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Accurate yield estimation at the regional scale has always been a persistent challenge
in the agricultural sector. With the vigorous emergence of remote sensing land surface
observations in recent decades, data assimilation methodology has become an effective
means to promote the accuracy and efficiency of yield estimation by integrating regional
data and point-scale crop models. This paper focuses on the black soil area of
Northeast China, a national strategic grain production base, applying the AquaCrop
crop growth model to simulate the fractional vegetation cover (FVC) and maize yield
from 2000 to 2020 and then forming a reliable FVC optimization dataset based on
an ensemble Kalman filter (EnKF) assimilation algorithm with remote sensing products.
Using the random forest model, the regression relationship between FVC and yield
was established from the long-term time series data, which is crucial to achieve better
yield estimation through the optimized FVC. The major findings include the following: (1)
The R2 of the assimilated FVC and maize yield can reach 0.557. (2) When compared
with the local statistical yield, our method reduced the mean absolute error (MAE) from
1.164 ton/ha (based on GLASS FVC products) to 1.004 ton/ha (based on the calibrated
AquaCrop model) and then to 0.888 ton/ha (the result after assimilation). The above
results show that we have proposed a yield estimation method to provide accurate yield
estimations by combining data assimilation and machine learning. This study provided
deep insights into understanding the variations in FVC and revealed the spatially explicit
yield prediction ability from the time series land surface parameters, which has significant
potential for optimizing water and soil resource management.

Keywords: AquaCrop model, Kalman filter, remote sensing, yield prediction, random forest, data assimilation

INTRODUCTION

Agricultural production is the foundation of human survival. Accurate prediction of crop yield
enables farmers to estimate profits and adjust crop-planting patterns. Governments also benefit
from yield prediction information, which helps to promote the development and reform of food
security, sustainable utilization of water and soil resources, agricultural trade and many other
aspects (Feng et al., 2021).
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The northeastern Chinese black soil area is a major black soil
zone of the world and a strategic guarantee base for national
food security by producing crops such as maize and soybean (Lin
et al., 2019). The special soil properties and natural geographical
conditions make its rain-fed agricultural production mode
different from other main grain-producing areas. Atmospheric
precipitation has become one of the main influencing factors of
crop yield (Cui et al., 2021). According to these characteristics of
this area, there is an urgent need to carry out detailed research
on crop yield estimation, especially on maize with large planting
scale and appreciable economic benefits (Qian et al., 2018).

Crop growth models are an important tool to quantitatively
describe the growth and yield formation process of specific
crops under specific environments based on point scales (Van
et al., 1989; Monteith, 1996; Steduto et al., 2009), and it
is difficult to characterize the spatial low of crop growth
due to the limitation of scale. The current research trend
is to run models on a regional scale and then establish the
response system of crop growth to soil and meteorological
environment changes to provide macro decision-making for
precision agriculture. Different from photosynthetic effective
radiation driving mechanism of WOFOST model and the other
crop model (Todorovic et al., 2009), AquaCrop model is driven
by water factors and simulates crop yield based on water use
efficiency (Raes et al., 2009) and is widely used in arid and
rain-fed areas with great research prospects in water-efficient
utilization (Eshete et al., 2020). This model evolved from the crop
water response equation in the irrigation and drainage Document
No. 33 of the Food and Agriculture Organization of the United
Nations (FAO) (Passioura, 1996). Several studies have applied
AquaCrop model to simulate and evaluate typical crops growth
in different regions and got great results. Iqbal et al. (2014)
demonstrated that the yield of winter wheat in North China
Plain simulated by AquaCrop model performed unsatisfied under
strong water stress, and the accuracy is significantly improved
after parameter calibration. Sandhu and Irmak (2019) found the
AquaCrop simulated yield and evapotranspiration quite well in
Midwestern America, but encountered substantial difficulties in
simulating biomass and soil-water. The AquaCrop model driven
by water has advantages for crop research in Northeast China, but
relevant research has lacked.

Simulation and observation are two basic strategies of
geoscience research (Li, 2016). Since almost all surface variables
have high spatiotemporal heterogeneity, there is bound to be
deviation and uncertainty in any parameterization process. From
the perspective of simulation, although the crop model has
sorted out the material cycle and other growth processes very
clearly on the micro level, complex error transmission will
accumulate, and the uncertainty reflected will be amplified
in the simulation results when it is extended to the macro
scale. From the perspective of observations, field measurements
have high accuracy but low spatial representation. Obtaining
abundant observations will be very laborious when studying
a large-scale area with high heterogeneity. Although remote
sensing observations already provide sufficient surface data, a
sophisticated inversion algorithm is needed to gain effective
information indirectly. The inversion and sensor accuracy greatly

limit the reliability of remote sensing data. Therefore, integrating
multisource observations and decreasing the uncertainty of
the simulation is key to ameliorating the limitations of
model application.

Data assimilation (DA) is an important integrating
methodology that automatically adjusts the process model
forward direction continuously by relying on observations
and then generates the minimum-deviation state variable set
with spatiotemporal consistency, which is usually used for
modeling and dynamic prediction of complex systems (Li and
Bai, 2010; Qin et al., 2018). With the rapid development of
remote sensing technology, a large amount of earth observation
data has emerged as crucial support for regional precision
agriculture research. By reanalyzing the prior crop growth model
with multi-temporal observation data, the reliability of the
simulation results is improved, which is of great significance to
agricultural dynamic monitoring, yield prediction, and regional
resource management.

Looking at the relevant studies integrating crop model and
remote sensing data in recent years (Table 1), the most common
crop models are WOFOST, CERES and AquaCrop. The main
crop types are winter wheat and other food crops. Optical remote
sensing data is generally used for remote sensing observation
data, and a few literatures show that InSAR has a good effect
on retrieving soil water content (Wigneron et al., 2017). The
assimilation variable generally selects LAI (leaf area index)
for various crop models, while there are different options for
AquaCrop model. In terms of assimilation algorithm, both
cost function algorithm and filtering algorithm have more
applications and innovations. The research objectives mostly
focus on improving the accuracy of yield estimation. Most of
the available studies using short-term data, mostly less than three
growing seasons and may neglect the inter-annual variability in
environmental conditions.

Although many studies have indicated the effectiveness of
using crop models and remote sensing data assimilation for yield
mapping, the expansion accuracy from the field to regional scale
still lacks exploration (Steele-Dunne et al., 2017). Silvestro et al.
(2017) used the updating assimilation method, the ensemble
Kalman filter (EnKF), assimilated leaf area index (LAI) into the
SAFY model, and used the calibration assimilation method, PSO,
and assimilated canopy cover (CC) into the AquaCrop model
to demonstrate the possibility of estimating wheat yield. The
results show that the relative root-mean-square error (RRMSE)
between the predicted and the measured yield ranges from 0.18
to 0.24 t/ha. SAFY with the EnKF method was more suitable
than Aquacrop with PSO, which is mainly due to the high
computational cost and the difficult calibration of the AquaCrop
model. For the AquaCrop model, CC achieved a lower RMSE
than LAI. Another finding of this article is that the accuracy
of the assimilation method is greatly limited by the number of
remote sensing images, three or four images with an error in
LAI estimation of 30% and an error in the yield estimation of
approximately 18%. Feng et al. (2019) used the multivariable
linear regression model (MLR) and the RF model as external
modifications of the APSIM crop model to predict wheat yield,
while RF has a higher accuracy gain than MLR. The R2 and
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TABLE 1 | Research status of the crop model and remote sensing data assimilation.

