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Rapid and non-destructive estimation of leaf nitrogen accumulation (LNA) is essential

to field nitrogen management. Currently, many vegetation indices have been used for

indicating nitrogen status. Few studies systematically analyzed the performance of

vegetation indices of winter wheat in estimating LNA under different irrigation regimes.

This study aimed to develop a new spectral index for LNA estimation. In this study, 2

years of field experiments with different irrigation regimes were conducted from 2015 to

2017. The original reflectance (OR) and three transformed spectra [e.g., the first derivative

reflectance (FDR), logarithm of the reciprocal of the spectra (Log(1/R)), and continuum

removal (CR)] were used to calculate two- and three-band spectral indices. Correlation

analyses and univariate linear and non-linear regression between transformed-based

spectral indices and LNA were performed. The performance of the optimal spectral index

was evaluated with classical vegetation index. The results showed that FDRwas themost

stable transformation method, which can effectively enhance the relationships to LNA

and improve prediction performance. With a linear relationship with LNA, FDR-based

three-band spectral index 1 (FDR-TBI1) (451, 706, 688) generated the best performance

with coefficient of determination (R2) of 0.73 and 0.79, the root mean square error (RMSE)

of 1.267 and 1.266 g/m2, and the ratio of performance to interquartile distance (RPIQ) of

2.84 and 2.71 in calibration and validation datasets, respectively. The optimized spectral

index [FDR-TBI1 (451, 706, 688)] is more effective and might be recommended as an

indicator for estimating winter wheat LNA under different irrigation regimes.

Keywords: leaf nitrogen accumulation, optimized spectral index, band combination, spectral transformation

method, winter wheat

INTRODUCTION

Nitrogen is one of the essential nutrients for the crop growth and development, determining
the yield, and grain quality. At present, excessive nitrogen application has adverse effects on the
environment and may result in the low nitrogen use efficiency. Leaf nitrogen accumulation (LNA),
the comprehensive information of nitrogen content and dry matter, effectively reflects the crop
population nitrogen information. Timely and accurate estimation of LNA is significant for nitrogen
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nutrition diagnosis, field decision-making, and improvement of
grain yield, and quality in winter wheat (Zhao et al., 2005).

Traditional method of nitrogen content analysis, through
chemical method in laboratory, is time-consuming and laborious.
The application of optical techniques provided a rapid and
non-destructive way for in situ nitrogen diagnosis. In term of
leaves, nitrogen status of individual plant could be inferred from
the parameters measured by SPAD-502 or Dualex-3 (Esfahani
et al., 2008; Tremblay et al., 2012). However, to avoid poor
representation of one or two leaves, a large number of sample
replications were required to be measured to extract the robust
information. In contrast, remote sensing technology, as an
important technology of precision agriculture, can rapidly assess
the field crop population phenotypic information in large area by
capturing canopy information. It has been applied to the growth
monitoring (Dong et al., 2019), nutrition diagnosis (Liang et al.,
2018), and yield prediction (Zhang et al., 2019).

Vegetation index is an important tool for the crop phenotype
monitoring with ground-based and satellite remote sensing
because of its universality and efficient computation (Tian et al.,
2011). Canopy reflectance can be used in the estimation of
nitrogen status on the basic of the close relationship between
nitrogen and chlorophyll content at canopy level. Due to the
strong absorption in the red region and high reflectance in the
near-infrared region of green plant, the red and near-infrared
bands were commonly used for spectral index (e.g., NDVI, RVI)
for plant growth monitoring. Zhu et al. (2008) reported that RVI
(870, 660) and RVI (810, 660) had high correlation with LNA
in both rice and wheat. Because of the high correlation between
blue, green, and red-edge region with plant nitrogen status,
some two-band vegetation indices were applied to nitrogen
monitoring, e.g., green normalized difference vegetation index
(GNDVI) (Bronson et al., 2003), normalized difference red-edge
index (NDRE) (Thompson et al., 2015), red-edge chlorophyll
index (CIred edge) (Clevers and Kooistra, 2012), ratio index (RI-
1dB) (He et al., 2016), and normalized pigment chlorophyll index
(NPCI) (Xu et al., 2014). Reyniers et al. (2006) constructed an
optimized vegetation index (VIopt) to predict wheat nitrogen
with a multispectral radiometer.

Except for the two-band spectral indices, there had three-
band spectral indices (TBIs) proposed for nitrogen estimation.
R705/(R717+R491) developed by Tian et al. (2011) is a good
indicator of rice leaf nitrogen content at ground and space
level. Chen et al. (2010) developed the double-peak canopy
nitrogen index (DNCI) to better assess nitrogen efficiency in
maize and wheat by minimizing the LAI influence. It is reported
that three-band vegetation index could reduce the saturation
effect of two-band vegetation index and increase sensitivity

Abbreviations: CR, continuum removal; CSI, chlorophyll spectral index; DSI,

difference spectral index; FDR, the first derivative reflectance; LNA, leaf nitrogen

accumulation; MCSI, modified chlorophyll spectral index; NDSI, normalized

difference spectral index;R2, coefficient of determination; RMSE, rootmean square

error; RPIQ, the ratio of performance to interquartile distance; RSI, ratio spectral

index; SASI, soil-adjusted spectral index; CI, chlorophyll index; MCI, modified

chlorophyll index; OR, original reflectance; WRNI, water resistance N index; NE,

noise equivalent; TBI, three-band spectral index; NDRE, normalized difference

red-edge index.

