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Recognizing rice seedling growth stages to timely do field operations, such as
temperature control, fertilizer, irrigation, cultivation, and disease control, is of great
significance of crop management, provision of standard and well-nourished seedlings
for mechanical transplanting, and increase of yield. Conventionally, rice seedling growth
stage is performed manually by means of visual inspection, which is not only labor-
intensive and time-consuming, but also subjective and inefficient on a large-scale field.
The application of machine learning algorithms on UAV images offers a high-throughput
and non-invasive alternative to manual observations and its applications in agriculture
and high-throughput phenotyping are increasing. This paper presented automatic
approaches to detect rice seedling of three critical stages, BBCH11, BBCH12, and
BBCH13. Both traditional machine learning algorithms and deep learning algorithms
were investigated the discriminative ability of the three growth stages. UAV images were
captured vertically downward at 3-m height from the field. A dataset consisted of images
of three growth stages of rice seedlings for three cultivars, five nursing seedling densities,
and different sowing dates. In the traditional machine learning algorithm, histograms of
oriented gradients (HOGs) were selected as texture features and combined with the
support vector machine (SVM) classifier to recognize and classify three growth stages.
The best HOG-SVM model obtained the performance with 84.9, 85.9, 84.9, and 85.4%
in accuracy, average precision, average recall, and F1 score, respectively. In the deep
learning algorithm, the Efficientnet family and other state-of-art CNN models (VGG16,
Resnet50, and Densenet121) were adopted and investigated the performance of three
growth stage classifications. EfficientnetB4 achieved the best performance among other
CNN models, with 99.47, 99.53, 99.39, and 99.46% in accuracy, average precision,
average recall, and F1 score, respectively. Thus, the proposed method could be effective
and efficient tool to detect rice seedling growth stages.

Keywords: rice seedling, machine learning, deep learning, growth stage, histograms of oriented gradients, SVM

INTRODUCTION

Rice is the most important grain crop that feeds more than half of the world’s population
(Ruiz-Sánchez et al., 2010; Abid et al., 2015; Kargbo et al., 2016). It ranks first among the grain
crops in China. Currently, commercial farming of rice mostly employs transplanting techniques,
where seeds are sown and raised into seedlings in the nursery trays. Seedlings are later transplanted
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using compatible machinery (Tan et al., 2019). Healthy, disease-
free, and well-nourished seedlings with uniform growth are
the prerequisites for uniform field transplantation, and these
seedlings must meet certain technical standards in the system
of mechanical transplanting (Biswas et al., 2000; Cheng et al.,
2018). Precise temperature control and proper timing of fertilizer,
irrigation, cultivation, and disease control at different seedling
growth stages must be considered to raise the standard seedlings.
Thus, knowing the growth stages of seedling allows growers
to properly time field operations to raise seedlings. Moreover,
studies found out that the age of seedling at transplanting had
a great impact on grain yield. Transplanting young seedling
early and with high tiller production enhanced grain yield
(Pasuquin et al., 2008; Ohsumi et al., 2012). However, the rice
seedlings are often raised in paddy field. Environmental factors,
such as changes in temperature, solar radiation, and rainfall,
affect many traits that are responsible for the growth stages,
including leaf photosynthesis (Makino et al., 1994; Maruyama
and Nakamura, 1997), efficiency of nitrogen (N) used for
leaf photosynthesis (Nagai and Makino, 2009), leaf emergence
(Hiraoka et al., 1987), leaf elongation (Cutler et al., 1980), and
the allocation of biomass and N to leaf (Kanno et al., 2009).
Therefore, monitoring the seedling growth stage is crucial to
ensure to have seedling transplant at the most suitable age. The
phenology staging system of rice refers to BBCH scale which
uses a decimal code to describe the growth of crops (Lancashire
et al., 1991). For example, BBCH [10–19] represents seedling
stages which is here the 0–9 leaves’ development. The appropriate
age of rice seedling at transplant is no later than BBCH13. At
present, seedling growth stage detection mainly relies on manual
field inspection, which is time-consuming, labor-intensive, and
inaccurate. When large-scale field involved, manual inspections
become inefficient. Therefore, there is a need for a low-cost,
accurate, rapid, and objective approach for rice seedling growth
stage detection.

During the entire growth cycle, crops change significantly in
their external morphological structures and could be observed
visually, which enables us to explore new technologies to
automatically observe, detect, and distinguish different critical
growth stages of crops. Computer vision technology has been
reported in the application of seedling quality and growth stage
detection. Tong et al. (2013) developed an improved watershed
segmentation for overlapping leaf images and applied it to
test the crop seedling quality. Yu et al. (2013) explored the
application of computer vision to automatically detect two critical
growth stages of maize, including the emergence and three-leaf
stage. In this study, a crop segmentation method, namely, AP-
HI, was put forward to extract the plants from images. Then,
the spatial distribution feature was used to judge whether the
field crop had reached the emergence stage or not. Skeleton
endpoint detection was used to characterize the leaf of seedling
and to judge whether the field crop had reached the three-leaf
stage or not. Recently, Li et al. (2021) utilized computer vision
to detect rice seedling hill in the paddy field. The preferred
laboratory color model along with Otsu’s method was used to
extract rice seedling information, and the skeleton of the seedling
hill was extracted using the thinning algorithm to effectively

characterize the morphological structure of single seedling hill.
Similar studies of seedling quality detection have been reported in
wheat (Zhu et al., 2016), cotton (Chen et al., 2018), and rapeseed
(Zhao et al., 2018).