Authors Model Crop Data Variable Method Objective Region Period

Hank et al., 2015 PROMET Winter wheat Landsat-TM;
RapidEye

LAI Filter Regional yield
estimation

Germany 2010-2011

Jin X. et al., 2016 AquaCrop Winter wheat Hyperspectral AGB PSO Yield estimation Beijing, China 2008-2011

Jin H. et al., 2016 CERES-Maize Maize MOD09A1 LAI SA LAI estimation Jilin, China 2010

Xie et al., 2016 CERES-Wheat Winter wheat Landsat LAI; SWC; AGB PF Yield estimation Shanxi, China 2007-2014

Iqbal et al., 2014 AquaCrop;
SAFY

Wheat HJ-1;
Landsat-8

LAI; CC EnKF; PSO Yield estimation Yangling, China 2012-2015

Li et al., 2017 CERES-Wheat Winter wheat GF-1; HJ-1;
Landsat-8

LAI PF; 4DVar Yield estimation Hebei, China 2014

Gilardelli et al.,
2019

WARM Rice Landsat-7/8;
Sentinel-2

LAI Downhill
simplex method

Yield estimation Italy 2014-2016

Hu et al., 2019 SWAP-
WOFOST

Sugarcane (Field
experiment)

LAI; SWC Forcing
method;

calibration
method; EnKF

Yield estimation Guangxi, China 2016-2017

Li et al., 2019 WheatSM Winter wheat MCD15A3;
MCD15A3H

LAI EnKF; SCE-UA Yield estimation Henan, China 2013-2017

Pique et al., 2020 SAFY-CO2 Winter Wheat Sentinel-2;
SPOT-2/4/5

GAI SAFY-CO2 Assessing
annual carbon

budget

France 2005-2014

Tewes et al., 2020 LINTUL5 Winter Wheat (Field
experiment)

LAI EnKF; WM Yield estimation France;
Germany;

Netherlands

2016-2017

Wu et al., 2021 WOFOST Winter wheat HJ-1; GF-1 LAI ABT-4DVar Yield estimation Hebei, China 2013-2014

Peng et al., 2021 SAFY Maize UAV LAI EnKF Yield estimation Inner Mongolia,
China

2019

AGB: Above ground biomass. CC: Canopy cover. PSO: Particle swarm optimization. SA: Simulated annealing. SCE-UA: Shuffled complex evolution. LAI: leaf area index.
GAI: Green area index. UAV: unmanned aerial vehicle. LSOA: Least squares optimization algorithm. SWC: Soil water content. PF: particle filter. WM: Weighted Mean.

root-mean-square error (RMSE) between the predicted yield
and the measured yield were 0.81 and 0.54 t/ha and 0.61 and
0.86 t/ha, respectively, before and after combining RF. Hu et al.
(2019) used forcing, calibration, and EnKF, three assimilation
methods for improving sugarcane crop simulation. The results
show that EnKF performed the best in estimating soil water
content, LAI development, and sugarcane yield. Assimilating
LAI alone works better than assimilating LAI and SWC both
under slight water stress levels, which demonstrates that the
choice of assimilated variable relies on a reasonable diagnosis
of the environment. In summary, the direct assimilation of
remote sensing data to update vegetation assessments is very
promising. Very limited literature available in Northeast China
for yield estimation using data assimilation, especially for long-
term study.

This study completed the calibration and validation of the
AquaCrop model in Northeast China via field test data and
applied 21 years of regional-scale simulations from 2000 to
2020. Then we selected FVC for AquaCrop model assimilation
not only because it is one of the outputs of AquaCrop
but also because it considers the important role it plays
in surface process simulation. Due to the accumulation of
sufficient assimilated FVC data and crop yield data, which reflect
various environmental conditions, the relationship between
yield and environmental factors was established through the
machine learning method of random forest. Relying on the

FVC assimilation curve, a high-precision estimation of crop
yield can be obtained. This study aims to establish an
assimilation system to better monitor FVC growth and provide
better maize yield estimation, which is significant for local
agricultural management.

MATERIALS AND METHODS

Study Area
The Songnen Plain (42◦56′ ∼ 50◦03′ N, 122◦05′ ∼ 128◦12′ E)
is located in the middle of the Songliao black soil basin in
Northeast China, with a total area of approximately 206404.3
km2 and a large part of it is dominated by rain-fed agriculture.
It has a temperate continental monsoon climate, the average
annual temperature is approximately 0.4◦C, the average annual
precipitation is approximately 534 mm, and the altitude is
approximately 250∼450 m. In 2021 Liu et al. (2021) classified
the phaeozem and chernozem as typical black soil that is
covered with a high content of organic matter dark humus
and mapped three typical black soil areas in Northeast China
which are Sanjiang, Songnen and Mengdong. This study took the
Songnen typical black soil region as the study area, composed of
Songnen Phaeozem region and Songnen chernozem region. Most
farmland in the study area was planted with soybeans and maize
without irrigation scheduling. The irrigation scenario was not
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set up in the subsequent application of crop model. This paper
established a database from 28 meteorological stations and 155
practical soil profile samples, scattered as shown in Figure 1. The
phenological information of maize is shown in Table 2.

Meteorological Data
This study collected meteorological data from 28 weather stations
from 2000 to 2020, including daily rainfall (mm), minimum
and maximum temperature (◦C) and solar radiation (MJ m−2

day−1), as input to the AquaCrop meteorological module (see
Appendix A for details). These data can be downloaded from
National Meteorological Information Center1. Meanwhile, the
reference evapotranspiration is calculated through the FAO
ET0 calculator.

Soil Sampling
Soil properties have a major impact on crop yield chiefly because
they affect the ability of soil to retain water and transfer water to
crops (Bakker et al., 2007). AquaCrop model provides reference
soil parameters for all kinds of soil texture, which reduces the
difficulty of regional soil-property-information measurement.
Therefore, a large number of measured soil texture data are used
for establishing the corresponding soil module parameters of the
AquaCrop model to ensure that the model considers the impact
of soil hydraulic properties of different soil texture structures
on crop growth. This study matched the nearest meteorological
station data for 155 soil survey points by spatial location, and
conducts regional AquaCrop simulations on these 155 units.
The soil texture of 155 survey points in the Songnen black soil
area is classified into 27 categories and can be further divided
into 56 subcategories according to the thickness of each layer
(Figure 2). The AquaCrop model assigns 56 groups of parameters
in soil module according to these soil testure subcategories. The

1http://data.cma.cn/site/index.html

TABLE 2 | Phenological information of maize in the black soil area of Northeast
China.

Growth
Stages

Length days Date

Sowing 1 1 May

Emergence 6 7 May

Maximum
canopy cover

54 24 June

Maximum
rooting depth

108 17 August

Start of canopy
senescence

107 16 August

Maturity 150 27 September

Flowering 66 – 79 6 July – 19 July

Yield formation 66 – 150 6 July – 27 September

classification results show the high soil heterogeneity in Songnen
Plain, although there are only four different textures. Soil
classification improves the efficiency of regional model operation.

Satellite-Based Data
GLASS fractional vegetation cover (FVC) products from 2000 to
2020 were collected for regional data assimilation. Multisource
high-resolution optical remote sensing images in 2018 and 2020
were collected for relative accuracy verification of the GLASS
FVC product and assimilation tests.

GLASS FVC is a global fractional vegetation cover product,
with 500 meters spatial resolution and 8 days temporal resolution,
published by the National Earth System Science Data Center2.
The inversion algorithm is based on multisource remote sensing
data and measured site data (Jia et al., 2015). This study adopted
the GLASS FVC data with tile number h26v04 from 2000 to 2020.

2http://www.cresda.com/CN/Data

FIGURE 1 | Distribution of phaeozem, chernozem and rivers in Northeast China (left); distribution of 30 m-resolution land cover type, meteorological stations and
soil sampling points in Songnen Plain in 2020 (right).
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FIGURE 2 | Detailed types of soil profile in Songnen Plain (soil depth: 0-300 cm).

TABLE 3 | List of satellite imagery collected in Nenjiang County and Lishu County.