and prediction accuracy. Wang et al. (2012) proposed (R924-
R703+2∗R423)/(R924+R703+2∗R423) to decrease the saturation
of two-band spectral index, increasing stability and accuracy
of leaf nitrogen content prediction. Schlemmer et al. (2013)
found that medium resolution imaging spectrometer terrestrial
chlorophyll index (MTCI) had higher accuracy than NDVI and
EVI in estimating maize canopy nitrogen content. However,
when the canopy nitrogen content is above 6 g/m2, CIgreen
was recommended. Zheng et al. (2018) found that DATT and
CIred edge had consistent good performance in estimating LNA.
The relationship between DATT and LNA was non-linear,
whereas CIred edge was linear, respectively. Therefore, in the
aspect of the advantages of the three-band vegetation index,
further study and verification were necessary.

As an important step in spectral data analysis, spectral
transformation techniques have been used to enhance spectral
characters and reduce the influence of interference factors.
For instance, Clark and Roush (1984) pointed out that
those absorption features of not interest can be removed by
continuum-removal (CR) analysis, thereby isolating individual
absorption features. The logarithm of the reciprocal of the
spectra (Log(1/R)) can highlight spectral differences in the
visible region, minimizing the influence of illumination variation
(Wang et al., 2009). First derivative reflectance (FDR) method
is effective not only in removing the influence of background
but also in resolving the overlapping signals and enhancing
subtle peaks (Al-Moustafa et al., 2012; Liaghat et al., 2014;
Meng et al., 2020). Previous studies had introduced spectral
transformation into the construction of spectral index for
higher and stable prediction. Wen et al. (2019) indicated
that two-band spectral indices using FDR performed better in
estimating leaf nitrogen content of maize across four growth
stages. In addition, based on Log(1/R), NDNI ([log(1/R1510) –
log(1/R1680)]/[log(1/R1510) + log(1/R1680)]) were proposed to
predict canopy nitrogen, especially in low vegetation continuous
canopies (Serrano et al., 2002). Li D. et al. (2016) founded that
the optimized CR-based vegetation index can be used to monitor
the leaf nitrogen content of litchi. Therefore, the combination of
spectral transformation and spectral index can synthesize their
advantages and is a potential way to construct new spectral
indices. However, few studies have systematically investigated
the effects of multiple spectral transformation methods on the
construction of spectral index.

To date, many vegetation indices have been used to
indicate nitrogen status. Nevertheless, the efficiency of the
vegetation indices was affected by season, growth, and cultivation
environmental condition (Liaghat et al., 2014). Irrigation and
nitrogen fertilizers are the main controlling factors in crop
production. Few studies systematically analyzed the performance
of vegetation indices of winter wheat in estimating LNA
under different irrigation regimes. For achieving this, winter
wheat under five irrigation regimes were set as the object for
nitrogen status estimation. This study aimed to (1) study the
relationships between LNA and spectrum with or without the
transformations; (2) develop new spectral indices calculated
from the spectrum with or without transformations for LNA
estimation; and (3) obtain the optimal spectral index and
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model for LNA estimation of winter wheat for different
irrigation regimes.

MATERIALS AND METHODS

Site Description and Experimental Design
The experiment was conducted from 2015 to 2017 at the
experiment station of Shanxi Agricultural University (E112◦33′,
N37◦25′), located at Taigu county of Shanxi Province, China.
The experiment site has a temperate continental climate with
an average annual temperature of 9.8◦C, 175 frost-free days
and annual precipitation about 450mm. The experiment was
carried out in a bottomless pool made of waterproof cement.
There had a steel frame rain-proof shelter above the experiment
pool. The refilled soil is classified as calcareous cinnamon soil
(Alfisols in US taxonomy) with organic matter content of 9.60 g
kg−1. The mean available nitrogen, phosphate, and potassium
contents were 57.75, 22.10, and 185.48mg kg−1, respectively. In
the artificial root zone, the field capacity of and the bulk density
were 24.24% and 1.42 g cm−3, respectively.

The experiment was set up in a randomized complete block
design with three replications. Five irrigation regimes were
applied in the 2-year experiment: I1 (four irrigations at jointing
stage, booting stage, flowering stage, and filling stage), I2 (three
irrigations at jointing stage, booting stage, and filling stage), I3
(two irrigations at jointing stage and flowering stage), I4 (two
irrigations at jointing stage and booting stage), and I5 (without
irrigation). The upper limit of each irrigation was 80% of the soil
field capacity, and the water consumption was controlled with a
water meter. The growth stages for irrigation were selected based
on the study of Zadoks et al. (1974). Two winter wheat cultivars
(Chang 4738 and Zhongmai 175) were sown in rows spaced
20 cm on September 29, 2015. And only one cultivar (Jingdong
17) was sown onOctober 1, 2016. Each plot was 2mwide and 3m
long in 2015 and 1.5m wide and 2m long in 2016 (Figure 1). For
all treatments, the fertilizers were applied prior to seeding with
150 kg N hm−2, 150 kg P2O5 hm

−2, and 150 kg K2O hm−2. Field
managements were consistent with the local standard practice for
winter wheat.

