AUTHOR=Zeng Faliang , Zhu Lin , Wang Guojiao , Liang Yinpei , Ma Dianrong , Wang Jiayu TITLE=Higher CO2 Assimilation in Selected Rice Recombinant Inbred Lines Is Driven by Higher CO2 Diffusion and Light Use Efficiency Related to Leaf Anatomy and Mesophyll Cell Density JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.915050 DOI=10.3389/fpls.2022.915050 ISSN=1664-462X ABSTRACT=
Leaf anatomy determining the light distribution within the leaf and exerting influence on CO2 diffusion is considered to have dramatic potential for photosynthesis performance increase. In this study, we observed that two rice recombinant inbred lines, H138 and H217 (RILF11 plants from Sasanishiki × IRAT10), have higher net CO2 assimilation (An) than their parent Sasanishiki due mainly to the improvement of leaf anatomy. Our results showed that An positively correlated with anatomy traits’ mesophyll cell number per cross-sectional area (NO.mescell/Acros) and mesophyll area (Ames). NO.mescell/Acros exert direct and indirect effects on An. Compared to Sasanishiki flag leaves, IRAT10, H138, and H217 have higher mesophyll cell numbers. Simultaneously, higher chlorophyll content and expression of genes encoding the light-harvesting protein of PSII and PSI (