Area Data Satellite Sensor Path/Row Area Data Satellite Sensor Path/Row

LS 2020-04-04 GF-6 WFV 589/63 NJ 2018-05-05 LS-8 OLI 120/26

LS 2020-05-28 GF-6 WFV 594/63 NJ 2018-05-07 GF-1 PMS2 597/72

LS 2020-06-12 GF-1 WFV4 601/81 NJ 2018-06-21 GF-1 PMS1 597/72

LS 2020-06-28 GF-1 WFV3 597/81 NJ 2018-06-21 ZY-3-2 TMS 884/102

LS 2020-07-15 GF-1 WFV4 603/81 NJ 2018-07-27 GF-2 PMS1 1004/103

LS 2020-07-23 GF-1 WFV3 600/81 NJ 2018-07-27 GF-2 PMS2 1003/113

LS 2020-07-23 GF-1 WFV4 600/81 NJ 2018-08-01 GF-1 WFV3 596/72

LS 2020-08-16 GF-1 WFV3 596/81 NJ 2018-08-05 GF-1 WFV2 598/72

LS 2020-08-21 GF-1 WFV4 601/81 NJ 2018-08-18 GF-1 WFV3 598/72

LS 2020-09-06 GF-1 WFV3 600/81 NJ 2018-08-18 LS-8 OLI 119/26

LS 2020-09-26 GF-1 WFV2 595/81 NJ 2018-08-22 GF-1 WFV3 599/72

LS 2020-09-26 GF-1 WFV3 595/81 NJ 2018-09-10 ZY-3 MUX 884/102

LS 2020-10-13 GF-1 WFV4 601/81 NJ 2018-09-15 ZY-3 MUX 883/101

LS 2020-10-27 GF-6 WFV 603/60 NJ 2018-10-17 ZY-3-2 TMS 884/102

LS 2020-11-05 GF-6 WFV 594/63 NJ 2018-10-18 GF-2 PMS1 1004/113

LS 2020-11-08 GF-1D PMS 654/82 NJ 2018-10-18 GF-2 PMS2 1004/112

LS 2020-11-13 GF-1B PMS 653/82

Nenjiang is located at 49◦10′ N, 125◦13′ E, altitude of
242.2 meters, and Lishu is located at 43◦10′ N, 124◦19′
E, altitude of 165.7 meters. These two counties are the
northernmost and southernmost parts of the Songnen black
soil area, respectively. This study collected multiscene domestic
GaoFen-1 satellite remote sensing images of Nenjiang County,
Heilongjiang Province, in 2018 and Lishu County, Jilin Province,
in 2020 with 8-meter spatial resolution and 4-day temporal
resolution. Several domestic ZiYuan-3 satellite images and
Landsat-8 images were collected as supplements with 6-meter
spatial resolution and 5-day temporal resolution and 30-meter
spatial resolution and 16-day temporal resolution (Table 3).
The absolute calibration coefficient and solar irradiance are
from the official website of the China Resources Satellite
Application Center3.

3http://www.geodata.cn/thematicView/GLASS.html

After geometric correction and radiometric correction, the
fractional vegetation cover (FVC) can be retrieved according to
the pixel dichotomy:

FVC =
VI−Vs

Vv−Vs
(1)

where VI is the NDVI of the pixel, Vs is the NDVI of the pure soil
pixel, and Vv is the NDVI of the pure vegetation pixel.

The remote sensing FVC curves obtained from different
sensors and inversion methods are roughly the same, reflecting
the reliability of the GLASS FVC product in Northeast China.
Figure 3 shows the time sequence FVC of the two main maize-
producing areas on the Songnen Plain. In the early stage of maize
growth, the FVC was almost less than 0.15. From approximately
40 to 80 days, the FVC in most areas increased rapidly from
0.20 to 0.9. After approximately 120 days, FVC reached a high
level, and maize started to mature. Some leaves began to curl,
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FIGURE 3 | Verifying GLASS FVC with GF satellite image inversion. Lishu County in 2020 (left); Nenjiang County in 2018 (right).

FIGURE 4 | Maize yield (t/ha) dataset from 2000 to 2020’s Statistical Yearbook.

and those at the lower part of the canopy began to turn yellow.
FVC showed a decreasing trend. By approximately 140 days,
the FVC decreased to 0.6, and maize was ready to mature. By
approximately 150 days, maize was harvested, and the FVC was
below 0.2. The surface of black land was mainly cut straw.

Statistical Yield
National statistical yearbooks are formed by governments’
sampling surveys and have acknowledged the authenticity. This
study collected province yearbooks from 2000 to 2020 for Jilin,
Heilongjiang, Liaoning and Inner Mongolia, which are under the
coverage of the Songnen Plain. The established yield dataset of
Northeast China included 3666 statistical maize yields per unit
area of 258 districts and counties, which was used to establish the
regression relationship between FVC and yield based on spatial
location. The linear fitting results of yearly yield are shown in
Figure 4, which need “detrending” to eliminate the impact of
these unquantifiable factors on the simulation accuracy (Wang
X. et al., 2020), considering the progress of corn varieties and

planting technology over the past 21 years while we applied field
management measures in 2018.

MODELS AND METHODS

The methodology adopted in this study mainly involved three
parts: regional application of the AquaCrop model, FVC data
assimilation by model outputs and remote sensing products, and
yield estimation relying on the RF regression model (Figure 5).

AquaCrop Model
The AquaCrop model simulates the transpiration process of
crops by inputting climate, crop, soil, and field management data
and finally outputs the daily prediction results of CC, rooting
depth, biomass and yield (Raes et al., 2009; Steduto et al., 2009).
A significant difference from other crop models is that AquaCrop
uses CC instead of LAI as the basis for calculating transpiration,
separates soil evaporation from leaf transpiration and avoids the
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FIGURE 5 | Flowchart of the methodology applied.

TABLE 4 | AquaCrop model soil database (Van Gaelen and Raes, 2016).

Soil tape TAW (mm/m) PWP (vol%) FC (vol%) SAT (vol%) Ksat (mm/day) tau CN REW (mm)

Sand 70 6.0 13.0 36.0 3,000.0 1.00 46A 4

loamy sand 80 8.0 16.0 38.0 2,200.0 1.00 46A 5

sandy loam 120 10.0 22.0 41.0 1,200.0 1.00 46A 7

Loam 160 15.0 31.0 46.0 500.0 0.76 61B 9

silt loam 200 13.0 33.0 46.0 575.0 0.80 61B 11

Silt 240 9.0 33.0 43.0 500.0 0.76 61B 11

sandy clay loam 120 20.0 32.0 47.0 225.0 0.58 72C 9

clay loam 160 23.0 39.0 50.0 125.0 0.47 72C 11

silty clay loam 210 23.0 44.0 52.0 150.0 0.50 72C 13

sandy clay 120 27.0 39.0 50.0 35.0 0.30 77D 10

silty clay 180 32.0 50.0 54.0 100.0 0.43 72C 14

Clay 150 39.0 54.0 55.0 35.0 0.30 77D 14

Thickness is set to 4.00 m in the model. PWP: permanent wilting point. FC: field capacity. CN: Curve Number. REW: Readily Evaporable Water.

confusion effect of unproductive water consumption (Equations
2-3). This variable obviously simplifies the simulation and
integrates the leaf expansion growth, angle and distribution into
an overall growth function. Another advantage is that CC can be
easily obtained from remote sensing sources to check analog CC
or as input of AquaCrop. Equation 4 and Equation 5 are the two
stages of CC growth and the stage of CC decline, respectively.

Tr = KcTr × ET0 (2)

KcTr = CC
∗

× KcTr,x (3)

where Tr is the leaf transpiration. KcTr is the crop transpiration
coefficient. ET0 is the relative evapotranspiration without stress.