Canopy Reflectance Measurement
The canopy reflectance was collected during the major growth
stages (from jointing to filling stage) by a FieldSpec 3.0
spectrometer [Analytical Spectral Devices (ASD), Boulder, CO,
USA] at 1m above the canopy of winter wheat. The instrument
field angle is 25◦ over the wavelength of 350–2,500 nm, with
a sampling interval of 1.4 nm and spectral resolution of 3 nm
between 350 and 1,000 nm; and a sampling interval of 2 nm
and spectral resolution of 10 nm between 1,000 and 2,500 nm.
The measurements were taken under clear sky conditions from
10:00 to 14:00. A 40 × 40 cm BaSO4 panel was used for
calibrating the baseline reflectance before each measurement.
Three measurements were taken in each plot, with 10 scans for
each measurement. All reflectance curves within a plot were
averaged to represent the spectrum in each plot.

FIGURE 1 | The distribution map of the different treatments of irrigation

regimes applied in the study. I1 represents four irrigations at jointing, booting,

flowering, and filling stage. I2 represents three irrigations at jointing, booting,

and filling stage. I3 represents two irrigations at jointing and flowering stage. I4
represents two irrigations at jointing and filling stage. I5 represents the

treatment without irrigation. In 2015–2016, A and B represent Chang 4738 and

Zhongmai 175, whereas in 2016–2017 both A and B represent Jingdong 17.

Leaf Nitrogen Accumulation Measurement
After the spectra measurements, plant samples in 20 cm lengths
were collected from the soil surface and stored in plastic bags.
In the laboratory, all leaves were picked and dried in an oven
at 105◦C for half an hour, then at 80◦C for 24 h to the constant
weight and reweighed to get the leaf ’s dry weight. The dried
leaves were dissolved by concentrated sulfuric acid, and the leaf
nitrogen concentration was measured by intermittent automatic
chemistry analyzer (SmartChem 200, AMS, Italy). The LNA was
calculated by the formula,

LNA = LNC× DW (1)

where LNC is the leaf nitrogen concentration, and DW is dry
weight of leaves per unit ground area.

The normality of the distribution of LNA data was test by
using the Kolmogorov–Smirnov (K–S) test in SPSS 19.0 (SPSS
Inc., Chicago, United States).
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Data Pretreatment and Calculation of
Spectral Indices
In order to reduce the instrument noise and interference effect
of atmosphere, the bands in 350–400, 1,350–1,400, 1,800–1,950,
and 2,450–2,500 nm were removed for the subsequent spectral
analysis. Three frequently used transformation methods (the first
derivative (FD), logarithm of reciprocal (Log(1/R)), and CR)
were implemented on the original reflectance (OR) to eliminate
other component noise or enhance the absorption characteristics
of the target (Li L. et al., 2016). The CR transformation was
implemented with ENVI 4.2 software.

Most of the existing vegetation indices were developed
from three vegetation indices (normalized differences vegetation
index, difference vegetation index, and ratio vegetation index).
Vegetation indices in the form of CI were commonly used to
estimate nitrogen status. By adding a constant, soil-adjusted
vegetation index reduced the effect of soil background (Rondeaux
et al., 1996), whereas modified CI (MCI) improved prediction
accuracy in both low and high coverage (Zhang et al., 2021).
Therefore, six two-band forms of spectral indices [normalized
difference spectral index (NDSI), difference spectral index (DSI),
ratio spectral index (RSI), chlorophyll spectral index (CSI),
soil-adjusted spectral index (SASI), and modified chlorophyll
spectral index (MCSI)] were selected for optimization of bands.
Furthermore, due to the advantages of the three-band vegetation
index mentioned above, five forms of TBIs were selected. The
formulae of these spectral indices were listed in Table 1. The
random band combinationmethod is an effective way to improve
the performance of classical vegetation indices (Yu et al., 2013;
Hasituya et al., 2020). In this study, based on OR, FDR,
Log(1/R), and CR, two-band forms of spectral indices were
calculated with all possible combinations of two bands in 400–
2,450 nm (excluding 1,350–1,400, and 1,800–1,950 nm) at 1-nm
interval. For the high correlation between adjacent bands, one
out of three bands was reserved for screening optimal three-
band combination spectral indices. The relationships between
spectral indices and LNA were calculated in MATLAB R2010b
and depicted in contour maps. In this study, 14 classical
vegetation indices for nitrogen status estimation (Table 2)
were chosen to verify the predictive ability of the optimized
spectral index.

Model Calibration and Validation
Data of winter wheat of two growing seasons from 2015 to
2017 were pooled in this study. In order to screen the optimal
spectral index and construct the best estimating model of
LNA, the dataset was randomly divided into two subsets: two-
thirds for model calibration and one-third for model validation.
Based on the calibration dataset, the quantitative relationship
between spectral indices with optimal band combination and
LNA was established by using the univariate linear and non-
linear (logarithmic, parabolic, power, and exponential) regression
models. And three metrics [coefficient of determination (R2), the
root mean square error (RMSE), and the ratio of performance
to interquartile distance (RPIQ) (Bellon-Maurel et al., 2010)]
were calculated with the validation dataset to evaluate the

TABLE 1 | The formulae of selected two-band and three-band spectral index in

this study.

