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Deriving individual tree crown (ITC) information from light detection and ranging (LiDAR)
data is of great significance to forest resource assessment and smart management. After
proof-of-concept studies, advanced deep learning methods have been shown to have
high efficiency and accuracy in remote sensing data analysis and geoscience problem
solving. This study proposes a novel concept for synergetic use of the YOLO-v4 deep
learning network based on heightmaps directly generated from airborne LiDAR data for
ITC segmentation and a computer graphics algorithm for refinement of the segmentation
results involving overlapping tree crowns. This concept overcomes the limitations
experienced by existing ITC segmentation methods that use aerial photographs to
obtain texture and crown appearance information and commonly encounter interference
due to heterogeneous solar illumination intensities or interlacing branches and leaves.
Three generative adversarial networks (WGAN, CycleGAN, and SinGAN) were employed
to generate synthetic images. These images were coupled with manually labeled training
samples to train the network. Three forest plots, namely, a tree nursery, forest landscape
and mixed tree plantation, were used to verify the effectiveness of our approach. The
results showed that the overall recall of our method for detecting ITCs in the three
forest plot types reached 83.6%, with an overall precision of 81.4%. Compared with
reference field measurement data, the coefficient of determination R2 was ≥ 79.93%
for tree crown width estimation, and the accuracy of our deep learning method was
not influenced by the values of key parameters, yielding 3.9% greater accuracy than
the traditional watershed method. The results demonstrate an enhancement of tree
crown segmentation in the form of a heightmap for different forest plot types using
the concept of deep learning, and our method bypasses the visual complications
arising from aerial images featuring diverse textures and unordered scanned points with
irregular geometrical properties.

Keywords: airborne LiDAR, deep learning, heightmap, individual tree crown segmentation, forest parameter
retrieval
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INTRODUCTION

Trees play an important role in the functioning of ecosystems by
providing a range of ecological services, such as storing carbon
dioxide, preventing flooding and desertification, providing forest
habitats, and promoting atmospheric circulation (Liu et al., 2017;
Zhang et al., 2019). Acquiring individual tree information is
beneficial for forest growth assessment and sustainable forest
management (Zhou et al., 2020). Constituting the premise for
measuring numerous parameters (e.g., the tree position, height,
crown width and distribution density), the effective detection of
individual trees using various remote sensing technologies has
become one of the primary tasks for precision forestry.

With the rapid growth of remote sensing technology, such as
aerial photography, oblique photogrammetry and light detection
and ranging (LiDAR), remote sensing has been widely utilized
in the acquisition of forest information and land cover data.
Moreover, a wide variety of methods have been introduced to
process different types of remote sensing data in a range of
forest conditions, and they can be divided into two categories.
The first category is based on image-processing techniques and
computer graphics; these techniques can identify and extract
individual tree crowns (ITCs) by directly processing aerial
images, heightmaps [i.e., digital surface models (DSMs) or
canopy height models] and LiDAR point clouds coupled with
image segmentation (Zhou et al., 2020) and point cloud clustering
algorithms, to accomplish the recognition or classification of
individual trees. Examples of methods in the first category are
the marker-controlled watershed method (Hu et al., 2014), graph-
cut algorithm (Strîmbu and Strîmbu, 2015), simulation of fishing
net dragging (Liu et al., 2015), energy function minimization-
based approach (Yun et al., 2021), geometrical feature-driven
point cloud merging at the super voxel scale (Ramiya et al., 2019)
and trunk location as guidance and point density-based feature
employment (Mongus and Žalik, 2015).

The second category for ITC segmentation comprises deep
learning-based models for processing unmanned aerial vehicle
(UAV) images and forest point clouds. Trees are identified by
feeding input UAV images (Lei et al., 2022) and point clouds
into multiple conceptual layers using deep learning convolutional
neural networks (Zhang et al., 2020a) and tuning the training
hyperparameters through a gradient descent strategy, leading
to the choices of parameters falling within a reasonable range.
These optimization objectives have driven numerous synergetic
studies using UAV images and deep learning techniques in forest
applications, such as the utilization of U-net (Cao and Zhang,
2020) to map forest types in the Atlantic Forest (Wagner et al.,
2019), the employment of DeepLab and an attention domain
adaptation network for detecting Amazonian and Southeast
Asia palms (Ferreira et al., 2020; Zheng et al., 2020), the
adoption of Faster-RCNN for tree seedling mapping (Pearse
et al., 2020) and the construction of multitask end-to-end
optimized deep neural networks (MEON) for oak and pine
detection (Weinstein et al., 2020). Moreover, numerous studies
have introduced various deep learning models to process forest
point clouds, for example, combining PointNet with point
cloud voxelization for ITC segmentation (Chen et al., 2021),

proposing a pointwise directional deep embedding network for
enhancing the boundaries of instance-level trees (Luo et al.,
2021), developing a projection strategy for tree point clouds
to generate a set of multiperspective views for various tree
species and identify boles using two-dimensional (2D) image
processing neural networks (Zou et al., 2017; Hamraz et al.,
2019), and using PointNet++ for wood-leaf classification and
tree species recognition based on terrestrial laser scanning data
(Xi et al., 2020).

Despite the many approaches proposed to segment individual
trees from UAV images and LiDAR data, each category has its
drawbacks and restrictions. The efficacy of methods based on
image processing and computer graphics is usually decreased
by the different color or texture appearances of tree crowns
constituting the forest plots (Gomes et al., 2018), illumination
differences between locally radiant and shaded surfaces causing
varying brightness levels within ITCs (Zhou et al., 2020),
and overlapping ITCs, which weaken the accuracy of treetop
detection and tree crown boundary delineation (Yun et al.,
2021). In addition, the efficiency of computer graphics algorithms
for ITC extraction is always exacerbated by the geometrical
complexity of tree crowns characterized by more apices in the
crown periphery and certain conjunctions caused by pendulous
and locally protruding branches belonging to the adjacent tree
crowns (Hu et al., 2014).

The deep learning-based methods for processing forest UAV
images (Xie et al., 2022) and LiDAR data (Hu et al., 2020)
also encounter similar sensitivity and susceptibility challenges
in tree crown recognition caused by the complexity of forest
environments (Qian et al., 2021), image-capture angles (Yin
et al., 2021) and interferences stemming from local solar
radiation (Kattenborn et al., 2019). Furthermore, the predicted
bounding boxes produced by common small-target detection
networks, e.g., You Only Look Once (YOLO) and Faster
Regional-based Convolutional Neural Network (R-CNN), have
regular rectangular shapes, making it difficult to detect the
anisotropic shapes of tree crowns. On the other hand, the high
dimensional and the unstructured nature of three-dimensional
(3D) point clouds mapped the geometrical peculiarity of tree
crown periphery, which introduces extreme complications for
the segmentation task and makes it difficult to implement
deep learning networks with high accuracy (Liu et al., 2020).
In addition, many adverse factors, such as mutual occlusions
throughout the forest (Zhang et al., 2020b), the need for
joint mining of local and global semantic features (Luo et al.,
2021) and additional post-treatment for the segmentation
results yielded by deep learning networks (Zhang et al.,
2020c), need to be considered when using artificial intelligence
applications in forestry.

In this work, three novel concepts were proposed to address
the above restrictions. First, we transformed aerial laser scanning
(ALS) data to heightmaps, which are selected as the data
source for the deep learning neural networks. Heightmaps are
beneficial for ITC segmentation because these maps avoid the
interference encountered in forest aerial images due to variations
in solar radiation intensity (Zhang et al., 2022) and texture
features induced by different phenological periods of target trees
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FIGURE 1 | Partial aerial photographs of the studied forest plots. (A) The tree nursery at the foot of Nanjing’s Purple Mountain and the (B) forest landscape and (C)
mixed forest habitat on the campus of Nanjing Forestry University.

FIGURE 2 | Diagrams showing some of the training samples manually labeled using the LabelImg tool. The tree crowns in the heightmaps were generated from the
airborne LiDAR data of (A) the tree nursery, (B) the forest landscape area, and (C) the mixed tree habitat.
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FIGURE 3 | Schematic diagram showing the (A) generator and (B) discriminator of CycleGAN.

FIGURE 4 | Schematic diagram showing the operating principles between the generator and discriminator of CycleGAN.

FIGURE 5 | Schematic diagram showing the (A) generator and (B) discriminator of WGAN-GP.
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FIGURE 6 | Schematic diagram showing the (A) generator and (B) discriminator of SinGAN.