CC∗ is the adjusted canopy cover. KcTr,x is the coefficient for
maximum crop transpiration, which represents an integration of
the effects of the characteristics that distinguish the crop with a
complete canopy from reference grass.{

CC = CC0 × eCGC × t,CC ≤ CCx
2

CC = CCx−(CCx − CC0) × e−CGC × t,CC > CCx
2

(4)

CC = CCx

[
1− 0.05

(
exp

CDC
CCx t−1

) ]
(5)

CC is canopy coverage (%). t is the time accumulated from
emergence. CC0 is the initial canopy coverage (%), generally
taking the average seedling coverage at 90% emergence. CCx is
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the maximum value of canopy coverage (%). CGC is the canopy
coverage growth rate, which indicates the increase in canopy
coverage per unit growth degree day (% GDD−1). CDC is the
canopy coverage decrease rate, which represents the reduction in
daily canopy coverage per unit growth degree day (% GDD−1).

The accumulated biomass is calculated by daily transpiration
(Tri), daily atmospheric evapotranspiration demand (ET0,i)
and normalized water productivity (WP∗), and crop yield is
calculated by the biomass and harvest index, as shown in
Equations 6-7.

Bi = WP∗ ×
(

Tri

ET0,i

)
(6)

Y = B × HI (7)

A soil database can be established according to the layered
structure of soil texture in the AquaCrop model, which covers
13 soil types (Table 4). The 155 measured soil texture data in
Songnen black soil region can be flexibly set to found 57 groups
of the corresponding parameters based on this table.

After the sensitivity analyzed and parameters calibrated in the
Hebei basin of Nenjiang County based on field experiments from
2011-2018, AquaCrop model has a good prediction effect on a
point scale in Northeast China (Xie et al., 2003; Cui et al., 2021).
Present research carry on using the same set of cultivar
parameters from the previous study (see Appendix B for details).

Sequential Filter Assimilation
Referring to the application summary of remote sensing and
crop model assimilation, modern data assimilation methods are
mainly divided into the following two categories: parameter
optimization methods based on cost functions and sequential
filtering methods based on estimation theory (Huang et al.,
2018). The former minimizes the difference between the
remote sensing observation value and the model simulation
value using iterations to achieve the optimal estimation,
while the latter constantly relies on external observations to
adjust the model simulation trajectory in real time to achieve
the optimal prediction. For the yield estimation proposition,
filter assimilation is more widely used because of its real-
time performance. The most representative method is the
EnKF, which is based on linear and Gaussian assumptions.
In the context that the AquaCrop model simulated a daily
FVC curve in the growing season and the GLASS FVC
also provides multitemporal FVC values, it is possible to
make FVC as the assimilation variable attempt to obtain a
higher accuracy estimation based on ensemble Kalman filter
(EnKF) algorithm.

KF is an assimilation algorithm that uses the linear system
state equation to estimate the optimal system state through the
system input and output observation data. Since the observation
data include the influence of noise and interference in the system,
the optimal estimation can also be regarded as a filtering process.
The AquaCrop simulated FVC_AC and remote sensing inversion
calculated FVC_RS contribute to the following dynamic models,
which are constructed to evolve FVC in time and used to provide

short-range prediction of FVC:

FVCt = Ft × FVCt−1 + wt (8)

wt = FVC_RSt − FVC_ACt (9)

where FVCt−1 is the FVC value of the previous time, FVCt
represents the present FVC value, wt is the model error. FVC_RSt
represents the FVC data observated from GLASS FVC products
at time t. FVC_ACt represents the FVC data simulated by the
AquaCrop model at time t, which is from the daily dataset during
the crop growth period. Ft is a linear state transition operator:

Ft = 1 +
1

|FVC_ACt + ε|
×

dFVC_ACt

dt
(10)

where is an uncertainty factor that is set to 0.0001 to prevent the
denominator from being 0. The observation operator is set to 1
due to the same parameter of simulation and observation.

EnKF integrates the model forward with the new observation
data to obtain a set of analysis field sets, which are updated by
the KF equation; the updated set, as the background field of the
next moment, continues to make forward short-term forecasts
and is assimilated with the new observation data of the next
moment. EnKF overcomes the weakness that KF is limited to
dealing with linear problems and solves the problem caused
by the KF method requiring too much computing resources
when calculating the covariance of prediction error. For KF
assimilation, the observation operator H in EnKF is set to 1, but
the process model error is set to 5% of the predicted value, the
observation error is set to 5%, and the number of set elements is
set to 20, 100, and 200.

Random Forest
In order to extend the improvement of FVC accuracy to
yield estimation accuracy, this section build a regression
model of time series FVC and maize yield in a data-driven
approach. Machine learning is currently the most effective
and rapidly developing data research method, which enable
algorithmic models to learn knowledge from data autonomously
and then have the ability of judge and predict in new
problems. Random forest (RF) is a typical classifier that
uses multiple decision trees to train and predict from input
samples. It determines the category of test samples by voting
and then takes the average output of each decision tree as
the final result.

Referring to the Scikit-learn python machine learning library,
this study uses the daily FVC value to estimate yield optimally
through the RF model. In order to compare the impact on yield
estimation accuracy before and after FVC assimilation, three
random forest models were established to describe the regression
relationship between the FVC curve and yield. The difference is
in the input FVC, including the FVC simulated by AquaCrop,
the FVC provided by the GLASS remote sensing product and the
FVC obtained by data assimilation. Finally, the model with the
highest accuracy is selected for maize yield prediction, so as to
achieve the research goal of optimal yield estimation.

The total dataset of RF1-3 is composed of 21 growing
seasons from 2000 to 2020, three types of FVC data of 155
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simulation units and the corresponding statistical yield data.
Each RF model should have 3255 records, each record have
a set of FVC and a statistical yield. The actual number of
records is finally determined by the amount of data with well
assimilation effect. The scale of statistical yearbook data is
suitable, which is of 258 districts and counties can be matched
with the three series of FVC data on 155 simulation units.
Another consideration of choosing statistical yield instead of
AquaCrop simulated yield is to avoid the accuracy interference
caused by the same model output as FVC_AC, and more
objectively reflect the real harvest. The samples were randomly
divided into two parts with a ratio of 8:2 the large part
used for training and the other part used for accuracy
evaluation (Table 5). The accuracy verification is indicated by
MAE (mean absolute error) and R2, using Equations 11-12.

MAE =
1
m

m∑
i = 1

∣∣(yi− ŷi)
∣∣ (11)

R2
= 1−

∑
(yi− ŷi)

2∑
(yi− y)2 (12)

RESULTS AND ANALYSIS

Regional Continuous Simulation of the
AquaCrop Model
Running the AquaCrop model of multithread scheduling for the
155 soil representative cells in Songnen black soil region from
2000 to 2020, we explored the spatial pattern of predicted yield
by mapping the results after two empirical Bayesian Kriging
interpolation to Figure 6.

In general, the spatial distribution and the temporal
differences of predicted yield are reasonable reproduced, which
is consistent with that of statistical yield (shown in Figure 7).
Among them, the output of the southeast is the highest,
followed by the southwest, and the northeast is the lowest.
This spatial pattern is mainly caused by temperature and soil
texture. During the growing season, the northern part of the
study area is approximately 5◦C lower than the southern part
as a whole, as shown in Appendix A. A lower temperature
makes it more difficult for crops to reach the effective
accumulated temperature required for maturity, resulting in
a lower final yield. Regarding the soil texture difference,
although the fertility of chernozem is higher than that of
phaeozem, it requires supplementary irrigation to effectively

improve growth due to its relatively poor water storage
capacity. For Northeast China, which relies on precipitation to
provide water supply, phaeozem is more suitable for cultivated
land than chernozem.

In terms of time series, the inter-annual differences
were mainly caused by the differences of hydrothermal
conditions in each growing season, especially the water
factor. The output showed a stable trend, with 2000, 2001,
2004, 2007, 2010, 2017 being the good harvest years for
the entire region, while other years clearly make out the
spatial difference. Abnormal precipitation events during crop
growth period, especially in the process of yield formation
after flowering, are easy to cause low crop yields. Mild and
continuous natural precipitation provides optimal water
conditions for crop growth and development. The neglected
soil erosion and the administration policies also affect the
estimation accuracy.