Categories Spectral

index

Formula

Two-band spectral

index

NDSI NDSI = (Ri − Rj )/(Ri + Rj )

DSI DSI = Ri − Rj

RSI RSI = Ri/Rj

SASI SASI = (1+ L)× (Ri − Rj)/(Ri + Rj + L)Lǫ(0, 1)

CSI CSI = (Ri − Rj )/Rj

MCSI MCSI = (Ri − Rj )/(Rj +M) M ∈ (−3, 6)

Three-band spectral

index

TBI1 TBI1 = (Ri − Rj )/(Ri + Rk )

TBI2 TBI2 = Ri/(Rj + Rk )

TBI3 TBI3 = Ri/(Rj × Rk )

TBI4 TBI4 = (Ri − Rj )/(Rj − Rk )

TBI5 TBI5 = (Ri − Rj )/(Ri + Rj − 2× Rk )

Ri , Rj , and Rk represent the reflectance value with no or different transformation methods

at i, j, and k nm, respectively.

accuracy and stability of the estimation model. In addition,
the noise equivalent (NE) was calculated to further compare
different vegetation indices. The formulae of these statistics were
as follows,

R2
=

∑n
i=1(yipre − y)2

∑n
i=1(yimea − y)2

(2)

RMSE =

√

∑n
i=1(yimea − yipre)2

n
(3)

RPIQ =
Q3−Q1

RMSE
(4)

NE1LNA =
RMSE(VI vs. LNA)

d(VI)/d(LNA)
(5)

where yimea, yipre, and y are the measured LNA, predicted LNA
values, and the average value of measured LNA, respectively;
n is the number of samples; Q1 and Q3 are the first quartile
and third quartile of the dataset, respectively; RMSE (VI vs.
LNA) is the RMSE of the best-fit regression function of VI vs.
LNA; d(VI)/d(LNA) is the FD of the established relationship; and
the NE provides the dynamic changes of sensitivity of different
spectral indices to LNA over the whole range (Viña and Gitelson,
2005).

RESULTS

Response of LNA and Canopy Reflectance
to Different Irrigation Regimes
Data from 2016 to 2017 have been presented to show the response
of LNA and canopy reflectance to different irrigation regimes.
Figure 2 shows the change trend of the LNA over growth
progress under different experimental treatments in winter
wheat. Among all the treatments, the LNA showed in the shape
of single-peak over growth progress, reaching the maximum
in booting stage. LNA gradually increased with the times of

Frontiers in Plant Science | www.frontiersin.org 4 June 2022 | Volume 13 | Article 913240

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sun et al. Estimating LNA With Spectral Index

TABLE 2 | Classical vegetation indices used in this study.

Vegetation index Formula References

Double-peak canopy nitrogen index (DCNI) (R720 − R700)/(R700 − R670) /(R720 − R670 + 0.03) Chen et al., 2010

Green normalized difference vegetation index (GNDVI) (R750 − R550)/(R750 + R550) Gitelson and Merzlyak, 1998

Green chlorophyll index (CIgreen) R790/R550 − 1 Gitelson et al., 2005

Red edge chlorophyll index (CIred edge) R790/R720 − 1 Gitelson et al., 2005

Enhanced vegetation index (EVI2) 2.5× (R800 − R660)/(1+ R800 + 2.4× R660) Jiang et al., 2008

R810/R660 R810/R660 Zhu et al., 2008

RI_ldB R735/R720 He et al., 2016

MCARI2/OSAVI2 [(R750 − R705)− 0.2× (R750 − R705)]× (R750/R705)/[(1+

0.16)× (R750 − R705)/(R750 + R705 + 0.16)]

Wu et al., 2008

Optimal soil-adjusted vegetation index (OSAVI) (1+ L)× (R800 − R670)/(R800 + R670 + L) (L = 0.16) Rondeaux et al., 1996

Normalized difference red-edge

index (NDRE)

(R790 − R720)/(R790 + R720) Fitzgerald et al., 2006

Water resistance N index (WRNI) (R735 − R720)/(R735 + R720) /FWBI Feng et al., 2016

Optimized vegetation index (VIopt) (1+ 0.45)× (R800
2
+ 1)/(R670 + 0.45) Reyniers et al., 2006

Normalized pigment chlorophyll index (NPCI) (R430 − R680)/(R430 + R680) Peñuelas et al., 1994

(R924-R703+2*R423)/ (R924+R703+2*R423) (R924 − R703 + 2× R423)/(R924 + R703 + 2× R423) Wang et al., 2012

The formula of FWBI (floating-position water band index) was R900/Rmin(930−980).

irrigation, resulting in obvious differences among experimental
treatments in different growth stages. In addition, LNA under I5
treatment was lower than other treatments.

The response of canopy reflectance at different growth stages
to different irrigation regimes is depicted in Figure 3. It can
be seen that canopy reflectance was affected by irrigation
application. Canopy reflectance in different spectral regions
responded differently to irrigation regimes. Reflectance in the
visible region decreased with the times of irrigation and
increased in the near-infrared region. The reflectance of the
I5 treatment was lower than that of other treatments in each
growth stage.

Leaf Nitrogen Accumulation
The statistical analysis of LNA (g/m2) is shown in Table 3.
The LNA range for the calibration dataset was from 0.99 to
12.56 g/m2, and the range for the validation dataset was 1.75–
11.44 g/m2. Calibration and validation datasets had similar mean
value and standard deviation. Furthermore, the p-value of K–
S test (Lilliefors correction) indicated that the distributions of
the calibration and validation datasets were normally distributed
with 95% probability. Therefore, the dataset was divided properly
and could be used for further analysis.