(Zhang and Bai, 2020). In addition, the heightmaps preserve
morphological characteristics of the upper tree crowns that
reflect a tendency of reduction from treetops to all surrounding
areas, and these characteristics are used as salient features
to enhance the task of tree crown recognition. Second, to
complete data augmentation for obtaining for training samples
feed to the deep learning neural networks, three advanced
generative adversarial networks (GANs), i.e., the cycle-consistent
GAN (CycleGAN), the Wasserstein GAN + gradient penalty
(WGAN-GP) and an unconditional GAN trained on a single
natural image (SinGAN), were employed to generate synthetic
heightmaps of tree crown plot to enhance the recognition
capabilities and classification accuracy of the YOLO-v4 deep
learning neural network (Bochkovskiy et al., 2020). Third, we
adopted a mean shift algorithm instead of a K-means clustering
algorithm for adaptive determination of the initial centers of the
training sample properties and proposed an elliptic paraboloid
fitting method to refine the recognition results of the YOLO-
v4 network and determine the point cloud affiliation in the
intersecting regions between adjacent bounding boxes with the
aim of accurately delineating ITC boundaries with overlapping
branches or leaves. Finally, the applicability of the proposed
frameworks were verified using various forest plot types, and the
calculated ITC width was validated by the values obtained from
field measurements.

MATERIALS AND METHODS

Study Site and Data Collection
In this study, three different study sites were investigated, i.e., a
tree nursery, forest landscape and mixed forest habitat located

at the foot of Nanjing’s Purple Mountain (32.07◦N, 118.82◦W)
and Nanjing Forestry University (32.07◦N, 118.78◦W), Nanjing,
in southeastern China. The city of Nanjing is located south
of the Qinling–Huaihe Line, China, and has a subtropical
monsoon climate. The annual average temperature is 15.7◦C, and
the average temperatures in the coldest month (January) and
the hottest month (July) are −2.1◦C and 28.1◦C, respectively.
The annual precipitation is 1021.3 mm. The first study site is
a tree nursery, where sweet osmanthus (Osmanthus fragrans
Lour.) and Acer palmatum Thunb. have been planted. The
trees are arranged in order with a uniform spacing with a
relatively small tree crown and lower heights. The second
study site is a forest landscape with 3 species of conifers
and 23 species of broad-leaved trees, where many dwarf
shrubs grow beneath the forest canopy. The third study site
is the mixed tree habitat, where 4 species of conifers and
approximately 17 species of broad-leaved trees have been planted.
The dominant tree species include China fir (Cunninghamia
lanceolata (Lamb.) Hook.) and Metasequoia glyptostroboides
Hu & W. C. Cheng.

In October 2019, the Velodyne HDL-32E sensor (Velodyne
Lidar, Inc., San Jose, CA, United States) on the DJI FC6310
UAV was used to acquire airborne LiDAR data from the three
study sites. The sensor transmits 700,000 laser pulses per second
and records the return value of each laser pulse. The horizontal
field of view is 360◦, and the vertical field of view ranges from
+10.67◦ to –30.67◦. The angular resolutions of the sensor are
approximately 1.33◦ (vertical) and 0.16◦ (horizontal) at 600
revolutions per minute. The beam divergence is approximately
2 mrad with an average footprint diameter of 11 cm. The flight
altitude was 60 m with a 15% overlap. In October 2019, aerial
photographs of the three study sites were taken using a digital
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camera mounted on the same UAV flying at a speed of 20 m/s
and at an altitude of approximately 100 m.

In October 2019, we collected forest field measurements,
including the position, species, height, and crown width of each
tree in the field. A Blume-Leiss ALTImeter (Forestry Suppliers,
Inc., Jackson, MS, United States) was used to measure tree
heights trigonometrically (Sun et al., 2016). The crown lengths
of each tree in the north–south (N–S) and east–west (E–W)
directions were measured with a tape along the trunk in both
perpendicular directions. Coupled with field measurements, we
marked the position of each treetop that could be recognized
by visual inspection in the aerial photographs. Although a
manual measurement approach is inherently subjective, this
method is considered to provide a reliable and effective source
of information on the tree crown distribution and affords an
auxiliary means for verifying our retrieved results. Partial aerial
photographs taken from the sample plots provided by Figure 1A
the tree nursery, Figure 1B the forest landscape area, and
Figure 1C the mixed tree habitat are shown in Figure 1.

Training Samples Comprised of
Heightmaps Generated From Point
Clouds
We first adopted a Gaussian filter (Xu et al., 2020) to remove noise
and outliers from the point cloud data. Then, the point cloud
data provided by the airborne LiDAR system were separated into
ground points and non-ground points by using cloth simulation
filtering (Qi et al., 2016). By orthographically projecting the
non-ground point clouds, a planar raster (i.e., heightmap) was
generated in the form of a DSM converted from point clouds;
the raster comprised uniformly distributed and horizontal square
grids (pixels) ci of size d with the assigned elevation value equal
to the highest elevation of all scanned tree points within each
cell ci. Consequently, we rescaled the range of grid values in
the DSM (heightmap) to Liu et al. (2017); i.e., we specified the
value of each grid cell as the fraction relative to the maximum
height of the current scanned points regarding the study forest
plot. Because the average point density was approximately 130
points per square meter and the average point spacing across
our studied forest plots was approximately 10 cm, we set the
size d of the squared grid cell to 15 cm. This guaranteed at
least three scanned points within one grid cell, thereby avoiding
empty cells and preserving the detailed morphological features
of the target forest canopy. Next, we used LabelImg to manually
label 812, 703, and 754 trees (green boxes) in the heightmaps of
the tree nursery, forest landscape area, and mixed tree habitat,
respectively. Figure 2 shows some manually collected training
samples at each of the three study sites.

Augmenting the Training Data Using
Three GAN Variants
Deep learning models always require a large amount of training
data to optimize a massive number of parameters if the models
are to learn how to extract high-quality features. GANs have made
a dramatic leap in modeling the high-dimensional distributions
of visual data and have shown remarkable success in synthesizing

FIGURE 7 | Schematic diagram showing the pyramid structure in SinGAN’s
generator and discriminator.

high-fidelity images and in generating stylized task-oriented
training samples without additional manual annotation and
device collection.

In this section, to generate visually appealing samples
comprising tree crown heightmaps as supplementary training
samples, we deliberately selected three advanced GANs, i.e.,
Cycle-GAN with unpaired image-to-image translation (Zhu et al.,
2017), WGAN-GP with improved training (Gulrajani et al.,
2017), and SinGAN (Shaham et al., 2019), and we addressed the
conceptual differences between them.

Network Structure and Loss Function of
Cycle-Consistent Generative Adversarial Networks
For CycleGAN, image-to-image translation is utilized to learn
the mapping between the input images and output images using
a training set of aligned image pairs. Many tasks, such as
style transfer, object transfiguration, season transfer and photo
enhancement, can be achieved. Here, we selected two sets of
manually annotated images (each set containing 513 individual
tree heightmaps) as the paired training data to generate another
two sets of synthetic training samples to double the number of
training samples. The loss function LossCycleGAN

G of equation (1)
is used to optimize the parameters of the two generators GA→B
and GB→A, which transfers one dataset (xA or xB) to a new dataset
[GA→B (xA) or GB→A (xB)] under the instructions of the semantic
features of another training set (xB or xA). This approach satisfies
three criteria: (i) the generator takes its output data as the
input data, and it can yield the same result; (ii) the output of
the generator can confuse the corresponding discriminator; and
(iii) the generator should follow backward cycle consistency,
i.e., GB→A (GA→B (xA)) ≈ xA, where || ||1 denotes the 1-norm.

LossCycleGAN
G = 5/n · (||GA→B (xB)− xB||1

+ ||GB→A (xA)− xA||1)

+ (DB (GA→B (xA))− 1)2

+ (DA (GB→A (xB))− 1)2

+ 10/n · (||GB→A (GA→B (xA))− xA||1

+ ||GA→B (GB→A (xB))− xB||1) (1)
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The loss functions LossCycleGAN
D for two discriminators (i.e.,

DA and DB), which explore the robust performance to
discriminate between real (xA or xB) and fake (GA→B (xA)
or GB→A (xB)) samples, are determined as follows.

{
LossCycleGAN

DA
= (DA (xA)− 1)2 + (DA (GB→A (xB))− 0)2

LossCycleGAN
DB

= (DB (xB)− 1)2 + (DB (GA→B (xA))− 0)2

(2)
CycleGAN’s generator network comprises three parts,

namely, an encoder, a converter, and a decoder, which are
composed of three convolutional layers, nine residual blocks,
and two fractionally strided convolutional layers. The network
is illustrated in Figure 3A. First, the original input data size is
64× 64× 3. To increase the contributions of pixels along the
borders of the original image, we use a padding function to
expand the original data, and the input data size after padding is
70× 70× 3. After that, the encoder performs three convolutions,
and the number of feature maps increases from 3 to 64, then to
128, and finally to 256. In each convolution, the InstanceNorm2d
function is used for normalization during the evaluation, and
ReLU is an activation function. After the convolutions are
finished, the output data size is 16× 16× 256. As the training
progresses deeper, the network uses ResnetBlock to avoid
vanishing and exploding gradient problems. Therefore, the
generator can achieve better performance because ResnetBlock
adds skip connections based on simple forward propagation.
However, ResnetBlock does not change the data size, so the
output data size after 9 ResnetBlocks is still 16× 16× 256.
Then, the decoder performs 2 deconvolutions, and the data are
upsampled in size from 16× 16× 256 to 64× 64× 64. Finally,
one last padding function and convolution function are used,
and the final output data size is 64× 64× 3. The Tanh activation
function is finally applied to make the final data comparable to
the original data.