Field Scale Assimilation of Fractional
Vegetation Cover
This study implements a multithreaded univariate EnKF
assimilation algorithm based on MATLAB language, which
can realize the optimal estimation combining the daily FVC
simulated by the AquaCrop model and the multitemporal
remote sensing FVC in the corresponding growing season.
The results show that EnKF assimilation can indeed integrate
remote sensing data into simulation results, achieve higher
spatiotemporal resolution and provide FVC estimation with
good accuracy. All the assimilation results are defined into
4 types (Figure 8). Including: a) Approximately 80% of
FVC_Optimal showed excellent assimilation results due to
the similar shape of FVC_AC and FVC_RS. b) Approximately
1% of FVC_Optimal showed poor performance owing to
the abnormal maize canopy growth reflected by FVC_AC,
which differed greatly from the remote sensing observations
at these points. c) A few FVC_RS fails to maintain coherence
and showed the FVC inversion results of some phases may
be distorted, which lead to doubts about the reliability of
FVC_Optimal after correction according to the observed
value. d) Approximately 10% of FVC_RS is generally
lower than the corresponding FVC_AC, indicating an
obvious failure to achieve the desired high level in canopy
growth. It can be considered that maize planting failed at
these locations.

The unsatisfactory assimilation results were probably caused
by mixed-pixel RS inversion, spatial mismatch and inaccurate

TABLE 5 | Data composition of the random forest model.

Name Year Area Input (FVC) FVC frequency Output (Yield)

RF1 2000-2020 Songnen typical black soil region FVC_AC 150 Y_ yearbook

RF2 2000-2020 Songnen typical black soil region FVC_RS 17 Y_yearbook

RF3 2000-2020 Songnen typical black soil region FVC_DA 150 Y_yearbook

FVC_AC is the FVC simulated by the AquaCrop model. FVC_RS is the GLASS FVC data. FVC_DA is the assimilation result. The FVC frequency shows the FVC number
of a data array. The AquaCrop model gives daily output during the 150-day growth period. GLASS FVC provides observations every 8 days.
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FIGURE 6 | Maize yield map (ton/ha) for Songnen Plain simulated by AquaCrop model from 2000–2020.

phenological parameters that led to discrepancies between the
simulation and reality. It should be noted that remote sensing
data can reflect real surface information only when the spatial

resolution is sufficiently high. The accuracy of the method will
be dramatically promoted when the resolution of remote sensing
input data is improved.
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FIGURE 7 | Comparison of random AquaCrop simulated yield and the
corresponding statistical yield.

At the end of the growth period, FVC observed by remote
sensing is not of maize crops, but background interference such
as surface weeds, it will have no impact on yield simulation by
removing the last 10 days of data before adding to the RF model.

Random Forest Model of Regression
Between Fractional Vegetation Cover
and Yield
Based on the FVC array and yield data in the last 20
years, this study established three RF models to describe
the regression relationship between the three FVCs and
the yield of the statistical yearbook. RF1 used the FVC
simulated by the AquaCrop model, RF2 used the remote
sensing GLASS FVC product, and RF3 used the optimal FVC
assimilated by the two. Considering that the unsatisfactory
assimilation results reflected the unreliability of FVC_AC
or FVC_RS, the three random forest models only used the
data corresponding to well-assimilated fraction of FVC in
Figure 8. The verification results of the predicted yields of
random forests are shown in Figure 9. As a typical data-
driven machine learning model, random forest strongly
shows the dependence of prediction results on input
data, and they objectively reflect the invisible relationship
between FVC and yield.

Based on the optimal FVC curve, RF3 showed the best
performance on maize yield prediction in the black soil area of
Northeast China. RF3 is slightly better than RF1, which proves
that the addition of remote sensing observation data still has a
gain on the yield simulation model, R2 increases from 0.555 to
0.557, and MAE decreases from 1.004 ton/ha to 0.888 ton/ha.
RF2, the yield estimation model based on remote sensing values
alone has the lowest accuracy, probably because the amount of
data input is far less than that of the other two models, and the
quality of the data is greatly influenced by the scale effect. RF3
proved the feasibility of estimating yield with optimal FVC curve.

DISCUSSION

Yield Estimation Benefits From
Assimilating Fractional Vegetation Cover
From the results, the addition of assimilation only nets a
slight improvement to the yield estimation accuracy, which may
lead to doubts about the method effectiveness. Therefore, we
establish the following assumptions to explain the benefit of the
assimilation algorithm on yield estimation accuracy:

First, assume that Fs(t) is the FVC simulated by the AquaCrop
model at time t, Fo(t) is the FVC observed by remote sensing at
time t, and Ft(t) is the real FVC, which is unknown. Then, there
are two errors, observation error o and simulation errors s:

εo = Fo (t)−Ft(t) (13)

εs = Fs (t)−Ft(t) (14)

Furthermore, assuming that the error of observation value and
the simulation value are unbiased and have no correlation:

E (εo) = E (εs) = 0 (15)

E (εoεs) = 0 (16)

At this time, by calculating the variance of the observation
error σo

2 and variance of simulation error σs
2 and determining

the corresponding weight coefficient, we obtained an FVC
estimation value Fa (t) that is closer to Ft(t). The reciprocal of
variance is defined as the data precision.

Fa (t) = aFo (t) + bFs (t) (17)

Assuming that the estimated value is unbiased:

E (Fa) = E (Ft) (18)

a + b = 1 (19)

Then, minimize the variance σa
2 of the estimated value Fa (t):

σa
2
= E[Fa(t)−Ft(t)]2 = E(aFo(t)−Ft(t))

+ (bFs(t)−Ft(t))2 (20)

= E
[(

aεo + bεs
)2
]
= a2σo

2
+ b2σs

2 (21)

a =
σs

2

σo2 + σs
2 (22)

b =
σo

2

o2 + σs
2 (23)

σa
2
=

σo
2

1 +
(

σo
σs

)2 < σo
2 (24)

σa
2
=

σs
2

1 +
(

σs
σo

)2 < σs
2 (25)
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FIGURE 8 | Several examples of FVC assimilation based on the EnKF multithreaded algorithm.

Obviously, the variance of the estimated value is always
less than the observation error variance and simulation error
variance. The coupling of observation and model simulation
information is confirmed to obtain a better state estimation value.

However, no data source can guarantee the unbiased of its
error nature. In terms of remote sensing data, if the observations
are collectively higher than the true values, the addition of
observed values during assimilation will lead the simulation
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FIGURE 9 | Comparison of accuracy between the three random forest models. (RF1: input FVC_AC; RF2: input FVC_RS; RF1: input FVC_Optimal).

process to a higher direction but make the estimation results
more distorted. Therefore, it is necessary to control and reduce
the reliability of each input data of the assimilation algorithm
to ensure the final prediction effect. This requires the continued
development of remote sensing technology and traditional
mechanism models.

Uncertainties and Future Work
This paper mainly has uncertainty and limitations in the
following two aspects: data assimilation by remote sensing
and machine learning. In the ideal case, the AquaCrop model
assimilation system coupled with multitemporal remote sensing
products integrates the advantages of the two. On the one hand,
the addition of a mechanism model makes up for the lack of
biophysical significance of the system. On the other hand, the
addition of remote sensing observations improves the reliability
of the system and expands the application scope. But in fact,
the analog of state variables in the crop model is not detailed
enough, and many variation characteristics of FVC observed by
remote sensing are not reflected in the simulation results. It
should also focus on developing regional crop models to allow
the input and output of surface parameters to better integrate
and utilize regional products and serve regional research. In
regional studies, remote sensing data are generally expected to
be used due to their large scale and ready availability. However,
the unverifiable authenticity of remote sensing data caused by
mixed pixels must not be overlooked, and the final error may
be three times the input LAI error (Fang et al., 2018). Although
high spatial resolution imagery ensures the maximum number of
pure pixels, the time resolution and width are sacrificed, resulting
in high costs in regional applications. Research should balance
the system investment and its efficiency. Above all, deliberately
combining the advantages of different data resources to improve
the practical value of crop models is still a valuable problem for
agricultural research.