With the rapid development of big data technology and
high-performance computing, the machine learning technology
has been widely used in the recent years to meet the growing
demand for fast, accurate, and non-destructive applications
in precision agriculture. Numerous applications of machine
learning technology are reported in agricultural automation, such
as yield estimation (Yang et al., 2019; Chu and Yu, 2020; Zhao
et al., 2021), disease detection (Chowdhury et al., 2021; Zhang
et al., 2021; Farman et al., 2022), weeds identification (Jin et al.,
2021; Pandey et al., 2021), and continuous monitoring of crop
status (Han et al., 2021; Taylor and Browning, 2022).

In the traditional machine learning algorithms, color,
texture, and thermal features, which are extracted from RGB,
multispectral and thermal images, are then fed into different
machine learning algorithms, such as nearest neighbors, linear
discriminant analysis, random forest, and support vector
machine (SVM) to finish specific tasks. Histograms of oriented
gradient (HOG) are a feature descriptor representing an image
with a set of local histograms counting the occurrences of
gradient orientations within a local image cell. It was successfully
applied for pedestrian detection by Dalal and Triggs (2005),
and the HOG descriptors significantly outperformed existing
feature sets for human detection. HOG feature is widely reported
in precision agriculture. Tan et al. (2018) calculated the HOG
feature vectors from original color images of blueberry fruit,
and then, a linear SVM classifier was trained to detect the
fruit-like regions rapidly. Abouzahir et al. (2021) used the
HOG to improve the performance for weed detection. In this
study, HOG blocks were used as the key points to generate
the visual words. A backpropagation neural network was
adopted to detect weeds and classify plants for three different
crop fields. This method classified plants with an accuracy
of 90.4, 92.4, and 94.1% in sugar beet, carrot, and soybean
fields, respectively.

The deep learning algorithms, a relatively new area of machine
learning, allow computational models that are composed of
multiple processing layers to learn complex data representations
using artificial intelligence for image processing and data analysis
(Liakos et al., 2018). One of the main advantages of deep learning
algorithms is that the step of feature extraction is performed by
the model itself. The performance of deep learning algorithms
far exceeds that of the traditional machine learning in many
applications. In fact, deep learning has been reported in the
application of crop critical growth stage detection. Velumani
et al. (2020) trained a convolution neural network (CNN) to
identify the presence of wheat spikes in small patches acquired
by a fixed RGB camera in the field. The heading date was
then estimated from the dynamics of the spike presence in
the patches over time. In a similar study, Bai et al. (2018)
determined the arrival of the rice heading stage by the number
of the spike patches detected by a CNN network. Rasti et al.
(2021) investigated wheat and barley growth stage estimation by
classification of proximal images using deep learning algorithm.
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FIGURE 1 | The schematic diagram of the proposed method.

The classification was carried out using three different machine
learning approaches on an image dataset of 12 growth stages
of wheat and 11 growth stages of barley. The three machine
learning approaches included a 5-layer CNN, a pretrained
VGG19 network, and SVM. In the seedling growth stage
detection, Samiei et al. (2020) developed four deep learning
models, including the multiclass CNN, 2-class CNN, CNN-
LSTM, and ConvLSTM, to classify three growth stages of two
species of red clover and alfalfa. The three growth stages were
emergence out of the soil, cotyledon opening, and appearance
of the first leaf.

Other studies addressed critical crop growth stage detection
through the analysis of a height-based continuous growth curve
captured over the entire growth cycle (Zhao et al., 2021). To
date, several studies of crop growth stage detection have been
reported. However, to our best knowledge, few studies have been
reported in rice seedling growth stages detection. On the other
hand, with proper sensors well equipped on, unmanned aerial
vehicle (UAV) is controllable and capable of performing multiple
missions. The UAV platform exhibits many advantages, such
as low cost, high spatial, and temporal resolution. Moreover,
the application of UAV is highly flexible, and the use of
process is relatively simple. Therefore, the combination of UAV
technology and machine learning algorithms allows us to detect
crop growth stage in a more precise and efficient way. The

objective of this study was to explore efficient and robust
ways to detect three main growth stages of rice seedlings,
including BBCH11, BBCH12, and BBCH13. For this purpose,
an RGB camera mounted on a UAV was used to capture the
images of a rice paddy field. A total of two types of machine
learning algorithms were investigated: (1) For the first time,
HOG feature was extracted from the rice seedling canopy
images, and then, SVM was adopted to classify the seedlings
into three growing stages, BBCH11, BBCH12, and BBCH13. (2)
Different deep learning models were adopted to classify the three
seedling growth stages. (3) The performance of the machine
learning algorithms was finally evaluated and compared by
proper evaluation indexes, including accuracy, average precision,
average recall, and F1 score.

MATERIALS AND METHODS

In this study, the main processes of rice seedling growth stages
detection, such as field data acquisition, image preprocessing,
machine learning model applications, and model performance
evaluations, are summarized in Figure 1. First, RGB images
of rice seedling were acquired using a DJI Phantom4 RTK
UAV (DJI Innovations, Shenzhen, China), and a series of
image preprocessing was performed to prepare the datasets.
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FIGURE 2 | Study site and experimental design. (A) Location of the study site; (B) orthomosaic; (C) field tray nursing seedling experiment designs.

TABLE 1 | Details of RGB images acquisition and the corresponding phenological growth stages of the rice seedlings.