In CycleGAN’s discriminator, InstanceNorm2d is used for
normalization during evaluation first, and the input data size
is 64× 64× 3. Then, the network performs a convolution
that obtains 64 feature maps and compresses the data size to
32× 32× 64. After that, InstanceNorm2d is added to perform
three convolutions such that the number of feature maps
increases from 64 to 512. The output data size is 7× 7× 512,
which is also considered the input data size for the next
convolution. Finally, after this last convolution, the final output
data size is 6× 6× 1, which is a matrix. Each value in this matrix
represents the true possibility of a receptive field in the image
corresponding to a patch of the image. Unlike the discriminator
networks of previous GANs, which use only one probability to
judge the authenticity of the whole generated result, CycleGAN’s
discriminator makes a judgment on each small patch. In other
words, the discriminator performs a comparison between the real
data and input data on 6× 6 =36 patches and normalizes their
similarity to a value between 0 and 1. During the training process,
CycleGAN calculates the arithmetic mean of this matrix to judge
the difference from the real image. The network is illustrated in
Figure 3B.

Figure 4 shows the operating principles between two
generators and two discriminators in CycleGAN, i.e., GA→B,
GB→A, DA, and DB, where the two generators have the same
network structure as the discriminators. In the training process,
generator GA→B will perform convolutions on input data A
to generate GA→B (xA). Then, this generated result will be
carried into DB to output a matrix. CycleGAN uses Markovian
discriminator, that is, a discriminator makes convolutions to the
input data, which are generated by the generator, and maps the
input to a patch matrix. This process allows the discriminator to
evaluate the results of the generator, and CycleGAN can learn the
features of data B. After the network generates GA→B (xA), the
result is also carried into GB→A to generate GB→A (GA→B (xA)),
which is used to calculate the cycle loss between xA and
GB→A (GA→B (xA)). This ensures that the final output bears a
similarity to data A rather than only having features of data B.
For data B, CycleGAN applies the same operations to achieve the
generation of GB→A (xB), which is similar to data B but has the
features of data A.

Loss Function and Network Structure of Wasserstein
Generative Adversarial Networks + Gradient Penalty
Wasserstein generative adversarial networks + gradient penalty
uses a 1-Lipschitz constraint coupled with a gradient penalty
item to strengthen its discrimination performance. The improved
loss functions LossWGAN−GP

G and LossWGAN−GP
D are shown in

equations (3) and (4), respectively, where x is real data, z is
random array data, D is the discriminator, G (z) denotes the
generated fake samples, and mean() represents the computational
average of all the elements in the input array. The third
item on the right side of equation (3) denotes the gradient
penalty item, which consecutively generates samples through
linear interpolation between the real and generated data in each
iterative step to drive the discriminator toward a better solution.
The minimization of equation (4) allows the generator to deceive
the discriminator.

LossWGAN−GP
D

= mean (D (G (z)))−mean (D (x))

+ 10×

(∣∣∣∣∣
∣∣∣∣∣∂
(
D
(
rand · x+

(
1− rand

)
· G (z)

))
∂
(
rand · x+

(
1− rand

)
· G (z)

) ∣∣∣∣∣
∣∣∣∣∣
2

− 1

)2

(3)

LossWGAN−GP
G = −mean (D (G (z))) (4)

WGAN-GP’s generator network contains five parts, which
are illustrated in Figure 5A. The first part is a convolutional
layer, followed by three deconvolutional layers and finally a
simple convolution function. The first four parts each comprise
a convolution function (ConvTranspose2d), a normalization
function (BatchNorm2d, which is used for normalization during
evaluation) and a ReLU activation function layer. All kernels are
of size 4× 4 with a stride of two except the stride of the first
convolution, which is 1. The generator first increases the number
of channels from 3 to 100, so the input data size is 11× 11× 100;
after convolution, the size becomes 8× 8× 1024. Then, the

Frontiers in Plant Science | www.frontiersin.org 7 June 2022 | Volume 13 | Article 914974

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-914974 June 8, 2022 Time: 16:11 # 8

Sun et al. ITC Segmentation and Crown Width Extraction

FIGURE 8 | Schematic diagram showing the network structure of YOLO for ITC segmentation, where CycleGAN, WGAN-GP, and SinGAN were used for training
data argumentation. YOLO was adopted for ITC detection from the heightmaps of the studied forest canopy.

network performs four deconvolutions, and the number of
feature maps decreases from 1024 to 128, so the output data size
is 64× 64× 128. Finally, through a simple convolution function,
the final output data size is 128× 128× 3. Finally, a Tanh
activation function is used to make the final data comparable to
the original data.

The input in the discriminator is the output of the generator,
so the input data size is 128× 128× 3. The discriminator
network structure is similar to that of the generator, which
has 4 parts, as illustrated in Figure 5B. The first three
convolution layers comprise a convolution function, an instance
normalization function, and an activation function. After
convolution, the data size becomes 16× 16× 1024. Then, there
is a deconvolution function with a stride of 1, and the final
output data size is 13× 13× 1; the final output is not a single
probability but a matrix. Similar to CycleGAN, each value in
the matrix represents a true possibility of a receptive field in the
image. During the training process, WGAN-GP uses the “mean”
function to calculate the average value of this matrix to judge the
difference from the real image.

Loss Function and Network Structure of SinGAN
SinGAN can learn from a single natural image and contains
a pyramid of fully convolutional GANs to capture the internal
feature distribution of various scale patches within the image.
Moreover, SinGAN can generate high-quality and diverse
samples that carry the same visual content as the input
image. Three items constitute the loss function of the SinGAN
discriminator, which is shown in equation (5). In each iteration
step, the fake images yielded by generator G are based on the joint
input as zs + xs+1, where s is the sample scale with a smaller value
representing a coarser scale through the upsampling operation
and vice versa for larger values, xs+1 represents an upsampled
version of the image from the finer scale s+1, zs denotes the

random noise at scale s, and D is the discriminator. Similar
to LossWGAN−GP

D in WGAN, a gradient penalty exists in the
discriminator loss function LossSinGAN

D that ensures a specific set
of input noise maps at the sth scale coupled with the generated
image at the coarser scale s+1 to satisfy the conditions of
generating the original images at the sth scale as much as possible.
Usually, the input image is transformed into eight scales from
coarse to fine, and the generator and discriminator work at
each scale to propagate the results to the next (finer) scale with
injected random noise to optimize the neural connection weights.
Formula (6) shows the loss function of the SinGAN generator,
whose aim is to generate real images to confuse the discriminator.
Additional noise z′s is incorporated with a random noise zs to
achieve different style transfers and foreground object texture
transfers to match different backgrounds.

LossSinGAN
D = mean (D (G (zs + xs+1))) −mean (D (xs))

+ 0.1×


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂(D(rand · xs + (1− rand)
·G(zs + xs+1)))

∂(rand · xs + (1− rand)
·G(zs + xs+1))

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

− 1


2

(5)

LossSinGAN
G = mean

(
G
(
zs+z′s

)
− xs

)2 (6)

In SinGAN’s generator, at each scale s, the input data comprise
xs+1 (an upsampled image that is generated by the previous
generator Gs+1) and corresponding random noise zs. Each
generator scale contains five convolution layers, which can be
divided into three parts (the head has one convolution, the
body has two convolutions, and the tail has one convolution).
In the head and body convolutions, the structure is the
same, comprising a convolution function (ConvTranspose2d),
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FIGURE 9 | Results of tree detection by improved YOLO-v4, the elliptic paraboloid fitting of tree crowns, and the segmentation of overlapping trees. As shown in
(A,D,G), the white points and green rectangular boxes represent the point cloud of adjacent trees and the bounding boxes, respectively. The paraboloid fitting results
of each adjacent tree crown and the point cloud of each tree are shown in (B,E,H). (C,F,I) Are the results of the segmentation of points in the intersecting area based
on our method.

FIGURE 10 | Clustering results generated by the (A) K-means clustering algorithm and (B) Mean Shift clustering algorithm. The blue dots represent the cluster
centers, and the coordinates are next to these cluster centers, while the x-coordinate is the width and the y-coordinate is the height.
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a normalization function (BatchNorm2d, which is used for
normalization during evaluation) and a ReLU activation function
layer. In contrast, the tail part contains only a convolution
function. However, the parameters of the input and output
channels of the convolution change every five scales; we list the
parameters of the first five scales in Figure 6A. The generated
data xs are the convoluted result added to the input upsampled
image xs+1.

SinGAN’s discriminator, whose structure is depicted in
Figure 6B, has an adversarial goal. The network has the same
structure as SinGAN’s generator, which also comprises five
convolution layers and is divided into three parts (the head has
one convolution, the body has two convolutions, and the tail
has one convolution). Moreover, the parameters of the input and
output channels of the convolution change every five scales along
with the generator.