The Relationship Between the Canopy
Reflectance and LNA
Correlations of LNA with OR and three transformed spectral
data are shown in Figure 4. LNA showed significant negative
correlations between OR in the range of 400–729 and 2,340–
2,450 nm, with the strongest correlation at 637 nm (r =

−0.73). And significant positive correlations were found in
739–1,150 nm, with the largest coefficient at 762 nm (r =

0.56). However, the correlation coefficient curve between
LNA and Log(1/R) was inversely proportional to OR, with

FIGURE 2 | Change trends of the leaf nitrogen accumulation over growth

progress under different experimental treatments in winter wheat. I1 represents

four irrigations at jointing, booting, flowering, and filling stage. I2 represents

three irrigations at jointing, booting, and filling stage. I3 represents two

irrigations at jointing and flowering stage. I4 represents two irrigations at

jointing and filling stage. I5 represents the treatment without irrigation.

closer relationships in 400–700, 1,400–1,500, and 1,950–
2,450 nm. It was obvious that CR had improved the correlation
in absorption valley ranges of canopy reflectance, and the
maximum |r| was 0.78. Different with other transformed
spectra, the correlation coefficient between LNA and FDR
changed greatly with bands. It also improved the correlation
in some ranges, and the maximum |r| was 0.81 at 462 nm.
The results indicated that the transformation methods
effectively improved the correlation and performed better
in estimating LNA.
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FIGURE 3 | Changes of canopy reflectance with varied irrigation regimes. (A) Jointing stage, (B) booting stage, (C) flowering stage, and (D) filling stage. I1 represents

four irrigations at jointing, booting, flowering, and filling stage. I2 represents three irrigations at jointing, booting, and filling stage. I3 represents two irrigations at jointing

and flowering stage. I4 represents two irrigations at jointing and filling stage. I5 represents the treatment without irrigation.

TABLE 3 | Statistics analysis of the leaf nitrogen accumulation (LNA) (g/m2) of winter wheat.

Datasets Number of samples Maximum Minimum Mean Standard deviation p (K-S)

All observation 241 12.56 0.99 6.576 2.412 0.20

Calibration dataset 160 12.56 0.99 6.577 2.449 0.20

Validation dataset 81 11.44 1.75 6.573 2.351 0.20

Relationships Between the Spectral
Indices and LNA
Contour maps of the determination coefficients (R2) for the
linear relationship between LNA and two-band spectral indices
(i.e., NDSI, DSI, RSI, SASI, CSI, and MCSI, respectively), which
were calculated with two random bands in the range of 400–
2,450 nm with different transformation methods, are shown in
Figure 5. For different spectral indices, the patterns of contour
maps of the same transformation method were similar. Except
for DSI, the sensitive areas of CR were the largest, and the area
(R2 > 0.6) accounted for about 10–16%, followed by OR with
7.5–12.2% and Log(1/R) with 3.5–14.5%. However, only 0.1–
1.5% of the area with FDR was >0.6. Compared with other
transformations, the sensitive region of FDR spectral indices to
LNA was discontinuous, mainly located in the combined areas
of visible bands and near-infrared bands. In addition, SASI and
MCSI obviously improved the LNA sensitivity of NDSI and
CSI, respectively.

For each transformed spectra data, the spectral index with
the largest R2 was selected as the optimal spectral index for

FIGURE 4 | The relationships between leaf nitrogen accumulation and the

original reflectance and spectrum with different transformation methods. The

dash lines represent the critical value of correlation coefficient at α = 0.01.
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FIGURE 5 | Coefficient of determination (R2) between leaf nitrogen accumulation and two-band combined spectral indices (A) NDSI, (B) DSI, (C) RSI, (D) SASI, (E)

CSI, and (F) MCSI, which were calculated form all possible two bands with different transformation methods in winter wheat (n = 160). (1: original reflectance, 2: the

logarithm of the reserved reflectance, 3: the first derivative reflectance, and 4: continuum removal spectrum).
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TABLE 4 | Quantitative models of leaf nitrogen accumulation to selected spectral indices and classical vegetation indices in winter wheat.