Inspection date (2021) 16 March 19 March 24 March

Region No. Growth stage Images acquired Growth stage Images acquired Growth stage Images acquired

1. BBCH11 56 BBCH12 83 BBCH13 108

2. BBCH11 46 BBCH12 60 BBCH13 85

3. BBCH11 45 BBCH12 92 BBCH13 108

4. BBCH11 69 BBCH12 98 BBCH13 96

5. BBCH11 20 BBCH12 32 BBCH13 28

6. BBCH11 84 BBCH12 120 BBCH13 102

7. × × BBCH12 55 BBCH13 40

Second, datasets created from the UAV images combined
with field observations were processed through two groups of
machine learning methods, namely, traditional machine learning
and deep learning algorithms. Third, model performances
were finally evaluated and compared, with the most desirable
one(s) recommended.

Study Sites and Field Experiments
This study was a part of a comprehensive rice field experiments
conducted at location of Research Centre Shapu, in Zhaoqing,

Guangdong Province, China (23.16◦ N and 11.57◦ E). On the
date 9–11 March 2021, rice seeds were sown onto the nursery
trays by the 2ZSB-500 automatic precision rice seeding line.
A total of three cultivars and five nursing seedling density
were considered in the rice field experiment. A total of three
cultivars included Huahang No. 51, Huahang No. 57, and
Guang8you2156. A total of five nursing seedling densities,
namely, 120 g/tray, 90 g/tray, 60 g/tray, 50 g/tray, and 35
g/tray, were adopted. After sowing seeds onto the trays, a
total of 3,000 trays were classified and placed according to
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TABLE 2 | Detailed information of the datasets.

The number of images Growth stages of the seedlings

BBCH11 BBCH12 BBCH13

Original images 320 540 567

Image of 600 × 600 pixels 1,130 3,652 4,101

Image of 400 × 400 pixels 2,814 3,545 5,739

Image of 300 × 300 pixels 4,318 5,564 4,672

Image of 200 × 200 pixels 8,083 18,994 25,842

Image of 224 × 224 pixels 12,357 27,830 25,393

Image of 100 × 100 pixels 49,840 89,333 90,759

different sowing experiments and sowing dates. The trays were
placed neatly in the paddy field. After the seedlings grew to an
appropriate age, they were transplanted to a field of about 2.6
hectares for other comprehensive rice experiments. The study
site and tray nursing seedling experiment design are shown in
Figure 2.

Image Acquisition and Preprocessing
Image Acquisition
When rice seedlings raising in the field, manual inspections
by technicians were collected on 16 March, 19 March, and 24
March. In each region, the technicians sampled 100 seedlings
and observed the growth stage of the seedlings. If there were
more than 80 seedlings exhibited the same growth stage, this
stage was recorded as the rice seedling age of the region. At the
same time, the field images of this region were acquired using
the DJI Phantom 4 RTK UAV with a 1-inch 20-megapixel CMOS
(RGB) sensor. The images were collected with the lens shooting
vertically downward, and the flight height was set to 3 m with a
ground sampling distance (GSD) of 0.08 cm/pixel. The adjacent
images along the flight direction overlapped on an average of one-
third. The original image sizes were 5,472 × 3,642 pixels and the
images were separately saved as TIFF files. On 16 March, there
were less than 80 seedlings that exhibited a same growth stage in
Region no 0.7 by manual inspection. Therefore, the field images
of this region were excluded from the dataset. Details of RGB
image acquisition and the corresponding phenological growth
stages of the rice seedlings are shown in Table 1.

Image Preprocessing and Dataset Preparation
There is redundant information in the original RGB images
acquired by the UAV, such as the road and the field. In
addition, the large image size is not suitable for machine
learning application. Hence, image preprocessing is necessary.
Image preprocessing algorithm is mainly divided into three
main steps (Figure 1). First, Gaussian filtering was adopted
to reduce the noise after the image gray scale. Then, image
enhancement is done before edge gradient detection. After
that, the seedling raising regions were coarsely extracted based
on the edge gradient detection, that is, RGB images of rice
seedling canopy are extracted. Next, the images were cropped
into different sizes, including 100 × 100 pixels, 200 × 200
pixels, 224 × 224 pixels, 300 × 300 pixels, 400 × 400 pixels,

and 600 × 600 pixels. Finally, images contained redundant
information were removed. The rest of the images were prepared
as the datasets. Detailed information of the datasets is shown in
Table 2.

HOG-SVM-Based Rice Seedling Growth
Stages Detection
Histograms of oriented gradient feature was used to capture
and express texture features of the seedlings canopy caused
by different seedling growth stages. To extract the HOG
feature, the extracted images were divided into uniformly
spaced non-overlapping cells of c × c pixels (Figure 3, top).
The image gradient orientation of each cell was binned and
aggregated into local histograms. Dalal and Triggs (2005)
found that using an unsigned gradient orientation (0–180◦)
and 9 bins performed better than a lower number of bins
and a signed gradient orientation (0–360◦) with an increased
number of bins (up to 18 bins). Therefore, the histogram
binning was performed using the unsigned gradient orientation
and 9 bins in this work. The cells were grouped into
overlapping blocks of b × b cells. As such, a single cell
could be included in multiple blocks. The cell histograms in
each block were normalized with respect to the entire block.
The HOG feature was thus comprised of all the normalized
histograms of the gradient orientations (Figure 3, bottom).
The cell size c and block size b were optimized through a
grid search during training of the classifiers, and the block
overlap was fixed to half the block size rounded up to reduce
the search space.