SinGAN’s network structure is similar to the pyramid
structure shown in Figure 7 and is based on the idea of
upsampling from coarse to fine. That is, the size of the effective
patch decreases from the bottom to the top of the pyramid,
and upsampling occurs at each scale. The input data at the
coarsest scale are only random noise zs; except at this scale,
the generator generated G (zs−1 + xs) through noise zs−1 and
upsampled data xs, and the output data will be carried into the
discriminator for a comparison with the real data. Similar to
that of CycleGAN, SinGAN’s discriminator is also a Markovian
discriminator; thus, the output data are a matrix, and each
value in this matrix represents the true possibility of a 11× 11
receptive field in the image. During the training process, SinGAN
calculates the arithmetic mean of this matrix to judge the
difference from the real image. From the coarsest scale to the
finest scale (from Gs to G0), the discriminator’s receptive field
sizes are all 11× 11. Because different scales have different input
data sizes but the receptive field size is the same, amazing
effects are generated. At the coarsest scale, the patch size is
1/2 of the size of the image; thus the GAN network can learn
the global structure of the image. As the scale becomes finer,
SinGAN can gradually add details that were not generated at the
previous scales.

Improved YOLO-v4 Network
As an end-to-end detection system, the entire network structure
of YOLO is shown in Figure 8. Different from the original
YOLO-v4 network structure, we use the PANet structure on
four valid feature layers, which increases the scale compared
with the original three scales. This means that we have an
extra output feature map. YOLO-v4 utilizes global reasoning
for the whole image to predict the relevant information of all
the objects, mainly including the prediction of the bounding
boxes and corresponding confidence. The YOLO-v4 detection
processes are as follows: First, the appropriate bounding box
priors are automatically generated by clustering the labeled
bounding boxes using K-means clustering, and the number of
clusters is set as B, which means that the number of anchor
boxes is B. This value guarantees that the model is simple
while achieving high recall. Then, the image is input into
the YOLO-v4 network for feature extraction, and the feature

map with a size of M ×M is output. The network predicts
bounding boxes for each grid cell of the output feature map
and predicts the confidence and location coordinates (x̂, ŷ, ŵ, ĥ)
of each bounding box. Then, it constrains the four coordinates
to obtain the center coordinates (px, py) and the value of
width and height (pw, ph) of the predicted box relative to the
image. lx and ly are the confidence scores, which represent
the offset of the current cell grid relative to the upper left
corner of the image, and w̃µ and h̃µ are the width and
height of the anchor boxes, respectively. In formulas (7) and
(8), the sigmoid function σ is used to limit x and y in the
current grid, which facilitates convergence, and the formulas
for calculating the bounding box coordinates are as follows.

px = σ(x̂)+ lx (7)

py = σ(ŷ)+ ly (8)

pw = w̃µeŵ (9)

ph = h̃µeĥ (10)

Second, YOLO-v4 obtains the confidence of the predicted
boxes by determining whether the center of an object
is in each grid cell. If it does not exist, the confidence
value is zero; otherwise, the confidence value is the
intersection over union (IoU) of the bounding box prior
and the ground truth, where IoU is the ratio of their
intersection area to their union area. The range of IoU
is between 0 and 1, where 0 means that two boxes do
not overlap at all and 1 indicates that the two boxes are
equal., i.e., IoUpri

tru. For IoUpri
tru, we set the threshold to 0.5.

If IoUpri
tru ≤ 0.5, the prediction score should be ignored;

otherwise, only when the IoUpri
tru value of a bounding box

prior and the ground truth are greater than that of any other
bounding box prior is the object score of the corresponding
predicted box 1.

Finally, YOLO-v4 chooses an independent logical classifier
for class prediction. When the method is applied to our
dataset, YOLO predicts a 3D tensor for each scale of
output, M ×M × [3× (4+ 1+ 1)], which represents the four
parameter values of prediction, that is, three scales, four
coordinates, one object, and one class.

In our experiment, the purpose was to identify ITCs from
a whole heightmap, and we expected to find more appropriate
anchor boxes through a clustering algorithm in this small target
detection problem, which was helpful for improving the average
precision and speed of small target detection. In the original
YOLO-v4 model, K-means clustering, which is an unsupervised
algorithm, is used to obtain the anchor boxes to predict the
coordinates of the bounding boxes. K-means aims to partition
n observations into B clusters, in which each observation
belongs to the cluster with the nearest mean, serving as a
prototype of the cluster.
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TABLE 1 | Comparison of the average detection precision and FPS between YOLO trained on K-means and YOLO trained on Mean Shift on the same manually
annotated ITC dataset (all trained on the overall training samples of the three study sites).

Clustering algorithm Cluster centers for the sizes
of anchor boxes

Average precision (%) Speed detection (FPS)

K-means (7.8,4.5),(8.1,10.0), (11.8,16.6),
(15.5,27.2),(21.9,15.9),

(27.0,36.5),
(37.8,59.1),(46.7,29.4),

(67.7,49.9)

89.67 41.35

Mean Shift (7.5,10.2),(7.8,4.3), (11.9,18.8),
(14.6,12.1),(16.9,31.4),

(26.7,21.6),
(31.3,47.7),(50.8,31.7),

(61.4,58.7)

91.42 43.81

At the beginning, K-means obtains the sizes of all the
bounding boxes and then randomly selects B cluster centroids,
and these cluster centroids have a width w̃µ and height
h̃µ (µ = 1, . . . ,B). Then, the following process is repeated
until convergence: For the number of n bounding boxes
in the training dataset, we seek the manual annotation
using ImageLabel and obtain a series of bounding box
widths as wobj

i and heights as hobj
i (i = 1, ..., n). Then,

the cluster it should belong to is calculated, and for
each cluster µ(µ = 1, ...,B), the centroid of the cluster is
recalculated. The objective function of K-means is as follows.

E =
n∑

i=1

B∑
µ=1

∣∣∣∣∣∣(wobj
i , hobj

i

)
−

(
w̃µ, h̃µ

)∣∣∣∣∣∣2 (11)

In formula (11), n is the number of sample bounding
boxes in the training dataset, B is the number of clusters,
(wobj

i ,hobj
i ) are the coordinates of the bounding boxes, and(

w̃µ, h̃µ

)
is the cluster centroid. This formula describes the

tightness of samples in the cluster around the mean of the
cluster. The similarity of samples in the cluster increases as
the value of E decreases. In summary, K-means is a cyclic
process of finding a more suitable cluster centroid and assigning
samples to the closest cluster centroid until the objective
function converges.

As mentioned above, in the original YOLO-v4 clustering
algorithm (K-means), distance is the only factor that affects
the clustering results; thus, other attributes are not considered.
If the cluster contains noise samples or isolated samples that
are far from the data sample space, a large fluctuation arises
in the calculation of the cluster center. This fluctuation greatly
impacts the mean value calculation and even makes the cluster
center seriously deviate from the dense area of the cluster
sample, resulting in substantially biased results. In addition,
K-means needs to specify the number of clusters in advance
before processing the data, and the designation of this number
is highly subjective. Here, to select more suitable anchor boxes
for small target detection, we sought to optimize the clustering
algorithm and adopted Mean Shift, which is a non-parametric,
feature-space mathematical analysis technique for locating the

maximum of a density function. A detailed description of Mean
Shift is as follows.

Mean Shift uses kernel density estimation, which is the most
popular density estimation method. In our experiment, the
anchor boxes have two properties: length and width. For samples
in the training dataset, we seek the manual annotation using
ImageLabel and obtain a series of bounding boxes with their
approximate sizes, i.e., wobj

i and hobj
i (i = 1, ..., ñ). In addition, we

initialize a center box X̃µ whose width is w̃µ and whose height
is h̃µ (µ = 1, 2, 3 . . .). Hence, we implement kernel density
estimation in two-dimensional space, and the expression is as
follows.

f̂ (X̃µ) =
1

ñH2

ñ∑
i=1

CK

(
X̃µ − Xi

H

)
(12)

In formula (12), H is the bandwidth, which is the parameter to
be specified, ñ is the number of data points in set S̃, K(X) is the
kernel function, Xi =

(
wobj

i , hobj
i

)
, and X̃µ =

(
w̃µ, h̃µ

)
. S̃ is a set

comprising ñ bounding boxes Xi that satisfy formula (13), which
indicates that the distances between all the bounding boxes Xi in
S̃ and the center box X̃µ are less than a given threshold ξ . The
normalization constant C, which makes the kernel function K(X)
integrate to one, is assumed to be strictly positive.

S̃ =
{(

wobj
i , hobj

i

)
|

[(
wobj

i , hobj
i

)
−

(
w̃µ, h̃µ

)]
[(

wobj
i , hobj

i

)
−

(
w̃µ, h̃µ

)]T
≤ ξ 2

}
(13)

Different kernel functions K(X) correspond to different
transformations of the original sample data. The common profile
of the kernel function can be classified into four types: linear
kernel, polynomial kernel, radial basis function kernel and
sigmoid kernel. The specific mathematical expressions for these
types are as follows:

Linear kernel : KL(x) = xTx+ c
Polynomial kernel : KP(x) =

(
γxTx+ c

)d

RBF kernel : KR(x) = exp
(
−

xT x
2σ2

)
Sigmoid kernel : KS(x) = tanh

(
γxTx+ c

) (14)
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FIGURE 11 | (A) Loss curve and (B) accuracy curve of the improved YOLO-v4 model in the training process.