Spectral index Curve shape Calibration dataset Validation dataset

R2 RMSE (g/m2) RPIQ R2 RMSE (g/m2) RPIQ

Optimal VIs

OR-SASI (450, 458) (L=0.10) Parabolic 0.70 1.360 2.65 0.75 1.375 2.50

FDR-RSI (702, 688) Linear 0.71 1.312 2.75 0.73 1.283 2.68

CR-SASI (450, 463) (L=0.03) Linear 0.73 1.288 2.80 0.74 1.404 2.44

Log(1/R)-MCSI (465, 460) (M=−0.6) Linear 0.70 1.349 2.67 0.80 1.481 2.32

OR-TBI2 (700, 685, 709) Linear 0.71 1.331 2.71 0.72 1.332 2.58

FDR-TBI1(451, 706, 688) Linear 0.73 1.267 2.84 0.79 1.266 2.71

CR-TBI2(472, 445, 484) Linear 0.73 1.289 2.79 0.81 1.404 2.44

Log(1/R)-TBI2(643, 598, 676) Linear 0.71 1.329 2.71 0.78 1.376 2.49

Classical VIs

DCNI Parabolic 0.42 1.872 1.92 0.46 1.901 1.81

GNDVI Parabolic 0.61 1.536 2.35 0.59 1.574 2.18

CIgreen Parabolic 0.58 1.589 2.27 0.58 1.643 2.09

CIrededge Parabolic 0.51 1.729 2.08 0.52 1.748 1.96

EVI2 Parabolic 0.49 1.758 2.05 0.55 1.798 1.91

R810/R660 Logarithm 0.59 1.554 2.32 0.62 1.600 2.15

RI_ldB Parabolic 0.60 1.536 2.35 0.58 1.581 2.18

MCARI/OSAVI2 Logarithm 0.59 1.556 2.31 0.62 1.601 2.14

OSAVI Parabolic 0.54 1.666 2.16 0.58 1.691 2.03

NDRE Parabolic 0.51 1.726 2.09 0.50 1.744 1.97

WRNI Parabolic 0.68 1.398 2.58 0.68 1.406 2.44

VIopt Parabolic 0.53 1.699 2.12 0.58 1.730 1.98

NPCI Linear 0.52 1.704 2.11 0.59 1.649 2.08

(R924-R703+2*R423)/(R924+R703+2*R423) Parabolic 0.57 1.618 2.23 0.57 1.639 2.09

OR, FDR, CR, and Log(1/R) represent the original reflectance, the first derivative reflectance, spectra with continuum removal, and the logarithm of reciprocal of spectra, respectively.

RSI, SASI, and MCSI represent ratio spectral index, soil adjusted spectral index, and modified chlorophyll spectral index, respectively. TBI represent the three-band spectral index. R2,

RMSE, and RPIQ represent the coefficient of determination, the root mean square error, and the ratio of performance to interquartile distance, respectively.

further analysis. SAVI (450, 458)(L=0.10), RSI (702, 688), SASI
(450, 463)(L=0.03), and MCSI (465, 460)(M=−0.6) were the optimal
two-band indices for OR, FDR, CR, and Log(1/R), respectively.
As shown in Table 4, models based on the selected indices
performed well with R2 of 0.70–0.73 and 0.73–0.80, and RMSE of
1.288–1.360 and 1.283–1.481 g/m2 for calibration and validation,
respectively. Relationships between LNA and selected spectral
indices were linear, whereas SASI (450, 458)(L=0.10) generated
second-degree polynomial relation. The performance of CR-
SASI (450, 463)(L = 0.03) was superior to other two-band spectral
indices in model calibration, followed by FDR-RSI (702, 688).
However, its RMSE value in validation dataset was increased
slightly, indicating inferior accuracy than FDR-RSI (702, 688)
and OR-SAVI (450, 458)(L = 0.10). The modeling result showed
that FDR-RSI (702, 688) outperformed the other models, with
lower RMSE in model calibration and validation (Figures 6A,B).
For the TBI, OR-TBI2 (700, 685, 709), FDR-TBI1 (451, 706,
688), CR-TBI2 (472, 445, 484), and Log(1/R)-TBI2 (643, 598,
676) were most closely related to LNA based on different
transformed spectra data, with R2 values of 0.71, 0.73, 0.73, and
0.71, respectively (Figure 7). And the estimating models were all
linear model. Consistent with the two-band spectral index, in
estimating LNA, the TBI1 based on FDR spectra had superior
performance to other transformed spectra data. The model has

the R2 of 0.73 and 0.79, the RMSE of 1.267 and 1.266 g/m2, and
the RPIQ of 2.84 and 2.71 in calibration and validation datasets,
respectively (Figures 6C,D).

The Estimation Model of LNA Based on
Classical Vegetation Indices
In order to verify the performance of the optimal spectral index in
section the relationship between the canopy reflectance and LNA,
relationships between the classical vegetation indices and LNA
were studied with calibration and validation datasets. Table 4
demonstrates that the performance of models based on each
classical vegetation index is acceptable, with R2 > 0.50, RMSE
< 1.91 g/m2, and RPIQ > 1.90 in both model calibration and
validation. It demonstrated that these classical vegetation indices
were correlated with LNA. And most of the classical indices had
a non-linear relationship with LNA. The top three indices for
R2 of calibration model were water resistance N index (WRNI),
GNDVI, and RI_ldB, all of which were >0.60. Among the
classical vegetation indices, the performance established on the
WRNI exhibited the highest accuracy in estimating LNA, with
the highest R2 and RPIQ and the lowest RMSE in calibration
and validation (Figure 8). Furthermore, the NE was compared
to evaluate the sensitivity of optimal spectral indices to LNA.
As shown in Figure 9, the NE value increased along with the
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FIGURE 6 | The relationship between leaf nitrogen accumulation (LNA) and FDR-RSI (702, 688) (A) and FDR-TBI1 (451, 706, 688) (C). Measured and predicted LNA

of the validation dataset based on FDR-RSI (702, 688) (B) and FDR-TBI1 (451, 706, 688) (D).

LNA, except for R810/R660. The optimal spectral indices selected
in section relationships between the spectral indices and LNA
had relatively stable NE value, and they had higher sensitivity
than other classical vegetation indices when the LNA was above
5.0 g/m2.