Support vector machine has been proved to be a powerful
tool for problems of classification and regression for many
previous studies, and thus, it was adopted to classify the
seedling images according to their growth stages based on
the extracted HOG features. The images were classified into
three growth stages, including the BBCH11, BBCH12, and
BBCH13. Since SVMs are inherently two-class classifiers, a set
of binary one-verse-one classifiers are built, which train one
learning model for each pair of classes. Linear, quadratic, cubic,
medium Gaussian, coarse Gaussian, and fine Gaussian functions
were employed and evaluated based on their accuracy on the
validation dataset.

Deep Learning-Based Rice Seedling
Growth Stages Detection
Deep learning is an important and new branch of machine
learning. It originates from the artificial neural network, which
learns the representation of data by constructing artificial
neural network. Currently, the most widely used deep learning
networks are CNNs. Efficientnet is a family of CNNs of
similar architecture, which achieves more efficient results by
uniformly scaling depth, width, and resolution with a scale ratio
between these sets of parameters (Tan and Le, 2019). In this
study, Efficientnets were adopted to classify the seedling growth
stages. The performance of the proposed model was compared
with the state-of-art CNN models such as VGG16, ResNet50,
and DenseNet121.
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Efficientnet
Recently, Tan and Le (2019) developed Efficientnet architectures,
which were based on CNN design, and systematic model
scaling technique was developed by applying a simple but
effective compounded coefficient to scale up all depth, width,
and resolution dimensions evenly. Tan and Le (2019) showed
that the Efficientnet leads to superior performance and higher
efficiency than the existing CNN methods both in terms of
the number of parameters and Top1 accuracy when applied
to the ImageNet dataset. Efficientnet family consists of eight
models, ranging from B0 to B7. With the increase of the
version, the performance of the models improves gradually,
but the corresponding model size and calculation resource
will not increase considerably. The main building block in
Efficientnet is the mobile inverted bottleneck convolution
(MBConv), which is initially introduced with MobileNetV2.
The MBConv block receives two inputs, the first one is data
and the second is arguments of the block. In addition, blocks
consist of a layer that first expands the channels and then
compresses them, thereby reducing the number of channels for
the subsequent layer. A set of attributes, such as input filters,
output filters, expansion rate, and compression rate, are used
in the MBConv. The network parameters of EfficientnetB0 are
shown in Table 3.

In this study, Efficientnet architectures were utilized to detect
seedling growth stages to determine the best model. A total
of two fully connected layers were added, 1,792 nodes for
the inner layer and 3 nodes for the output layer (according
to the number of predicted growth stages types). Figure 4
shows the diagram of the EfficientnetB4 used to detect rice
seedling growth stages.

Other State-of-Art Convolution Neural Network
Models
VGG16 presented by Simonyan and Zisserman (2015),
which won the ILSVRC 2014, is a CNN architecture with
approximately 138 million parameters. It consists of 5
maximum pooling layers, 13 convolution layers, 3 full
connection layers, and a softmax classifier layer. Instead of
having large number of hyperparameters, VGG16 always
has the same convolution layers that use 3 × 3 filters with
stride 1 and same padding and maximum pooling layers
that use 2 × 2 filters with stride 2. All hidden layers are
added with ReLU layers. After the first and second fully
connected layers, the dropout technology is also used to
prevent network overfitting. The input layer takes images of
224× 224 pixels.

ResNet50 presented by He et al. (2016), which won the
ILSVRC-2015 competition in 2015, is an architecture proposed
to solve the problem of gradient disappearance and degradation
problem. The architecture of ResNet50 is based on many stacked
residual units. Residual units are used as the building blocks to
build the network. These units consist of convolution and pooling
layers. This architecture uses 3 × 3 filters as VGG16 and takes
input images of 224× 224 pixels.

DenseNet (Huang et al., 2017) was presented and won the
best paper on CVPR2017. It encourages feature reuse and

alleviates the problem of vanishing gradient. It is characterized
in that DenseNet connects each layer with every other layer
in a feed-forward manner, that is, the feature maps of all the
previous layers are used as inputs for each layer, and their
feature maps are used in all subsequent layers as inputs. This
architecture has a dense connectivity pattern, therefore called a
dense convolutional neural network.

Transfer Learning
Transfer learning recycles previously trained networks using
the new data to update a small part of the original weights,
which makes the learning process more efficient. Given that
sufficient public dataset for rice seedlings does not exist,
it is difficult to obtain a satisfactory result based on the
training deep learning model from scratch. Therefore, transfer
learning technology (Weiss et al., 2016) was adopted in our
model training. First, to obtain the pretrained network, the
Efficientnets are pretrained on ImageNet, which is currently
the largest image recognition dataset in the world, with
1.2 million images of 1,000 categories. Then, the seedling
images are loaded into the pretrained Efficientnets. Second,
the last few layers of the trained network can be removed,
and two new fully connected layers are built and retrained
for the growth stage classification task (Figure 4). In the
transfer learning approach, using the knowledge of the
network previously trained with large amounts of visual data
in a new task is very advantageous in terms of saving
time and achieving high accuracy compared to training the
model from scratch.