FIGURE 12 | Diagrams showing some of the training samples and generated samples. We collected two sets of training samples in CycleGAN: Train A and Train B.
The purpose was to generate style transfer images that are similar to Train A but have the features of Train B.

TABLE 2 | Accuracy assessment of ITC detection by our deep learning method for the three forest plot types in the nursery, forest landscape area and mixed
tree plantation.

Study site Number of sample trees TP FP FN p r F1

Training Test (Sample plot)

Nursery M/G 812/ 1187 59 (plot 1) 51 8 8 0.86 0.83 0.84

84 (plot 2) 77 10 14 0.85 0.85 0.85

333 (plot 3) 304 32 44 0.87 0.84 0.85

Forest landscape area M/G 703/ 1326 65 (plot 4) 58 14 12 0.81 0.83 0.82

45 (plot 5) 37 8 8 0.82 0.82 0.82

82 (plot 6) 71 14 18 0.78 0.80 0.80

Mixed tree plantation M/G 754/ 1263 96 (plot 7) 82 18 14 0.82 0.85 0.83

76 (plot 8) 65 13 16 0.75 0.80 0.75

117 (plot 9) 91 24 30 0.77 0.75 0.76

Overall M/G 2269/ 3776 957 836 141 164 0.81 0.84 0.82

TP, number of correctly detected actual trees; FP, number of detected non-existent trees (that is, the commission error); FN, number of undetected actual trees (that is,
the omission error); p, number of correctly detected trees divided by the total number of trees detected by the model; r, the number of trees correctly detected by the
model divided by the actual number of trees; F1, harmonic mean of p and r; M, number of manually labeled ITCs from heightmaps; G, number of generated synthetic
ITCs from heightmaps by CycleGAN, WGAN-GP, and SinGAN.
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FIGURE 13 | Heightmaps generated using WGAN-GP with an increasing number of iterations. At the 0th, 100th, and 200th iterations, the generated data
distributions are very different from the real data distributions. However, as the training process continues, the generator can produce heightmaps of tree crowns with
the same or nearly the same quality and successfully fool the discriminator in WGAN-GP.

For our study, bounding boxes only have two features, i.e.,
width and height. This number of features is relatively small
compared to the larger number of features in the training
samples. The linear kernel KL(x) employs dot products to
optimize the efficiency of resolving the problem, and the sound
predictive performance of KL(x) is achieved when the feature
number of the samples is larger. However, this is not suitable
for our bounding box classification that only includes two
features. The computational complexity of the polynomial kernel
(Xu et al., 2022) is relatively high, and it may suffer from
numerical instability because a detrimental tendency beyond
control is prone to occur when γxTx+ c < 1, KP(x) trends to
zero with increasing d, which is in contrast to the opposite case
when γxTx+ c > 1, KP(x) tends to infinity. Hence, reasonable
parameter assignment for the three parameters of a, c, and d is
comparatively not easy. Sigmoid kernel KS(x) is typically suitable
for neural networks but is computationally expensive. RBF kernel
KR(x) is a popular kernel function (Fan et al., 2022) used in
various kernelized learning algorithms, which maps a single
vector to a vector of higher dimensionality with the superior
classification performance for the larger number of training
samples with fewer features, similar to the input data of the
bounding box properties.

According to (12) and (14), the kernel density estimation (12)
can be rewritten as follows.

f̂ (X̃µ) =
C

ñH2

ñ∑
i=1

K

∣∣∣∣∣
∣∣∣∣∣ X̃µ − Xi

H

∣∣∣∣∣
∣∣∣∣∣
2
 (15)

The process of Mean Shift is to calculate the vector M̃ and
then update the position of the center point to make the center
of the circle move in the direction of the maximum density in
the dataset. The derivative of formula (15) is required to calculate
vector M̃, and the derivative function is shown below.

∇̂f
(
X̃µ

)
=

2C
ñH4

∑ñ

i=1

(
X̃µ − Xi

)
K ′

∣∣∣∣∣
∣∣∣∣∣ X̃µ − Xi

H

∣∣∣∣∣
∣∣∣∣∣
2
 (16)

Then, if we simplify the equation even further, we can obtain
formula (17).

∇ f̂
(
X̃µ

)
=

2C
ñH4

∑ñ

i=1
−K ′

∣∣∣∣∣
∣∣∣∣∣ X̃µ − Xi

H

∣∣∣∣∣
∣∣∣∣∣
2


×


∑ñ

i=1 XiK ′
(∣∣∣∣∣∣ X̃µ−Xi

H

∣∣∣∣∣∣2)
∑ñ

i=1 K ′
(∣∣∣∣∣∣ X̃µ−Xi

H

∣∣∣∣∣∣2) − X̃µ

 (17)

Only if the second half of formula (17) equals 0 can ∇̂f = 0.
Therefore, vector M̃ can be described as follows.

M̃ =

∑ñ
i=1 XiK ′

(∣∣∣∣∣∣ X̃µ−Xi
H

∣∣∣∣∣∣2)
∑ñ

i=1 K ′
(∣∣∣∣∣∣ X̃µ−Xi

H

∣∣∣∣∣∣2) − X̃µ (18)
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FIGURE 14 | SinGAN was used to generate the heightmaps of a forest plot. Diagrams showing the generated synthetic heightmaps of (A) the tree nursery, (B) the
forest landscape area, and (C) the mixed tree habitat. Although a portion of the generated image is slightly fuzzy, most of the tree crowns can be visually identified.
Thus, these images with the tree crowns in the synthetic heightmaps manually labeled using the LabelImg tool can be used as new training sets.

After obtaining and applying M̃ to the current center point X̃µ,
we obtain the new center point X̃new

µ =

(
w̃new

µ , h̃new
µ

)
and repeat

the above process. With each iteration, the current center point
moves toward the new center point. Finally, X̃new

µ becomes the
new cluster center, which can be described as formula (19).

X̃new
µ = X̃µ + M̃=

∑ñ
i=1 XiK ′

(∣∣∣∣∣∣ X̃µ−Xi
H

∣∣∣∣∣∣2)
∑ñ

i=1 K ′
(∣∣∣∣∣∣ X̃µ−Xi

H

∣∣∣∣∣∣2) (19)

After several iterations, when the distance between the center
point and the point where the gradient of kernel density estimate
(12) is zero and less than the threshold ξ , the iteration ends,
and we obtain the final cluster center X̃final

µ =

(
w̃final

µ , h̃final
µ

)
to

represent the highest-probability density center.
When the first round of iteration ends and the final cluster

center X̃final
1 =

(
w̃final

1 , h̃final
1

)
is calculated, another center box

X̃2 is set up from the beginning. If X̃2 is close to X̃final
1 , X̃2

drifts to X̃final
2 , which coincides with X̃final

1 after the Mean Shift
algorithm. In this case, X̃final

2 cannot be defined as a new highest-
probability density center. Only if the distance between X̃2 and

X̃final
1 is relatively far, which means X̃2 is in another density

region, will X̃2 drift to a truly new highest-probability density
center X̃final

2 ; this means that Mean Shift calculates a new highest-
probability density center.

Because of the disadvantages of K-means, noisy samples
or isolated samples in the cluster may seriously affect the
clustering results, and the number of categories is highly
subjective. However, Mean Shift can analyze the information
of bounding boxes through wobj

i and hobj
i , which are

manually annotated, and find the center boxes with the
highest-probability density. As a result, Mean Shift can filter
out noise samples or isolated samples and identify the
number of categories automatically, which can improve the
clustering results to provide more appropriate anchor boxes for
future detection.

Training Data Augmentation and Testing
for Improved YOLO-v4 Network
We utilized the labeled images as training samples to train
CycleGAN, WGAN-GP, and SinGAN. The CycleGAN, WGAN-
GP, and SinGAN models trained on the augmented data were
used to produce additional outputs of the samples, generating
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1187, 1326, and 1263 supplementary training samples for the
tree nursery, forest landscape area, and mixed tree habitat,
respectively. In conjunction with the manually labeled images,
all the training samples were brought into the improved YOLO-
v4 network to find the appropriate weights of the neural
connections. In addition, we extracted nine sample plots from
the tree nursery, forest landscape, and mixed tree habitat and
manually labeled 59, 84, 333, 65, 45, 82, 96, 76, and 117 trees
planted in these nine sample plots as the sample trees for testing.

Before training, we conducted transfer learning based on
the pretrained model by using the convolutional weights of the
pretrained model trained on the Common Objects in Context
(COCO) dataset (Belongie, 2014) to set the initial weights.
Moreover, the dimensions (width × height) of the input images
(i.e., heightmaps) for the training set were resized to the defaults
of416× 416. For the training process, we trained the YOLO
network for approximately 70,000 iterations. We used a batch size
of 64 and a momentum of 0.9 for gradient-based optimizers with
a decay of 0.0005. The initial learning rate was set to 0.001 for fast
convergence. As the training process proceeded, the final learning
rate decreased to 0.0001 for numerical stability. The total training
time was approximately 24 h.