Effects of Irrigation Regimes on the
Spectral Index Performance in Estimating
LNA
In order to study the performance of spectral indices under
different irrigation regimes, three well-performing spectral
indices (FDR-RSI (702, 688), FDR-TBI1 (451, 706, 688), and
WRNI) were selected and compared. As shown in Table 5, the
correlations between spectral indices and LNA under different
irrigation regimes are different. Spectral indices weremost closely
related to the LNA under the I5 treatment, with R2 ranging from
0.81 to 0.85. In term of different irrigation regimes, FDR-RSI
(702, 688) had the largest R2 at the I3 treatment, whereas the
R2 value of FDR-TBI1 (451, 706, 688) was the largest under
other treatments. As a whole, the optimized TBI [FDR-TBI1 (451,
706, 688)] was the best spectral index for LNA estimation under
different irrigation regimes.

DISCUSSION

Canopy reflectance are various with different irrigation regimes
(Figure 3). The growth of winter wheat was influenced by
irrigation, resulting in the difference of canopy reflectance. With
the decrease of irrigation times, the reflectance in the visible
region tended to increase, whereas the reflectance in the near-
infrared region gradually decreased. These results agree with the
findings of Feng et al. (2013), who reported the reflectance is
greater in the visible region and lower in the near-infrared region
under drought stress. It may be related to that water stress caused
a decrease in leaf area, water status, and chlorophyll content
(Jaleel et al., 2009).

Canopy reflectance is the comprehensive information in the
observation field, including the target object and the underlying
surface. Therefore, it contains the information of interest and the
information of interference. The application of proper spectral
preprocessing can generate good prediction accuracy (Li L. et al.,
2016; Li et al., 2020). In this study, the spectra processed with
three transformation methods had improved the correlation
coefficient with LNA (Figure 4), and the transformed-based
spectral index had better performance in LNA estimation
(Table 4). Specifically, CR improved the correlation coefficients
in the visible region predominantly influenced by chlorophyll
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FIGURE 7 | Coefficient of determination (R2) between leaf nitrogen accumulation and the optimal three-band spectral indices based on different transformation

methods (A) OR-TBI2 (700, 685, 709), (B) FDR-TBI1 (451, 706, 688), (C) CR-TBI2 (472, 445, 484), and (D) Log(1/R)-TBI2 (643, 598, 676) (n = 160).

FIGURE 8 | The relationship between leaf nitrogen accumulation (LNA) and WRNI (A). Measured and predicted LNA of the validation dataset based on WRNI (B).
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pigments. Haboudane et al. (2002) reported that the visible
region is closely related to leaf nitrogen status. The result
can be explained by that CR could highlight and identify
more absorption characters of the target traits (Huang et al.,
2004). Based on this region, the two- and three-band CR-based
spectral indices performed well in the model calibration. The
result was similar to that of the study of Li D. et al. (2016),
which reported that the CR-based spectral indices had better
performance in estimating leaf nitrogen content of litchi. As
for Log(1/R), it simply but roughly linearized the absorption
effect, without considering the multiple scattering (Dawson et al.,
1999). Therefore, it has shown the similar contour maps to
OR (Figure 5), and the optimal spectral indices have slightly
increased relationship to LNA as shown in Table 4. Although
the FDR has the smallest sensitive regions as shown in Figure 5,
the FDR-based optimal index had good and stable performance.
It may be because that the FDR could effectively reduce the
effect of soil background (Meng et al., 2020) and emphasize
the week but meaningful peaks (Shibayama et al., 1993). For
example, FDR significantly improved the correlation coefficients
in the red-edge region, which was founded to be sensitive to
nitrogen status (Li et al., 2014). Using the FDR in this region, the

FIGURE 9 | Noise equivalent of leaf nitrogen accumulation (LNA) estimation by

different spectral indices.

optimized two- and three-band spectral indices were superior to
other indices. Moreover, the transformed-based spectral indices
had linear relationships with LNA, having lower and more stable
NE values than spectral indices based on OR (Figure 9). It
indicated that transformed spectra may had a positive effect on
reducing the saturation phenomenon. This further illustrated
the advantages of the spectral index calculated with transformed
spectra from another aspect.

To mine more important band combinations related to LNA,
the entire range of spectral data (400–2,450 nm, except for
ranges disturbed by atmosphere and machine noise) was used to
construct the two- and three-band spectral indices. The optimal
TBI [FDR-TBI1 (451, 706, 688)] presented better performance
than the optimal two-band spectral [FDR-RSI (702, 688)]. The
result was identical with previous studies reported by Shi et al.
(2016) and Wang et al. (2019), in which three-band vegetation
index can more accurately estimate the target variable. It is
noted that, in this study, optimized two-band spectral indices
contained one spectral region, whereas the TBIs had a wider
band distribution and covered more than one spectral region.
Therefore, one possible reason for the better performance of the
TBI is that three bands in blue and red-edge regions carried
more information of LNA. Another reason may be concerned
with that bands used in the spectral index were more informative
and effective. With the highest correlation with LNA and the best
model performance, FDR-TBI1 (451, 706, 688) was selected as the
optimal spectral index for estimating LNA of winter wheat under
different irrigation regimes. The result was consist with studies
of Hansen and Schjoerring (2003) and Peñuelas et al. (1994),
which proved that the combination of blue bands and red bands
was effective in nitrogen status evaluation. The band 451 nm
was located in the absorption of chlorophyll and carotenoid.
Since nitrogen is one of the components of protein, which had
a positive function on photosynthesis, the sensitive bands of
chlorophyll were correlated with plant nitrogen content (Filella
et al., 1995; Pettersson and Eckersten, 2007; Clevers and Gitelson,
2013). Two bands (688 and 706 nm) were located in the red-
edge region (680–760 nm), which has been found to be effective
in nitrogen status estimation (Li et al., 2014). Among classical
vegetation indices, better model performance and lower NE were
obtained with the vegetation index constructed with red-edge
bands (e.g., RI_ldB and WRNI). Similarly, based on the OR and
Log(1/R), the TBIs with red-edge band were superior to the
corresponding two-band spectral indices. Such a result can be
explained by the fact that the red-edge region was much sensitive