Training and Testing
In the HOG-SVM-based machine learning algorithm, 1,000
images in each growth stage, a total of 3,000 images,
were randomly selected to form the basis dataset for SVM
classifications. Then, the datasets in each growth stage were
randomly shuffled and divided into training, validation, and test
sets according to the ratio of 6:2:2. The HOG features have
two hyperparameters, which were the cell size c ∈ {8, 16, 32}
and the block size b ∈ {2, 3, 4, 5, 6}. The two hyperparameters
were optimized through a grid search on the training set by
training a multiclass SVM for each combination and evaluating
it on the validation set. Different SVM kernels and the sizes of
input image were also evaluated for each of the SVMs trained
in the grid searches. In the grid search of each HOG features,
the combination of the kernel function and the input image
size with the best performance was selected as the optimal
kernel function and input image size. Afterward, the highest
accuracy on the validation set was used to select the HOG
hyperparameters.

In the deep learning classification, Efficientnets are adopted
to perform the classification task of rice seedling growth
stage, and then, the state-of-art CNN models are considered
and compared with the best performance of the Efficientnets.
Table 2 formed the basis dataset for deep learning-based
growth stage classification. The dataset in each growth stage
was divided into training, validation, and test sets according
to the ratio of 6:2:2. According to the different requirements
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FIGURE 3 | Visualization of the extracted HOG features of different seedling growth stages using a cell size of 40 × 40 and block size of 5 × 5 on image of
200 × 200 pixels. Top row, RGB images; bottom row, HOG features of rice seedlings: (A) BBCH11, (B) BBCH12, and (C) BBCH13.

TABLE 3 | Parameters of the EfficientnetB0 network.

Stage (i) Operator (Fi ) Resolution (Hi × Wi ) Channels (Ci ) Layers (Li )

1. Conv3 × 3 224 × 224 32 1

2. MBConv1, k3 × 3 112 × 112 16 1

3. MBConv6, k3 × 3 112 × 112 24 2

4. MBConv6, k5 × 5 56 × 56 40 2

5. MBConv6, k3 × 3 28 × 28 80 3

6. MBConv6, k5 × 5 14 × 14 112 3

7. MBConv6, k5 × 5 14 × 14 192 4

8. MBConv6, k3 × 3 7 × 7 320 1

9. Conv1 × 1 & Pooling & FC 7 × 7 1,280 1

of input image sizes of deep learning models, images of
224 × 224 pixels were prepared for the EfficientnetB0. Then,
they were resized to 240 × 240 pixels and 260 × 260
pixels, which were used for EfficientnetB1 and EfficientnetB2,
respectively. Images of 300 × 300 pixels were prepared for
EfficientnetB3. Similarly, images of 400 × 400 pixels were
resized to 380 × 380 pixels and 456 × 456 pixels and then
were fed into EfficientB4 and EfficientnetB5, respectively. Images
of 600 × 600 pixels were used for EfficientnetB7 and then
were resized to 528 × 528 pixels and used for EfficientnetB6.
Images of 224 × 224 pixels were used for VGG16, ResNet50,
and DenseNet121.

Our study was conducted in Windows 10 environment
(processor: Intel core i9 10920X CPU; memory: 64G; graphics
card: GeForce RTX 2080Ti 11G DDR6). Python3.8 was selected
for image preprocessing, whereas the feature extraction and
analysis were performed in MATLAB (version 2020b, the
MathWorks, Inc., Natick, Massachusetts, United States) using
the Computer Vision System Toolbox 9.3 and the Classification
Learner App from the Statistical and Machine Learning
Toolbox 12.0. The deep learning frameworks Pytorch1.8.1
and Python3.7, in combination with Cuda10.2, were used for
deep learning model training. In the experiment design and
training process of deep learning models, the initial learning
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FIGURE 4 | Diagram of the EfficientnetB4 used to detect rice seedling growth stages.

FIGURE 5 | Evaluation performance on the validation sets for SVMs trained on the HOG features as a function of SVM kernels and input image sizes: (A) Accuracy,
(B) average precision, (C) average recall, and (D) F1 score. Error bars show the standard deviation across the SVMs.

rate was set to 0.001, and the network batch size of the
training set and validation set was set to 32. Adam optimization
algorithm was selected in this work. The epoch of network
model was set to 50.

Performance Evaluation
In this study, the performance of machine learning algorithms
was evaluated using four evaluation indexes of accuracy,
precision, recall, and F1 score, which were given by the equations
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FIGURE 6 | Evaluation performance on the validation sets for SVMs trained on the HOG features as a function of cell size c and block size b: (A) Accuracy,
(B) average precision, (C) average recall, and (D) F1 score.

(1)-(4). The accuracy indicates the rate of correctly classified
images out of all the images in a test set for a particular
growth stage class, which shows the overall effectiveness of the
classifier. The precision represents the proportion of images that
are true positive among all images predicted to be positive.
The recall represents the proportion of images predicted to
be positive among the images that are true positive. The
values of four evaluation indexes range from 0 to1. The
higher the value is, the better the efficiency of the algorithm
is.

accuracy
∑

correctly classified images∑
images

(1)

precision (GS)
∑

images with GS classified as GS∑
images classified as GS

(2)

recall (GS)
∑

images with GS classified as GS∑
images with GS

(3)

F1
2 precision recall
precision+ recall

(4)

where GS is the growth stage: “BBCH11,” “BBCH12,” or
“BBCH13.”

TABLE 4 | Confusion matrix for SVM using HOG feature with cell size of 16 and
block size of 2 evaluated on the test set.

Predicted

BBCH11 BBCH12 BBCH13 Recall

Observed BBCH11 172 20 9 85.57%

BBCH12 5 177 19 88.06%

BBCH13 0 38 163 81.09%

Precision 97.18% 75.32% 85.34% 84.91%

The lower right cell shows the accuracy.