The testing process of the YOLO network included three
main steps: (1) taking the selected nine sample plots from the
three forest plot types as the testing sets and the corresponding
heightmaps generated from the scanned points of these sample
plots; (2) resizing these heightmaps as 416× 416 and bringing
them into the YOLO network for feature extraction and target
recognition; and (3) analyzing the output feature maps and
verifying the predicted bounding boxes of the tree crowns by
reference field data.

During testing, three different detection metrics were
employed: the number of true positives (TP), which is the actual
number of trees that are correctly detected; the number of false
positives (FP), which is the number of incorrectly detected (non-
existent) trees (that is, the commission error); and the number of
false negatives (FN), which is the number of undetected actual
trees (that is, the omission error). Here, TP + FP represents the
total number of trees detected by our method, whereas the total
number of actual trees is expressed as TP + FN.

The detection efficiency of the model is the main factor
affecting the test results. To evaluate the performance of our
method, this paper selects the precision (p), recall (r), and (F1)
score (F1) as the evaluation indexes. Here, p represents the
number of trees correctly detected divided by the total number
of trees detected by the model; r represents the number of trees
correctly detected by the model divided by the actual number of
trees, that is, the detection rate; and F1 represents the harmonic
mean between p and r (Gao et al., 2020). The closer the values
of p, r, and F1 are to 1, the greater the efficiency and the better
the performance of the YOLO network. Briefly, p, r, and F1 are
defined by the following equations.

p =
TP

TP + FP
(20)

r =
TP

TP + FN
(21)

F1 = 2×
p× r
p+ r

(22)

Overlapping Tree Segmentation Using
the Fitted Elliptical Paraboloids
After the bounding boxes for all of the tree crowns in
the heightmaps are predicted by YOLO, intersecting areas
always exist between adjacent bounding boxes, even those
placed correctly around many neighboring trees, as shown in
Figures 9A,D,G. Hence, the affiliation of the points in the
intersecting area to the specific tree crown must be determined.
According to the biophysical characteristics of trees, tree crowns
usually have approximately regular geometrical shapes and
smooth peripheries caused by the transport of nutrients from
the roots to distal tips and gravitropism (Duchemin et al., 2018).
An elliptic paraboloid, an open surface generated by rotating a
parabola about its axis, was adopted here to fit each adjacent
tree crown based on the points in the non-intersecting regions
of each bounding box. Then, the distances between the points
in the intersecting area and the fitted elliptical paraboloids of
each adjacent tree crown were taken as a criterion to determine
the affiliation of points in the intersecting area, as shown in
Figures 9C,F,I.

Here, we adapted the least squares method (Savitzky and
Golay, 1964) to calculate the parameters of the optimal
paraboloid surface of the τth tree Sτ based on the points
ptreeτ

i (xtreeτ

i , ytreeτ

i , ztreeτ

i ) in the non-intersecting area of the
bounding box predicted by the improved YOLO-v4 network.

According to the geometric features of tree crowns, we set the
fitted paraboloid to be open downward, and its vertex was located
at the corresponding treetop p̂treeτ(x̂treeτ , ŷtreeτ , ẑtreeτ) with a and
b equal to the half-crown width in the N–S and E–W directions,
respectively. The specific formula is defined as follows.

f (x, y, z) = −
(x− x̂treeτ)2

a2 −
(y− ŷtreeτ)2

b2 + ẑtreeτ − z(x, y) = 0
(23)

Then, the least squares method was employed here to seek
the best-fitting paraboloid for the points ptreeτ

i (xtreeτ

i , ytreeτ

i , ztreeτ

i )
by minimizing the sum of the distances between the points and
the fitted paraboloid surface, i.e., making the following equation
obtain the smallest value.

arg min
a,b

f
(
a, b

)
=

ψ∑
i=1

[
−
(xtreeτ

i − x̂treeτ)2

a2

−
(ytreeτ

i − ŷtreeτ)2

b2 + ẑtreeτ − ztreeτ

i

]2
(24)

In formula (24), ψ represents the total number of points
of the τth tree in the non-intersecting area of the bounding
box predicted by the YOLO network. To calculate the optimal
parameters a and b, which is an unconstrained extremum
problem of a binary function with a and b as independent
variables, the derivatives of formula (24) with respect to a and
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b are calculated. The mathematical expressions are as follows.

∂f
∂a = 2

∑n
i=1

[
−
(xtreeτ

i −x̂treeτ )2

a2 −
(ytreeτ

i −ŷtreeτ )2

b2 + ẑtreeτ − ztreeτ

i

]
[

2 (x
treeτ
i −x̂treeτ )2

a3

]
= 0

∂f
∂b = 2

∑n
i=1

[
−
(xtreeτ

i −x̂treeτ )2

a2 −
(ytreeτ

i −ŷtreeτ )2

b2 + ẑtreeτ − ztreeτ

i

]
[

2 (y
treeτ
i −ŷtreeτ )2

b3

]
= 0

(25)
Notably, the solution to equation set (25) is not unique.

When multiple solutions exist, multiple solutions of function f
exist. Here, we choose the values of a and b corresponding to
the smallest values as the optimal parameters. After calculating
the optimal parameters a and b, the fitted paraboloid surface
determined by formula (24) for each tree crown can be drawn.
The schematic diagrams are shown in Figures 9B,E,H.

After obtaining the fitted elliptic paraboloids for the adjacent
tree crowns, the next task is to calculate the shortest distance
distPinter

Sτ
between the points pinter

j in the intersecting area and Sτ.
For this purpose, we sought the points pe

l (x
e
l , ye

l , ze
l ) on the elliptic

paraboloids closest to pinter
j with the shortest distance, i.e., the

normal vector of the paraboloid at point pe
l should be parallel

to the vector between pe
l and pinter

j . Then, we used equation set
(26) to calculate the coordinates of pe

l for each point pinter
j in the

intersecting area.
f (xe

l , ye
l , ze

l=0
∂f
∂y · (x

e
l − xinter

j )−
∂f
∂x · (y

e
l − yinter

j ) = 0
∂f
∂z · (y

e
l − yinter

j )−
∂f
∂y · (z

e
l − zinter

j ) = 0
(26)

In the above equation, · represents the dot product,
and the solution, namely, the corresponding pe

l (x
e
l , ye

l , ze
l )

on the fitted elliptic paraboloid with the shortest distance
todistPinter

Sτ
=

∣∣∣pe
l , pinter

j

∣∣∣, can be obtained. In a group of several
adjacent trees, a point within the intersecting areas of the
boundary boxes defined by YOLO can be determined by
comparing the shortest distance from the point to each fitting
paraboloid, i.e., the smallest magnitude of the distance from the
point to the fitted paraboloid of the τth tree corresponding to
the affiliation of the point to the τth tree. The segmentation
results of the point cloud in the intersecting areas are shown in
Figures 9C,F,I.

RESULTS

Evaluation of the You Only Look Once
Detection Effect
To verify the feasibility of the optimized clustering approach, we
used K-means and Mean Shift to cluster bounding boxes on the
same dataset. The dataset contained 9 sample plots belonging to
the three forest plot types (812, 703, and 754 trees were manually

annotated in the heightmaps of the tree nursery, forest landscape
area, and mixed tree habitat, respectively) for a total of 2269 tree
samples. Figure 10 shows the clustering results generated by these
two clustering algorithms.

The differences and anchor box detection results after
clustering optimization are compared in Table 1. In the table, the
average precision is calculated by the IoU of the bounding box
prior and the ground truth, which is the ratio of their intersection
area to their union area, and the calculation method is described
in section “Improved YOLO-v4 Network.” The cluster centers for
the sizes of anchor boxes obtained by the Mean Shift algorithm
significantly improve the target detection performance, with the
detection speed being 2.46 frames per second (FPS) higher than
that of the original YOLO-v4 network. In addition, the average
detection precision is increased by 1.75%, reaching 91.42%. After
demonstrating the effectiveness of our optimization method,
a mean shift clustering algorithm was used for ITC detection
testing. The testing process and evaluation metrics are presented
in Section “Individual TreeCrown segmentation using a deep
learning model.”

Results of the Training Process
The training loss curve of the improved YOLO-v4 model is
shown in Figure 11A. The loss decreases rapidly in the first 50
epochs and gradually stabilizes after 150 epochs, with a final
loss of approximately 0.04. The time and rate of convergence of
the loss curve depend mainly on the selection of an appropriate
learning rate (Zhang et al., 2020c). At the beginning of training, a
higher initial learning rate needs to be set due to the lack of known
information. As training progresses, the learning rate must be
reduced such that the loss function can converge to the optimal
value more smoothly. Our training obtained a small final loss,
which shows that the error between the predicted value and the
ground-truth value of the network is small and that the model
exhibits good performance.

