threshold of 2-fold change (log2-fold 
change > 1; vertical dashed lines) at a significance level of 0.01 
(horizontal dashed line). Of these, 104 showed higher expression 
(red) and 338 lower expression in Mpspirrig than in Tak-1.
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FIGURE 8

Gene ontology (GO) term enrichment of 217 DEGs in Mpspirrig with annotated terms in M. polymorpha. Darker colors in GO term categories 
represent higher enrichment indicated by lower false discovery rate (FDR). The analysis was performed with agriGO v2.0 on the background of the 
M. polymorpha locus ID v3.1 (Phytozome v11.0).

Mpspi regulates stress response genes 
and a common set of genes also 
regulated by Arabidopsis SPI

Our genome-wide transcriptome comparison of Mpspi and 
wild-type revealed 442 significant DEGs with at least 2-fold 
change in expression. Our analysis revealed several strongly 
enriched GO terms that all suggest a role in stress responses. 
Strikingly, the significantly enriched GO terms in Arabidopsis are 
very similar suggesting that the transcriptional changes in spi 
mutants affect the stress response machinery in both species. 
We extended this analysis aiming to identify specific genes that are 
differentially regulated by both species in a SPI-dependent 
manner. Out of the 442 DEGs in Marchantia we could identify 127 
orthologs out of which 20 DEGs were shared by Marchantia and 
Arabidopsis. While these genes do not immediately suggest the 
regulation of specific biological pathways, it is remarkable that 20 
orthologous genes are regulated by SPI despite the enormous 
evolutionary distance.
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