RESULTS AND ANALYSIS

Results of HOG-SVM-Based Rice
Seedling Growth Stages Detection
A total of six SVM kernels and four input image sizes were
first considered. Six kernels included linear, quadratic, cubic,
medium Gaussian, coarse Gaussian, and fine Gaussian whereas
four input image sizes included 100 × 100 pixels, 200 × 200
pixels, 300× 300 pixels, and 400× 400 pixels. Figure 5 shows the
performance evaluation of SVM classifiers with different kernels
and input image sizes. For different kernels, medium Gaussian
kernel resulted in the best in accuracy, average precision, average
recall, and F1 score. The fine Gaussian kernel obtained the
poorest results. Moreover, when input image size was selected
as 400 × 400 pixels, the best performance was achieved, with
accuracy, average precision, average recall, and F1 score of 84.91,
85.958, 84.90, and 85.43%, respectively. Therefore, the medium
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TABLE 5 | Evaluation performance on test sets for HOG-SVM classifiers with different numbers of training images in each growth stage.

Input image
size (pixels)

Number of training images
in each growth stage

Accuracy Average precision Average recall F1 score Time of
training (min)

Time of
testing (sec)

400 × 400 1,000 84.9% 85.9% 84.9% 85.4% 3.03 12.374

400 × 400 1,500 81.0% 83.3% 81.1% 82.2% 4.16 35.741

400 × 400 2,000 81.4% 83.0% 81.4% 82.2% 7.24 52.320

400 × 400 2,500 79.8% 80.8% 79.8% 80.3% 11.6 76.156

TABLE 6 | Evaluation performance on the validation sets for EfficientnetB0-B7.

Models Accuracy Average precision Average recall F1 score Time of
training (min)

Time of test
(sec)

EfficientnetB0 97.67% 97.54% 97.71% 97.62% 106.7 32

EfficientnetB1 97.52% 97.54% 97.75% 97.64% 40.9 12

EfficientnetB2 97.61% 97.61% 97.79% 97.70% 36.5 12

EfficientnetB3 98.43% 98.41% 98.58% 98.50% 50.0 15

EfficientnetB4 99.47% 99.53% 99.39% 99.46% 62.5 19

EfficientnetB5 98.78% 99.09% 99.01% 99.05% 83.2 24

EfficientnetB6 98.28% 98.60% 98.46% 98.53% 135.0 40

EfficientnetB7 98.72% 98.85% 98.74% 98.79% 220.9 66

Gaussian kernel and image sizes of 400× 400 pixels were chosen
in the further analysis of the HOG features.

After selecting the optimal SVM kernel and input image size,
the HOG feature hyperparameter grid search was performed
by training individual SVM classifiers on the training set and
subsequently evaluating the classifiers on the validation set and
test set. Cell sizes c of 8, 16, and 32 pixels as well as block sizes b of
2, 3, 4, 5, and 6 cells were evaluated. Using the medium Gaussian
kernel and the input image size of 400× 400 pixels, the accuracy,
average precision, average recall, and F1 score across the different
cell size c and block size b varied from 75.3 to 85.4, 76.2 to 85.9,
75.3 to 84.9, and 75.8 to 85.4%, respectively (Figure 6). Compared
with the four evaluation indexes, they showed similar trends with
respect to cell size c or block size b. However, when inspected the
evaluation indexes separately, they showed no clear trends with
respect to cell size c or block size b.

The HOG feature with a cell size of 16 and a block size of 4
resulted in the highest accuracy of 85.4%, and the second highest
accuracy of 84.9% was found in HOG feature with a cell size of
16 and block size of 2. Moreover, HOG feature with cell size of
16 and block size of 2 resulted in the highest average precision,
average recall, and F1 score. Therefore, the cell size of 16 and
block size of 2 were chosen as the optimal parameters.

In addition, the SVM classifier trained with the HOG feature
with a cell size of 16 and a block size of 2 was evaluated
on the test set. Table 4 shows the corresponding confusion
matrix. A high precision (97.18%) and an adequate precision
(85.34%) were found in BBCH11 and BBCH13, respectively,
whereas the BBCH12 group showed an inadequate precision
(75.32%). On the other hand, the recall rates in each growth
stage group showed adequate performance, which achieved above
81%. Besides, BBCH12 and BBCH13 overlapped the most,
which indicated that it was difficult to distinguish between
BBCH12 and BBCH13.

TABLE 7 | Confusion matrix for EfficientnetB4 evaluated on the test set.

Predicted

BBCH11 BBCH12 BBCH13 Recall

Observed BBCH11 563 0 0 100

BBCH12 3 696 10 98.17%

BBCH13 0 0 1,148 100%

Precision 99.47% 100% 99.14% 99.47%

The lower right cell shows the accuracy.

To further verify the robustness of the HOG-SVM model,
different numbers of images were used to train the SVM model,
and 1,000 images, 1,500 images, 2,000 images, and 2,500 images
in each growth stage were randomly selected and formed the
classification datasets. Training, validation, and test sets were
divided according to the ratio of 6:2:2. Medium Gaussian kernel
and HOG feature of cell size of 16 and block size of 2 were used.
The performance of SVMs is shown in Table 5. The accuracy,
average precision, average recall, and F1 score of different number
of training images varied from 79.8 to 84.9, 80.8 to 85.9, 79.8 to
84.9, and 80.3 to 85.4%, respectively. As the number of training
image increased, the performance of the SVM classifiers dropped
slightly. However, the lowest F1 score was above 80%, which
indicated that the overall performance was reasonably robust.