Introducing the data-driven method, this study established the
regression relationship between time series FVC and yield based
on the machine learning method of random forest. According to
the crop yield predicted by the assimilated FVC and the statistical
yield, the R2 of random forest reached 0.557, demonstrating that
the construction logic of the system is tenable. It revealed that

crop yield is not only reflected by FVC, which may account for
55.7% of the representation. The maize yield estimation accuracy
was limited by the correlation between FVC and maize yield
itself, which can hardly be surpassed by technology. For regional
yield estimation, this is still a rare attempt to provide a relatively
accurate yield forecast based only on time series FVC data.

Several previous studies have also found the significant
association between surface state variables and crop yield,
and all committed to estimating yield through these variables.
Present yield estimation accuracy of 0.888 ton/ha through FVC
assimilation has an advantage over previous assimilation studies.
Hank et al., 2015) estimated winter wheat yield by assimilating
LAI into PROMET model, the R2 was 0.93 and the RMSE
was 1.15 ton/ha. Gilardelli et al. (2019) estimated rice yield in
northern Italy by assimilating LAI into WARM rice model, the
MAE was 0.66 ton/ha and the RRMSE was 13.8%. Their study
got higher accuracy by using fine spatial resolution (30 meters)
on an area lower than 3 km2, while our study using 500 m
resolution product so as to achieved 20 km2 of yield estimation. Li
et al., 2019) estimated winter wheat yield by assimilating LAI into
WheatSM model, the RMSE was 1.641 ton/ha through SCE-UA
assimilation method and 1.587 ton/ha through EnKF assimilation
method. Wang P. X. et al. (2020) integrated remote sensing LAI of
4 phases to CERES-Maize model based on EnKF data assimilation
approach in North China, the R2 of the estimated yield was 0.33,
and the root mean square error (RMSE) was 0.371 ton/ha. Their
study has only been verified in 8 research points for 5 years, while
our study verified on 155 points for 21 years.

The results of this paper also show that there are many
potential development space for the method of yield estimation
based on the assimilation of surface state variable and machine
learning. This finding is similar to those reported by Silva
et al. (2020), which concluded that “big data” are useful to
characterize cropping systems at the regional scale but need more
progress to explain yield variability. Directions for improvement
including optimizing machine learning algorithms to isolate and
enhance the effect of FVC features on crop yield; and exploring
multivariable joint assimilation integrating relevant biophysical
indicators, such as evapotranspiration and temperature. It may
also be necessary to apply continuous assimilation of multiple
images into crop models to retain their spatial information.
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CONCLUSION

This study proposed a yield prediction method based on a
crop model and remote sensing data assimilation for maize
in the black soil region of Northeast China. The calibrated
AquaCrop model already has a good simulation effect at the
point scale, which confirms the availability of the AquaCrop
model in this area. Profit from the physiological response of
crops to environmental and management conditions is intuitively
reflected by the AquaCrop model. We applied the model to
simulate the growth of maize crops in the Songnen black soil
area from 2000 to 2020 and accumulated a large database.
After confirming the accuracy of the remote sensing surface
parameter products, synchronous time series observations are
added to the AquaCrop simulation results of 21 years through
the EnKF filtering assimilation algorithm, and an optimal
FVC dataset is established. Using the optimal FVC and the
regression relationship between FVC and statistical yield trained
by random forest, a yield estimation method is formed. Data
assimilation combines the two geodetic research methodologies
of simulation and observation, while this study proposed that
the method further integrates the idea of a mechanism model
and machine learning and provides a feasible idea for crop yield
estimation. Overall, the main contribution of current study is
offering new insights and perspectives for the following two
issues: one is how to integrate satellite remote sensing data

into the crop model at the regional scale; the second is how
to obtain more useful yield information from the available
surface parameter data.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

YC: conceptualization, methodology, software, formal
analysis, investigation, and writing—review and editing. SL:
conceptualization, writing—review and editing, supervision,
and project administration. XL and HG: visualization. YX: data
curation, conceptualization, and supervision. YH: data curation.
All authors have read and agreed to the published version
of the manuscript.

FUNDING

This study was supported by the National Key Research and
Development Program of China (Grant No. 2021YFD1500705).

REFERENCES
Bakker, M. M., Govers, G., Jones, R. A., and Rounsevell, M. D. A. (2007). The

effect of soil erosion on Europe’s crop yields. Ecosystems 10, 1209–1219. doi:
10.1007/s10021-007-9090-3

Cui, Y., Lin, H., Xie, Y., and Liu, S. (2021). Application study of crop
yield prediction based on aquacrop model in black soil region of
northeast china. Acta Agron. Sin. 47, 159–168. doi: 10.3724/SP.J.1006.2021.
03016

Eshete, D. G., Sinshaw, B. G., and Legese, K. G. (2020). Critical review on improving
irrigation water use efficiency: advances, challenges, and opportunities in the
Ethiopia context. Water Energy Nexus 3, 143–154. doi: 10.1016/j.wen.2020.09.
001

Fang, H., Liang, S., Hoogenboom, G., Teasdale, J., and Cavigelli, M. (2018).
Corn-yield estimation through assimilation of remotely sensed data into the
CSM-CERES-Maize model. Int. J. Remote Sens. 29, 3011–3032. doi: 10.1080/
01431160701408386

Feng, L., Wang, Y., Zhang, Z., and Du, Q. (2021). Geographically and temporally
weighted neural network for winter wheat yield prediction. Remote Sens.
Environ. 262:112514. doi: 10.1016/j.rse.2021.112514

Feng, P., Wang, B., Liu, D. L., Waters, C. M., and Yu, Q. (2019). Incorporating
machine learning with biophysical model can improve the evaluation of
climate extremes impacts on wheat yield in south-eastern Australia. Agric. For.
Meteorol. 275, 100–113. doi: 10.1016/j.agrformet.2019.05.018

Gilardelli, C., Stella, T., Confalonieri, R., Ranghetti, L., Campos-Taberner, M.,
Garcia-Haro, F. J., et al. (2019). Downscaling rice yield simulation at sub-
field scale using remotely sensed LAI data. Eur. J. Agron. 103, 108–116. doi:
10.1016/j.eja.2018.12.003

Hank, T., Bach, H., and Mauser, W. (2015). Using a remote sensing-supported
hydro-agroecological model for field-scale simulation of heterogeneous crop
growth and yield: application for wheat in central Europe. Remote Sens. 7,
3934–3965. doi: 10.3390/rs70403934

Hu, S., Shi, L., Huang, K., Zha, Y., Hu, X., Ye, H., et al. (2019). Improvement of
sugarcane crop simulation by SWAP-WOFOST model via data assimilation.
Field Crops Res. 232, 49–61. doi: 10.1016/j.fcr.2018.12.009

Huang, J., Huang, H., Ma, H., Zhou, W., and Zhu, D. (2018). Review on data
assimilation of remote sensing and crop growth models. Trans. Chinese Soc.
Agric. Eng. 34, 144–156. doi: 10.11975/j.issn.1002-6819.2018.21.018

Iqbal, M. A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., et al. (2014).
Evaluation of the FAO aquacrop model for winter wheat on the north china
plain under deficit irrigation from field experiment to regional yield simulation.
Agric. Water Manage. 135, 61–72. doi: 10.1016/j.agwat.2013.12.012

Jia, K., Liang, S., Liu, S., Li, Y., Xiao, Z., Yao, Y., et al. (2015). Global land
surface fractional vegetation cover estimation using general regression neural
networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens.
53, 4787–4796. doi: 10.1109/TGRS.2015.2409563

Jin, H., Li, A., Wang, J. D., and Bo, Y. (2016). Improvement of spatially and
temporally continuous crop leaf area index by integration of CERES-Maize
model and MODIS data. Eur. J. Agron. 78, 1–12. doi: 10.1016/j.eja.2016.04.007

Jin, X., Kumar, L., Li, Z., Xu, X., Yang, G., and Wang, J. (2016). Estimation of
winter wheat biomass and yield by combining the AquaCrop model and field
hyperspectral data. Remote Sens. 8:972. doi: 10.3390/rs8120972

Li, H. (2016). A Study On The Uncertainty Of Regional Winter Wheat Growth
Simulation From A Crop Model Using Remote Sensing Data Assimilation.
Beijing: Chinese Academy of Agricultural Sciences.