The training accuracy curve of the improved YOLO-v4 model
is shown in Figure 11B. The accuracy increased rapidly and
exceeded 80% in the first 50 periods, then it steadily increased
until reaching nearly 98% after 200 periods; this indicates that
our classifier makes very small prediction errors.

Synthetic Tree Crown Heightmap
Generation by CycleGAN, WGAN-GP, and
SinGAN
CycleGAN was used to generate synthetic heightmaps of ITCs.
We randomly collected two sets of training samples (Train A
and Train B, each set containing 513 random individual tree
heightmaps from three forest plot types). As each of these
heightmaps is unique, stylistic differences exist between these two
sets. CycleGAN captures special characteristics from Train B and
determines how these characteristics can be translated into Train
A, which is in the absence of any paired training examples. As a
result, we can generate heightmaps using special learned features
from Train B, and the style transfer-generated heightmap results
can be used in the YOLO model. The training and generated
synthetic tree crown heightmaps are shown in Figure 12.
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FIGURE 15 | Individual tree crown detection results via our deep learning network for the partial testing set of heightmaps for the (A) nursery, (D,G) forest landscape
area, and (J) mixed tree plantation. (B,E,H,K) Correspond to (A,D,G,J), respectively, which intuitively display the ITC detection results for the four study sites.
(C,F,I,L) Show the results of elliptic parabolic fitting for each tree in the four plots, corresponding to (A,D,G,J), respectively.

FIGURE 16 | Scatter plots showing the relationship of the predicted crown lengths from improved YOLO-v4 versus the field measurement data in (A) sample plot 1
of the tree nursery, (B) plot 5 of the forest landscape, and (C) plot 7 of the mixed tree plantation, where the red squares represent the crown lengths in the N–S
direction and the green squares represent the crown lengths in the E–W direction. The red and green lines are the fitted lines for the N–S direction and E–W direction
using least squares regression, respectively.
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FIGURE 17 | A comparison results of individual tree crown segmentation shown in (A) the tree nursery, (B) the forest landscape area, and (C) the mixed tree habitat
using the watershed segmentation algorithm (yellow areas with extracted green boundaries) versus our deep learning algorithm (red boxes). The blue squares
represent the correctly detected treetops of tree crowns by watershed segmentation, and the green hollow dots represent the tree crowns missed by watershed
segmentation.

To augment the training sets for the YOLO model, we
considered generating more “different” heightmaps. WGAN-
GP was used to generate more synthetic heightmaps of ITCs
and the training dataset containing 1264 random individual
tree heightmaps from three forest plot types. The trained
parameters of the WGAN-GP models during the training stage
were saved every 100 iterations as the number of training
iterations increased. Additionally, synthetic images of tree crowns
were generated based on the training parameters every 100
iterations and compared with the expected target images. After
the generative process of WGAN-GP, we chose 10 sets of
training parameter files and the corresponding 10 sets of
generated heightmaps (including the 0th iteration). When the
generator uses the training parameters at the 100th and 200th
iterations (which do not satisfy the loss convergence for the
neural network), the generated image textures are completely
random and contain much noise. As the training progress
continued and the number of iterations reached 300 and 400,
the generator learned certain basic features of the real data,
and some generated heightmaps already resembled the real data.
Then, the quality of the synthetic images was improved by
considering additional training iterations. We chose the 1100th
and 1900th iterations to show that the evolution results of the
generated images looked very realistic and were very close to the
expected image. The generated synthetic tree crown heightmaps
with an increasing number of training iterations are shown in
Figure 13.

After using CycleGAN and WGAN-GP to generate synthetic
heightmaps of ITCs, SinGAN, an unconditional generative model
that can be learned from a single natural image, was used to
generate synthetic heightmaps of a large area. SinGAN can
generate high-resolution images from a forest plot. In total, 47
relatively large heightmap samples containing clear tree crowns

were selected from three forest plot types to serve as training
datasets for SinGAN. The generator learned an increasing
number of characteristics of the training images as training scale
increased. After 10 scales, the generated heightmaps had the same
aspect ratio as the original image, and three generated samples are
shown in Figure 14, revealing that in all these cases, the generated
samples depict new realistic structures and configurations of
objects while preserving the visual content of the training image.
Due to SinGAN’s multiscale pipeline, the structures at all scales,
from the global arrangement of big tree crowns to the fine
textures of the seedlings, are nicely generated.

Individual TreeCrown Segmentation
Using a Deep Learning Model
We selected three forest plots from each of the three forest plots
for the test set, yielding a total of nine forest plots. In the test
set, 476, 192, and 289 sample trees were from the nursery, forest
landscape area and mixed tree plantation, respectively. After
testing the test set using the small target detection framework
of improved YOLO-v4, 432, 166, and 238 trees were detected
correctly, respectively, 50, 36, and 55 non-existent tree crowns
were detected by mistake, and 66, 38, and 60 trees were missed.
The tree crown detection results (green boxes) of improved
YOLO-v4 in the test sets of the Figure 15A tree nursery,
Figures 15D,G forest landscape, and Figure 15J mixed forest
habitat are shown in Figure 15. Figures 15B,E,H,K visually
represent the ITC detection test results, and each detected tree is
identified by different colors. In addition, we performed elliptic
parabolic fitting for each tree, and the results are shown in
Figures 15C,F,I,L.

Table 2 lists the ITC detection results for the 9 sample plots
belonging to the three forest plot types. The p-values of the
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nine sample plots ranged from 0.75 to 0.87, and the average
value of p for the nursery (0.86) was higher than that for the
forest landscape area (0.80) and mixed forest habitat (0.78).
Considerable differences in the r values (ranging from 0.75 to
0.85) relative to the omission error were also observed among the
nine sample plots. Moreover, compared to the range of F1 values
calculated for the forest landscape areas (0.80–0.82) and mixed
tree plantations (0.75–0.83), the F1 values of the sample plots of
the nursery were all ≥ 0.84.

Although the nursery contained twice as many trees as either
the mixed tree plantation or the forest landscape area, the
numbers of commission errors and omission errors in the nursery
were less than those in the mixed tree plantation and forest
landscape area. A reasonable explanation for this situation is
that the canopy environments of the forest landscape area and
mixed tree plantation are complex due to the high degree of
tree species diversity, large variations in tree ages, and different
growth statuses of the trees, whereas the trees in the nursery
have simple horizontal and vertical structures. Therefore, the
performance of the deep learning network in the nursery is better
than that in the mixed tree plantation and forest landscape areas.
To test this interpretation, we analyzed the comparison between
the linear regression models for the predicted canopy size and
field measurement data at the three study sites.

First, we transformed the cardinal directions of the
heightmaps of the studied forest plots with north at the top
and east at the right.

Then, after predicting the width (vertical) and length
(horizontal) of the bounding boxes by YOLO on each
heightmap and determining the affiliation of the points in the
intersecting regions, the crown lengths in the N–S and E–W
directions were obtained.

Figure 16 shows the linear regression results based on the
canopy lengths in the N–S and E–W directions predicted by our
deep learning method and the field measurement data at the three
study sites. The linear regression models of the predicted crown
widths and field data in the three study sites were analyzed with
two statistical indicators: the coefficient of determination R2 and
the root-mean-square error (RMSE). The largest R2 (90.91 ±
0.51%) and smallest RMSE (0.36 ± 0.10 m) were achieved in
the nursery (Figure 16A plot 1) due to the uniform planting
arrangement of small, homogeneous trees. Relatively lower R2

values (87.51 ± 0.75%) and larger RMSEs (0.61 ± 0.01 m)
were obtained in the forest landscape area (Figure 16B plot
5) due to the existence of well-designed plants with varying
heights, which formed beautiful scenery with a multilayered
forest structure. However, certain parts of the shorter tree crowns
in the subcanopy layer may be obstructed by neighboring taller
trees from a bird’s-eye view. The smallest R2 (84.82 ± 0.41%)
and relatively large RMSEs (0.68± 0.05 m) were obtained in the
mixed tree plantation (Figure 16C plot 7) due to the anisotropic
crown shape and interlacing branches of adjacent trees.

The linear regression results of canopy lengths in the N–
S and E–W directions predicted by the deep learning network
for the above three plots indicate that the complexity of the
canopy environment affects the prediction accuracy of the deep
learning network.

DISCUSSION

By effectively extracting and analyzing the feature information
from a large number of training samples, deep learning provides
technical assistance for the actualization of intelligent systems in
the fields of self-driving cars (Li et al., 2020), target recognition
(Jin et al., 2021) and tracking, and automatic voice recognition
(Ma et al., 2021). In recent years, methods that combine
remote sensing data with deep learning techniques have been
increasingly applied to solve problems in forestry, such as
individual tree segmentation (Wang et al., 2019), tree species
classification (Hamraz et al., 2019), and crown information
interpretation (Wu et al., 2020). In this study, the deep learning-
based improved YOLO-v4 network combined with a heightmap
converted from airborne LiDAR data was first used to detect ITCs
in different types of forest plots.