Results of Deep Learning-Based Rice
Seedling Growth Stages Detection
Results of Rice Seedling Growth Stages Detection
Based on Efficientnet
All Efficientnets B0-B7 were trained on the training set and then
validated and tested on validation set and test set, respectively.
The performance evaluations of accuracy, average precision,
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TABLE 8 | Evaluation performance on the validation sets for different CNN models.

Accuracy Average
precision

Average
recall

F1 score Total training
time (min)

Total test time
(sec)

EfficientnetB4 99.47% 99.53% 99.39% 99.46% 62.5 19

Densenet121 99.06% 98.79% 99.11% 98.95% 114.2 35

Resnet50 98.97% 98.74% 98.92% 98.83% 104.2 30

VGG16 94.84% 94.55% 94.83% 94.69% 116.7 33

average recall, and F1score obtained from all Efficientnet
models on validation datasets are provided in Table 6. For all
eight models, classification results showed good performance.
Accuracies were recorded in the range of 97.52–99.47%, whereas
the average precision, average recall, and F1 score varied in
the ranges of 97.54 to 99.53, 97.71 to 99.39, and 97.62 to
99.46%, respectively. The classification accuracy got better as
the version of Efficientnet increased; however, there were slight
decreases after EfficientnetB4. Table 6 shows that EfficientnetB4
outperformed other Efficientnet models and achieved the best
values in four evaluation indexes. Table 7 shows the confusion
matrix of EfficientnetB4 evaluated on the test datasets. The
EfficientnetB4 showed satisfactory results. Precision and recall in
each growth stage got height values, which were above 98.17%.
Among them, precision in BBCH12 and recall in BBCH11 and
BBCH13 obtained 100%. The classifier incorrectly recognized 3
and 10 out of 709 images (0.4 and 1.4%) of BBCH12 as BBCH11
and BBCH13, respectively. Thus, the recall rate in BBCH12 was
less lower than the BBCH11 and BBCH13.

The precision-recall curves plot the precision rate against
the recall rate. The under-area values of precision–recall curves
indicate the reliability of the model from 0 to 1. The under-
area values close to 1 indicates that the model can differentiate
multiple classes with higher accuracy; otherwise, the smaller
under-area values are, the poorer performance of the model
suffers when distinguishing classes. It can be seen from Figure 7A
that the under area of precision–recall curve of EfficientnetB4 is
the largest, which indicates that it performs the best.

In terms of processing time of Efficientnets, as the version
of Efficientnet increased from B1 to B7, the time consumption
of training and test increased from 40.9 to 220.9 min, 12 to 66
s, respectively.

Comparison With Other State-of- Art Deep Learning
Models
To verify the effectiveness of the EfficientnetB4, three other
popular CNN models, VGG16, Resnet50, and Densenet121,
were trained for rice seedling growth stage recognition and
classification and compared with the EfficientnetB4. The
mentioned CNN models were trained on the same dataset (with
same hardware configuration) that were used in Efficientnet.
Table 8 and Figure 7B show the performance comparison of
the four models. As we can see in the table, the performance of
the EfficientnetB4 achieved the best results in terms of accuracy,
average precision, average recall, and F1 score. Densenet121
is close to the EfficientnetB4 model. VGG16 presented the
lowest accuracy value of 94.84%. The validation results revealed

that overall EfficientnetB4 performed better than the other
three CNN models. In terms of processing time of popular
CNNs, the time consumption of training and test of Efficientnet
B4 was the lowest.

DISCUSSION AND CONCLUSION

Comparison With Traditional Machine
Learning Algorithms and Deep Learning
Algorithms
In this paper, automatic approaches of rice seedling growth stages
recognition and classification have been presented using both
the traditional machine learning algorithm and deep learning
algorithm. Compared with HOG-SVM-based algorithm, the
performance of deep learning algorithm far exceeds that of the
traditional machine learning in growth stages classification. For
instance, as the best deep learning models, the EfficientnetB4
achieved the best performance, with 99.47, 99.53, 99.39, and
99.46% in accuracy, average precision, average recall, and F1
score, respectively. Meanwhile, the best HOG-SVM model
obtained the performance with 84.9, 85.9, 84.9, and 85.4%
in accuracy, average precision, average recall, and F1 score,
respectively. In Tables 4, 7, we can notice from the confusion
matrix that errors in HOG-SVM algorithm and the EfficientnetB4
mostly occur on adjacent growth stages. These are situations
where even human eyes that inspect from the canopy of the
seedling can have uncertainty to decide the exact growth stages
from one stage to the next one. Remaining errors are low and can
thus be considered as reasonable errors.

The construction of multiple layers for automatically image
features learning from training data instead of complex manual
feature extraction contributes to high performance of the deep
learning algorithms. The phase of manual feature extraction in
traditional machine learning is affected to a greater or lesser
extent by many other factors and thus can sometimes result in low
prediction performance. In the HOG-SVM-based rice seedling
growth stage recognition, HOG features, consisting of the
orientation of edges found through the computation of the image
gradient, are manually selected to describe the texture feature of
the seedling canopy structure. The hyperparameters of HOG, the
cell size and block size, affect the number of occurrences of edges
within given orientation ranges that constitute a locally spaced
histogram and thus have effects on the classification performance.
In addition, it can be noticed that the performance of the SVM
model varies more obviously than the EfficientnetB4 does as
the number of training images increases. In Tables 5, 9, as the
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FIGURE 7 | Precision–Recall curves of different deep learning models: (A) EfficientnetB0-B7 (B) State-of-art CNN models.