TABLE 5 | Relationships between spectral indices and leaf nitrogen accumulation under different irrigation regimes.

Treatments FDR-RSI (702, 688) FDR-TBI1(451, 706, 688) WRNI

R2 RMSE (g/m2) RPIQ R2 RMSE (g/m2) RPIQ R2 RMSE (g/m2) RPIQ

I1 0.64 1.353 2.61 0.65 1.328 2.66 0.50 1.582 2.23

I2 0.64 1.453 2.53 0.66 1.374 2.64 0.54 1.594 2.28

I3 0.71 1.226 2.56 0.70 1.245 2.52 0.61 1.416 2.21

I4 0.67 1.255 2.33 0.69 1.213 2.41 0.67 1.250 2.34

I5 0.81 1.122 2.36 0.85 1.054 3.58 0.82 1.130 3.34
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to LNA and may maintain higher sensitivity of spectral index
when LNA was high (Magney et al., 2017; Hasituya et al., 2020).

The effect of water status should be considered into the
plant nitrogen estimation (Feng et al., 2016). Feng et al. (2016)
developed new index (WRNI) by combining an optimized
NDRE and FWBI to mitigate the impact of water content on
nitrogen monitoring. Our experiments were carried out under
different irrigation regimes, so the effect would exist. As it
would be expected, WRNI had the best performance in model
calibration and validation among classical vegetation indices in
section relationships between the spectral indices and LNA. The
RMSE of the new developed index FDR-TBI1 (451, 706, 688)
was 9% and 10% lower RMSE than that of WRNI in model
calibration and validation, respectively. It may be due to the fact
that WRNI was developed for leaf nitrogen content. Because
of the different agronomic compositions, there had difference
in sensitive spectral regions (Chu et al., 2014). In addition, a
previous study had reported that 688 nm can also be used to
monitor water content (Sun et al., 2021). The band 688 nm
appeared in the denominator of the optimal spectral index,
which may made it to dynamically reflect the changes of LNA in
different water status. In practical applications, the new spectral
index requires fewer bands, which is more conducive to the
development of low-cost instrument.

The relationships between LNA and spectral indices
were different under different irrigation regimes, with the
best correlation under the I5 treatment (Table 5). A similar
phenomenon was founded in the study performed by El-
Hendawy et al. (2019), who showed that spectral indices had
a stronger correlation with aboveground dry biomass and
grain yield under the limited water irrigation than under the
full irrigation. Presumably, it is because of the difference in
irrigation. The water status of plant changed with irrigation
regimes, and the accuracy of nitrogen status estimation was
affected by leaf water content. In the study of Feng et al. (2016),
the NDRE had higher performance of leaf nitrogen content at
lower leaf water content. Similar result was shown in this study,
with spectral index tending to be more correlated with LNA
when leaf water content was lower (Supplementary Table 1).
During the growth period of winter wheat, the water status
was lower than other treatments under the I5 treatment (Sun
et al., 2021), which contributed to a closer relationship between
spectral indices and LNA.

Despite using the datasets, including three cultivars, 2 years,
and multiple growth stages, it should be noted that the optimized
spectral index in this study was developed based on winter wheat
in one cultivated ecological environment. Thus, the reliability
and adaptability of the spectral index need to be investigated in
more crop types and in more ecological regions. In addition,
the bands used in the optimized spectral index overlapped
with existing hyperspectral satellites (e.g., HJ-1A HSI) and
airborne sensors (e.g., RedEdge-MX Dual and Cubert UHD185).
Hyperspectral satellite technology and the UAV technology
had rapidly developed, and the bands of imaging spectrometer
would be narrower with higher spatial resolution. Therefore, the
optimized spectral index had great potential in the large-area
LNA estimation with satellite and UAV platforms.

CONCLUSION

In this study, the results demonstrated that the spectral
transformation method can effectively improve the relationship
between spectral data and LNA. Compared with OR, the
transformation-based spectral indices had more stable and
higher sensitivity and performed better in estimating LNA,
indicating that it is advantageous to apply transformed spectral
data to the construction of spectral index. FDR was proved
to be the best transformation method for spectral index
construction. Compared to classical vegetation indices and
optimized spectral indices, FDR-TBI1 (451, 706, 688) which
had a linear relationship with LNA, had the best and stable
performance in estimating LNA. Simultaneous optimization
of spectral data and bands provides us an effective way of
constructing spectral index. The optimized spectral index FDR-
TBI1 (451, 706, 688) can provide accurate nitrogen prediction for
winter wheat under different irrigation regimes. The results can
provide technical supports for large area nitrogen monitoring of
winter wheat.
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