Li, H., Chen, Z., Liu, G., Jiang, Z., and Huang, C. (2017). Improving winter wheat
yield estimation from the CERES-wheat model to assimilate leaf area index with
different assimilation methods and spatio-temporal scales. Remote Sens. 9:190.
doi: 10.3390/rs9030190

Li, X., and Bai, Y. (2010). A Bayesian filter framework for sequential data
assimilation. Adv. Earth Sci. 25, 515–522. doi: 10.3788/gzxb20103907.1340

Li, Y., Chen, H. L., Tian, H. W., and Yu, W. D. (2019). Estimation of winter wheat
yield based on coupling remote sensing information and WheatSM model.
Chinese J.Ecol. 38, 2258–2264. doi: 10.13292/j.1000-4890.201907.039

Lin, H., Xie, Y., Liu, G., Zhai, J., and Li, S. (2019). Soybean and maize simulation
under different degrees of soil erosion. Field Crops Res. 230, 1–10. doi: 10.1016/
j.fcr.2018.10.004

Liu, B. Y., Zhang, G. L., Xie, Y., Shen, B., and Liu, B. (2021). Delineating the black
soil region and typical black soil region of northeastern China. Chinese Sci. Bull.
66, 96–106. doi: 10.1360/TB-2020-0178

Frontiers in Plant Science | www.frontiersin.org 14 June 2022 | Volume 13 | Article 915109

https://doi.org/10.1007/s10021-007-9090-3
https://doi.org/10.1007/s10021-007-9090-3
https://doi.org/10.3724/SP.J.1006.2021.03016
https://doi.org/10.3724/SP.J.1006.2021.03016
https://doi.org/10.1016/j.wen.2020.09.001
https://doi.org/10.1016/j.wen.2020.09.001
https://doi.org/10.1080/01431160701408386
https://doi.org/10.1080/01431160701408386
https://doi.org/10.1016/j.rse.2021.112514
https://doi.org/10.1016/j.agrformet.2019.05.018
https://doi.org/10.1016/j.eja.2018.12.003
https://doi.org/10.1016/j.eja.2018.12.003
https://doi.org/10.3390/rs70403934
https://doi.org/10.1016/j.fcr.2018.12.009
https://doi.org/10.11975/j.issn.1002-6819.2018.21.018
https://doi.org/10.1016/j.agwat.2013.12.012
https://doi.org/10.1109/TGRS.2015.2409563
https://doi.org/10.1016/j.eja.2016.04.007
https://doi.org/10.3390/rs8120972
https://doi.org/10.3390/rs9030190
https://doi.org/10.3788/gzxb20103907.1340
https://doi.org/10.13292/j.1000-4890.201907.039
https://doi.org/10.1016/j.fcr.2018.10.004
https://doi.org/10.1016/j.fcr.2018.10.004
https://doi.org/10.1360/TB-2020-0178
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-915109 June 23, 2022 Time: 6:36 # 15

Cui et al. Maize Yield Estimation

Monteith, J. L. (1996). The quest for balance in crop modeling. Agron. J. 88,
695–697. doi: 10.2134/agronj1996.00021962008800050003x

Passioura, J. B. (1996). Simulation models: science, snake oil, education, or
engineering? Agron. J. 88, 690–694. doi: 10.2134/agronj1996.000219620088
00050002x

Peng, X., Han, W., Ao, J., and Wang, Y. (2021). Assimilation of LAI derived from
UAV multispectral data into the SAFY model to estimate maize yield. Remote
Sens. 13:1094. doi: 10.1016/j.agrformet.2021.108345

Pique, G., Fieuzal, R., Bitar, A. A., Veloso, A., Tallec, T., Brut, A., et al. (2020).
Estimation of daily CO2 fluxes and of the components of the carbon budget
for winter wheat by the assimilation of Sentinel 2-like remote sensing data
into a crop model. Geoderma 376:114428. doi: 10.1016/j.geoderma.2020.11
4428

Qian, X., Zang, H., Xu, H., Ren, C., Guo, L., Wang, C., et al. (2018). Relay strip
intercropping of oat with maize, sunflower and mung bean in semi-arid regions
of Northeast China: yield advantages and economic benefits. Field Crops Res.
223, 33–40. doi: 10.1016/j.fcr.2018.04.004

Qin, Q. M., Fan, W. J., and Ren, H. Z. (2018). Theory, Method And Application Of
Farmland Quantitative Remote Sensing. Beijing: Science Press.

Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E. (2009). AquaCrop—the
FAO crop model to simulate yield response to water: II. Main algorithms
and software description. Agron. J. 101, 438–447. doi: 10.2134/agronj2008.
0140s

Sandhu, R., and Irmak, S. (2019). Performance of AquaCrop model in simulating
maize growth, yield, and evapotranspiration under rainfed, limited and full
irrigation. Agric. Water Manage. 223:105687. doi: 10.1016/j.agwat.2019.105687

Silva, J. V., Tenreiro, T. R., Spätjens, L., Anten, N. P. R., Ittersum, M. K. V., and
Reidsma, P. (2020). Can big data explain yield variability and water productivity
in intensive cropping systems? Field Crops Res. 255:107828. doi: 10.1016/j.fcr.
2020.107828

Silvestro, P. C., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Yang, G., et al. (2017).
Estimating wheat yield in China at the field and district scale from the
assimilation of satellite data into the Aquacrop and simple algorithm for yield
(SAFY) models. Remote Sens. 9:509. doi: 10.3390/rs9050509

Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E. (2009). AquaCrop—The FAO
crop model to simulate yield response to water: I. Concepts and underlying
principles. Agron. J. 101, 426–437. doi: 10.2134/agronj2008.0139s

Steele-Dunne, S. C., Mcnairn, H., Monsivais-Huertero, A., Judge, J., Liu, P. W.,
and Papathanassiou, K. (2017). Radar remote sensing of agricultural canopies:
a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2249–2273. doi:
10.1109/JSTARS.2016.2639043

Tewes, A., Hoffmann, H., Krauss, G., Schafer, F., Kerkhoff, C., and Gaiser, T.
(2020). New approaches for the assimilation of LAI measurements into a crop
model ensemble to improve wheat biomass estimations. Agronomy 10:446.
doi: 10.3390/agronomy10030446

Todorovic, M., Albrizio, R., Zivotic, L., Abi Saab, M. T., Stöckle, C., and Steduto,
P. (2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the

simulation of sunflower growth under different water regimes. Agron. J. 101,
509–521. doi: 10.2134/agronj2008.0166s

Van Gaelen, H., and Raes, D. (2016). AquaCrop Training Handbooks–Book II
Running AquaCrop[J]. Rome: Food and Agriculture Organization of the United
Nations.