TABLE 9 | Evaluation performance on test sets for EfficientnetB4 with different numbers of training images in each growth stage.

Model Number of training images
in each growth stage

Accuracy Average
precision

Average
recall

F1 score Time of
training (min)

Time of
testing (sec)

EfficientnetB4 1,000 98.17 98.20 98.17 98.18 15.8 5

EfficientnetB4 2,000 98.75 98.78 98.75 98.77 30.8 9

EfficientnetB4 2,500 99.15 99.15 99.16 99.16 45.0 13

FIGURE 8 | Effects of different input image size on HOG-SVM classification.

number of training images in each growth stage increases from
1,000 to 2,500, the accuracy of HOG-SVM dropped from 84.9
to 79.8%, whereas the accuracy of EfficientnetB4 increased from
98.17 to 99.15%. Furthermore, the size of input images had effect
on the performance of HOG-SVM classification. In Figure 8,
the performance of classification shows the difference as the size
of input images varies. The accuracy rises quickly with small
input image sizes. When the input image size reaches 400 × 400
pixels, the highest value is obtained. However, the accuracy drops
slightly as the image size becomes larger.

On the other hand, the computational and processing time is
a crucial aspect in machine learning algorithms. Compared to
the processing time presented in Tables 5, 6, the training time
of deep learning models took much longer than the HOG-SVM
models. Training time of deep learning models mostly depends
on the number of images used, the batch size, the learning rate,
and the hardware used, among other factors. In the aspect of
test time, deep learning models were faster than the HOG-SVM
models. When it comes to practical application, researchers pay
more attention to the test time.
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In general, deep learning models exhibit satisfactory
performance in rice seedling growth stage recognition.
Furthermore, the datasets of rice seedling in three growth stages
presented in this paper differed in genotype, sowing density,
and sowing dates. A total of three cultivars and five nursing
seedling densities are included in the dataset, which constitute
a comprehensive seedling phenotyping. From this point of view,
the traditional machine learning algorithms show reasonable
discriminative ability in rice seedling growth stages.

Limitation and Further Applications
The presented results show that the machine learning algorithms
are robust on rice genotypes, sowing density, and sowing dates.
However, crop phenotyping based on UAV images is also
sensitive to sensor-target angles, overlap among leaves, and field
conditions. In our study, all images were acquired by UAV from
a vertical downward angle at a height of 3 m, producing images
with similar statistical structure. To make the machine learning
algorithms broadly useful across many situations, a variety of
reasonable flight heights and resultant image resolutions are
needed to take into account. Additionally, the minimum required
image resolution (i.e., maximum flight height) that delivers
quality results should be determined, because a higher flight
height would allow the data to be collected more rapidly.

It has been previously reported that computer vision and
machine learning techniques can help to identify the growth
stages of individual seedling (Yu et al., 2013; Samiei et al.,
2020). However, the issue of plant overlapping each other would
decrease the detection accuracy and become a limitation. Rice
is densely planted crop, and few studies have been carried
out to recognize the growth stages of rice seedling. This
study investigated the feasibility of developing machine learning
algorithms for rice seedling growth stages detection with different
canopy phenotypes. Rich information automatically learned
or extracted from canopy phenotype (structural and textural
information) makes it possible for the machine learning-based
data analytics to achieve decision-making in a way much closer
to how human brains work. It will be interesting to extend the
approach to a range of crops of agricultural interest, such as
oat, wheat, and sorghum, to investigate quantitatively how, by
similarity in shape of different crops, the knowledge learned
on rice seedlings could be transferred to others via transfer
learning. Moreover, during the whole growth cycle, more fine
growth stages, not only stages of seedlings but also stages
after seedling transplantation, could also be added to extend
the investigation of crop growth stage discriminative ability of
machine learning algorithms.

Conclusion
Recognizing rice seedling growth stages to timely do field
operations, such as temperature control, fertilizer, irrigation,
cultivation, and disease control, is of great significance of crop
management, provision of standard and well-nourished seedlings
for mechanical transplanting, and increase of yield. Specifically,
when raising rice seedlings in paddy field, it is inefficient to
manually inspect on growth stages, and environmental factors,
such as rain, solar radiation have great impact on the growth

stage variation. Thus, timely recognizing rice seedling growth
stages become more and more important. In this study, automatic
approaches using machine learning algorithms on UAV images
were developed to determine three key growth stages of rice
seedling, BBCH11, BBCH12, and BBCH13. In the traditional
machine learning algorithm, HOG was selected as the texture
feature to represent the canopy structure of the seedlings
and combine with SVM classifier to recognize the growth
stages. The best HOG-SVM showed reasonable discriminative
ability in the classification task. Compared with the HOG-SVM
algorithm, the deep learning algorithms showed outstanding
performance in detection of seedling growth stages. Generally
speaking, the machine learning algorithms proposed in this paper
could be used to estimate the growth stages of rice seedlings
in the BBCH11 to BBCH13, and they provide a basis for
timely seedling supplements and subsequent crop management.
Future research should include experiments employing more
cultivars, different crops, and more growth stages recognition
and investigate other factors to further verify and optimize the
algorithms in this paper.
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