Feasibility of Our Method
Aerial photography provides high-resolution remote sensing
images (Song et al., 2021) and is often used to map, manage,
and analyze tree distributions (Xu et al., 2019). However,
the captured tree crowns consistently exhibit considerable
differences in appearance due to varying capture positions
between UAV-loaded cameras and the target trees. In addition,
solar illumination directions, atmospheric turbidity, weather
conditions and the varying phenological periods of tree crowns
reduce the certainties of tree crown recognition. Airborne LiDAR
facilitates acquisition the vertical structure of the upper forest
canopy at multiple scales with variable spot sizes (Phua et al.,
2017). Although the development of LiDAR technology has
enabled studies via the acquisition of small- to medium-scale
regional data, the efficacy is still affected by various factors,
e.g., mutually occluded vegetative elements, intermediate and
suppressed trees hidden below the upper forest canopy, and
the diverse geometrical features of tree crown appearances
diminishing the uniform presentation of tree crowns. To
overcome the restrictions of aerial photography, we considered
using the YOLO deep learning model based on a heightmap
directly generated from airborne LiDAR data. When employed in
combination with some refinement of this deep learning method
and trained by GAN-generated augmented datasets, a high
ITC segmentation accuracy can be achieved without external
objective factors.

Individual tree crown in the nursery, forest landscape area,
and mixed tree plantation environments were detected using
our deep learning method with 86.8, 81.4, and 79.9% overall
recall, respectively (the data is the overall recall of three plots
from each forest plot type, which is not in Table 2), indicating
that our method can attain a relatively stable ITC detection
rate in different forest environments. The ITC detection rate
tends to decrease with increases in the tree species diversity,
planting density and canopy structural complexity. Compared
with other automated methods (Hu et al., 2014) used to delineate
ITCs (72–74% detection rate) in high-density LiDAR data, our
deep learning method displayed a pronounced enhancement
in its tree crown detection ability. Moreover, compared with
a previous study using different airborne remotely sensed data
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TABLE 3 | Comparison results between the detection accuracy of YOLO trained on a manually labeled dataset and that of YOLO trained on an augmented
GAN-generated synthetic dataset on the same testing samples (all trained on the overall training samples of the three study sites).

Training dataset Number of sample trees p r FPS

Train Test

Manually labeled 2269 340 0.73 0.79 23

Generated synthetically + Manually labeled 6405 340 0.81 0.84 38

[i.e., Multidetector Electro-Optical Imaging Scanner (MEIS)-II
data and IKONOS satellite image data] to identify individual
trees (Corresponding et al., 2004), our method has similar or
greater accuracy. Since our method exhibited good robustness
and scalability in different types of forest plots and achieved
relatively high accuracy in the automatic and real-time detection
of tree crowns, the proposed method based on a deep learning
framework has potentially wide applications in forestry and
related fields (Ma et al., 2022).

In this study, the degree of complexity of the forest canopy
structure increased from the nursery to the forest landscape area
and then to the mixed tree plantation. In an open system, gaps
always exist between tree saplings, and the lateral and vertical
growth of small trees at the initial growth stage with immature
tree crown are rarely obscured by the adjacent tree crowns at
roughly equal heights. In addition, the small degree of species
diversity, the lack of understory trees in the sample plots and the
minimal differences in tree crown shapes also yielded a favorable
impact on the testing of trees in the nursery. Therefore, compared
with the forest landscape area and mixed tree plantation, our
method achieved the highest overall values of the three indexes,
namely, p(0.82), r(0.87), and F1 (0.84), for a single study site when
assessing the nursery testing samples.

For the various tree species living in well-pruned and
maintained landscapes and mixed tree plantations, strong lateral
branches with multifoliate clumps usually appear, which causes
spurious peaks, with the surrounding area having a declining
height and a tendency to be mistakenly detected as an isolated
tree crown. Complete crown surfaces of morphological vagueness
are difficult to extract with respect to trees with overlapping
and interlacing branches as well as blurred crown drip lines
such that the number of tree crowns may be overestimated
from multiple clumped tree crowns during the detection process
of deep learning. In the forest landscape area and mixed tree
plantation, omission errors were caused mainly by the understory
vegetation and suppressed trees located between adjacent trees
forming interlocked tree crowns. During the point cloud data
acquisition for the dense forest, only part of the laser pulse can
reach the lower layer of the canopy through the forest gaps due to
the occlusion caused by the vegetation elements in the emergent
and canopy layers, which deteriorates the forest information
description from the middle and lower canopy point cloud data
(Almeida et al., 2019). Hence, we selected only trees taller than
3 m for analyzing and evaluating the ITC detection efficacy in the
forest landscape area and mixed tree plantation.

In addition, the pixel values of a grayscale heightmap range
from 0 to 1, corresponding to the z values of point clouds in

each grid (pixel). Usually, 0 is the lowest height representing
the ground, and 1 is the highest height value coinciding with
the treetop of the tallest tree in the plot. If the suppressed
trees below the general level of the forest canopy have relatively
small heights and exhibit an inconspicuous dark gray color
contrasting with the dark color of ground points, they possibly
represent indistinct visual texture features and impair the deep
learning recognition ability. An image processing strategy for
color contrast enhancement, i.e., histogram equalization, is
recommended for heightmaps to strengthen the hidden image
features of dwarf tree crowns.

Comparison of Detection Results Using
Different Methods
A comparative experiment was conducted to explore the
performance of our method versus the traditional watershed
method (Hu et al., 2014).

The results of the watershed segmentation algorithm and our
deep learning approach are presented in Figure 17. In total,
212 trees were detected correctly (solid blue square) in sample
plots, whereas 32 non-existent trees were mistakenly detected
as trees. In addition, 54 trees, especially sub-canopy trees, were
not detected (green hollow dots) when using the watershed
segmentation algorithm. Although the watershed segmentation
algorithm shows good and relatively stable effects compared to
other traditional canopy detection algorithms under different
environments, some parameters, i.e., the size and variance of
the smoothing template or the threshold for water expansion
control, depend upon calibration for specific conditions (Yun
et al., 2021). The deep learning method shows better performance
in generality and robustness with respect to high tree species
diversity and different forest plot types (Chen et al., 2021). The
results show that the detection rate of ITCs by the watershed
segmentation algorithm is 79.7%, which is 3.9% lower than that of
our deep learning network. An extrapolation of these findings is
that as tree species diversity and planting density in the sample
plots increase, an increase in this gap of tree crown detection
accuracy between two methods will appear.

In the second experiment, to explore the differences between
training the YOLO network on the dataset of manually labeled
ITCs and training the network on a dataset enhanced with
the GAN-generated synthetic ITCs, we compared the detection
performances after testing the improved YOLO-v4 detection
model on three forest plot types. As all the network models we
experimented with used the same initial weights and hardware
conditions, the dataset was the only difference.
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Table 3 shows a comparison between the detection results of
the YOLO network trained on the manually labeled dataset and
those of the YOLO network trained on a dataset enhanced with
the GAN-generated synthetic dataset, where the manually labeled
dataset consisted of 2269 training sample trees and 340 test
sample trees from the three types of forest plots, and the enhanced
dataset consisted of 3776 training sample trees and the same 340
test sample trees as the manually labeled dataset. We assessed the
detection accuracy and speed of the two YOLO networks with p,
r and FPS, as FPS is a common measure for detecting the speed
of object detection methods based on deep learning.

In our experiments, training on the dataset enhanced
with the GAN-generated synthetic dataset achieved superior
performance, surpassing that achieved by training on manually
labeled datasets in terms of both accuracy and speed. In
terms of accuracy, the p and r values of the enhanced dataset
outperformed those manually labeled by approximately 0.08 and
0.05, respectively. On our test set, the speed of YOLO trained on
the enhanced dataset outperformed that of YOLO trained on the
manually labeled dataset by 15 FPS.

CONCLUSION

Our results show the effectiveness of the proposed deep
learning object detection algorithm based on airborne LiDAR
data at identifying ITCs from the heightmaps generated
from point cloud data. Coupled with the synthetic training
samples generated by CycleGAN, WGAN-GP, and SinGAN to
augment the training sets, the deep learning network of the
YOLO-v4 model was adopted to detect ITCs and calculate
the corresponding crown widths of individual trees from
heightmaps. In addition, we optimized the clustering algorithm
in the YOLO-v4 network by adopting Mean Shift to replace
K-means and proposed a method based on elliptic paraboloid
fitting to determine the affiliation of the points in the intersecting
regions between adjacent bounding boxes generated by the
improved YOLO-v4 network for crown width estimation. The

algorithm was validated by the test sets from three different types
of forest plots (i.e., a tree nursery, a forest landscape area, and
a mixed tree plantation), achieving the successful detection of
86.8, 81.4, and 79.9% of the tree crowns, respectively, in the three
different test sets. The tree crown detection accuracy obtained
in this study was slightly higher than that reported by previous
studies. Therefore, our algorithm can quickly and accurately
detect ITCs from various types of forest plots containing multiple
tree species. Our method has pioneering potential for the
small target detection capacity of deep learning networks to
detect ITCs from heightmaps and affords heuristic perspectives
guiding the development of deep learning techniques for forest
point cloud analysis.
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