Van, D. C. A., Wolf, J., and Rappoldt, V. K. H. (1989). WOFOST: a simulation
model of crop production. Soil Use Manage. 5, 16–24. doi: 10.1111/j.1475-2743.
1989.tb00755.x

Wang, P. X., Hu, Y. J., Li, L., and Xu, L. X. (2020). Estimation of maize yield based
on ensemble kalman filter and random forest for regression. Trans. Chinese Soc.
Agric. Machinery 51, 135–143. doi: 10.6041/j.issn.1000-1298.2020.09.016

Wang, X., Huang, J., Feng, Q., and Yin, D. (2020). Winter wheat yield prediction
at county level and uncertainty analysis in main wheat-producing regions of
China with deep learning approaches. Remote Sens. 12:1744. doi: 10.3390/
rs12111744

Wigneron, J. P., Jackson, T. J., Neill, P. O., Lannoy, D. G., Rosnay, D. P., Walker,
J. P., et al. (2017). Modelling the passive microwave signature from land
surfaces: a review of recent results and application to the L-band SMOS &
SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 192, 238–262.
doi: 10.1016/j.rse.2017.01.024

Wu, S., Yang, P., Chen, Z., Ren, J., Li, H., and Sun, L. (2021). Estimating
winter wheat yield by assimilation of remote sensing data with a four-
dimensional variation algorithm considering anisotropic background error and
time window. Agric. For. Meteorol. 30:108345.

Xie, Y., Kiniry, J. R., and Williams, J. R. (2003). The ALMANAC model’s sensitivity
to input variables. Agric. Syst. 78, 1–16. doi: 10.1016/S0308-521X(03)00002-7

Xie, Y., Wang, P. X., Wang, L., Zhang, S., and Liu, J. (2016). Estimation of wheat
yield based on crop and remote sensing assimilation models. Trans. Chinese Soc.
Agric. Eng. 32, 179–186. doi: 10.11975/j.issn.1002-6819.2016.20.023

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Cui, Liu, Li, Geng, Xie and He. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Plant Science | www.frontiersin.org 15 June 2022 | Volume 13 | Article 915109

https://doi.org/10.2134/agronj1996.00021962008800050003x
https://doi.org/10.2134/agronj1996.00021962008800050002x
https://doi.org/10.2134/agronj1996.00021962008800050002x
https://doi.org/10.1016/j.agrformet.2021.108345
https://doi.org/10.1016/j.geoderma.2020.114428
https://doi.org/10.1016/j.geoderma.2020.114428
https://doi.org/10.1016/j.fcr.2018.04.004
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.1016/j.agwat.2019.105687
https://doi.org/10.1016/j.fcr.2020.107828
https://doi.org/10.1016/j.fcr.2020.107828
https://doi.org/10.3390/rs9050509
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.3390/agronomy10030446
https://doi.org/10.2134/agronj2008.0166s
https://doi.org/10.1111/j.1475-2743.1989.tb00755.x
https://doi.org/10.1111/j.1475-2743.1989.tb00755.x
https://doi.org/10.6041/j.issn.1000-1298.2020.09.016
https://doi.org/10.3390/rs12111744
https://doi.org/10.3390/rs12111744
https://doi.org/10.1016/j.rse.2017.01.024
https://doi.org/10.1016/S0308-521X(03)00002-7
https://doi.org/10.11975/j.issn.1002-6819.2016.20.023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-915109 June 23, 2022 Time: 6:36 # 16

Cui et al. Maize Yield Estimation

APPENDIX

Appendix A: Meteorological Data

TABLE A1 | Weather station information in Songnen Plain.

Station ID Latitude Longitude Altitude (m) Province County

50557 49.17 125.23 242.2 Heilongjiang Nenjiang

50639 48.00 122.73 306.5 Inner Mongolia Zhalantun

50656 48.28 126.52 269.7 Heilongjiang Beian

50658 48.05 125.88 236.0 Heilongjiang Keshan

50674 48.05 125.88 236.0 Heilongjiang Keshan

50739 47.33 123.18 190.0 Heilongjiang Longjiang

50742 47.80 124.48 162.7 Heilongjiang Fuyu

50745 47.38 123.92 147.1 Heilongjiang Qiqihaer

50756 47.45 126.97 239.2 Heilongjiang Hailun

50758 47.18 125.90 246.0 Heilongjiang Mingshui

50844 46.40 123.45 138.8 Heilongjiang Tailai

50853 46.62 126.97 179.6 Heilongjiang Beilin

50854 46.38 125.32 149.3 Heilongjiang Anda

50862 46.98 128.02 210.5 Heilongjiang Tieli

50936 45.63 122.83 155.3 Jilin Baicheng

50945 45.50 124.27 137.6 Jilin Da’an

50948 45.00 124.02 146.3 Jilin Qian’an

50949 45.08 124.87 136.2 Jilin Qianguo

50950 45.70 125.25 148.7 Heilongjiang Zhaozhou

50953 45.75 126.77 142.3 Heilongjiang Harbin

50955 45.38 126.30 166.4 Heilongjiang Shuangcheng

54041 44.80 123.07 150.0 Jilin Tongyu

54049 44.25 123.97 188.9 Jilin Changling

54063 44.97 126.00 196.8 Jilin Fuyu

54064 44.38 125.15 170.2 Jilin Nong’an

54142 43.50 123.53 114.9 Jilin Shuangliao

54157 43.17 124.33 165.7 Jilin Siping

54161 43.90 125.22 236.8 Jilin Changchun

54165 43.55 125.63 219.5 Jilin Shuangyang

FIGURE A1 | Average daily precipitation in Songnen Plain from 2000 to 2020.
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TABLE A2 | Statistics of annual precipitation on the Songnen Plain.

Year 2000 2001 2002 2003 2004 2005 2006

Sum 394.450 308.154 472.461 541.175 362.904 567.989 457.154

Std dev 2.171 1.991 2.547 2.668 2.056 2.530 2.368

Year 2007 2008 2009 2010 2011 2012 2013

Sum 360.679 491.032 492.386 524.946 449.171 619.689 646.086

Std dev 2.015 2.482 2.555 2.634 2.316 3.085 2.982

Year 2014 2015 2016 2017 2018 2019 2020

Sum 527.464 514.336 554.368 469.113 591.448 652.820 711.384

Std dev 2.501 2.365 2.539 2.784 2.885 3.003 3.915

2020 has both the highest total precipitation and the highest standard deviation in the past two decades, which alerts for climate anomalies in the future, and abnormal
precipitation will have a serious impact on agricultural production.

FIGURE A2 | The average daily temperature in the Songnen Plain from 2000 to 2020 is close to the average long-term situation. The gentle temperature change
provides a better planting environment and is conducive for crops to adapt to environmental changes.

FIGURE A3 | Standard deviation of annual average temperature in Songnen Plain from 2000 to 2020.

FIGURE A4 | Average temperature of the northern and southern parts of the Songnen black soil region during the recent 21-maize growth season.
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Appendix B: AquaCrop Model Parameters

TABLE A1 | Parameter calibration of the AquaCrop model simulating the growth of maize in the Northeast Chinese black soil area.

Notation Description Unit Default value Calibration value

Pexp-lw Soil water depletion threshold for canopy expansion – lower threshold % of TAW 0.25 0.14

Pexshp Shape factor for Water stress coefficient for canopy expansion – 3.0 2.9

DeKcTr,x Decline of crop coefficient as a result of aging, nitrogen deficiency % d-1 0.150 0.300

KcTr,x Crop coefficient before canopy formation and senescence – 1.10 1.05

Rexshp Shape factor describing root zone expansion – 1.5 1.3

Zx Maximum effective rooting depth m 1.0 2.3

WP* Water productivity normalized for ET0 and CO2 g m-2 17.0 33.7

CCx Maximum canopy cover % 80 96

CGC Canopy growth coefficient % d-1 15.0 15.8

CDC Canopy decline coefficient % d-1 12.8 11.7

HI0 Reference harvest index % 50 58

TAW: total available water in the root zone.
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