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Plant resistance proteins (R proteins) recognize effector proteins secreted by pathogenic
microorganisms and trigger an immune response against pathogenic microbial
infestation. Accurate identification of plant R proteins is an important research topic in
plant pathology. Plant R protein prediction has achieved many research results. Recently,
some machine learning-based methods have emerged to identify plant R proteins. Still,
most of them only rely on protein sequence features, which ignore inter-amino acid
features, thus limiting the further improvement of plant R protein prediction performance.
In this manuscript, we propose a method called StackRPred to predict plant R proteins.
Specifically, the StackRPred first obtains plant R protein feature information from the
pairwise energy content of residues; then, the obtained feature information is fed into
the stacking framework for training to construct a prediction model for plant R proteins.
The results of both the five-fold cross-validation and independent test validation show
that our proposed method outperforms other state-of-the-art methods, indicating that
StackRPred is an effective tool for predicting plant R proteins. It is expected to bring
some favorable contribution to the study of plant R proteins.

Keywords: plant resistance protein, pairwise energy content, discrete wavelet transform, stacking, feature
representation

INTRODUCTION

The rapid multiplication and spread of pathogens affect plant growth and development and pose a
serious threat to crop and food security. Resistance (R) proteins are of increasing interest because
of their important role in plant defense against pathogens. R-proteins are plant proteins that
contain a variety of structural domains such as nucleotide-binding structural domains (NB-ARC),
leucine-rich repeat (LRR), Toll-interleukin-like receptor (TIR), Coiled-Coiled structures (CC),
and kinases (KIN) (Sanseverino and Ercolano, 2012; Kushwaha et al., 2016). The exploration of
R-proteins and proteins with R-protein characteristics can play a key role in plant defense against
different pathogens. In recent years, computational methods have been widely used in R-protein
prediction studies.

Currently, computational methods for predicting R-proteins fall into two main categories:
sequence alignment-based and machine-learning-based methods. The main methods based on
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sequence alignment are NLR-parser (Steuernagel et al., 2015),
RGAugury (Li et al., 2016), and Restrepo-Montoya’s pipeline
(Restrepo-Montoya et al., 2020).

NLR-parser predicts NLR-like sequences based on MAST
motif search (Steuernagel et al., 2015). RGAugury predicts
different R protein subclasses by integrating the results generated
by several computational tools (Li et al., 2016), including the
following: BLAST (Camacho et al., 2009), Hmmer3 (Eddy,
2011), Phobius (Käll et al., 2004), TMHMM (Bateman et al.,
2004), and so on. Restrepo-Montoya et al. (2020) developed
a computational approach to classify RLK and RLP proteins
using SignalP 4.0 (Petersen et al., 2011), TMHMM 2 (Krogh
et al., 2001), and PfamScan (Finn et al., 2014). In general,
sequence alignment-based methods generally have low sensitivity
and are time-consuming, which makes them difficult to predict
proteins with low similarity. The application of machine learning
methods for predicting plant R proteins has thus become of
increasing interest.

Machine learning methods have been widely used to study
plant and animal protein data (Sun et al., 2020a,b, 2021). Several
common machine learning-based methods for predicting R
proteins are described below: NBSPred (Kushwaha et al., 2016),
DRPPP (Pal et al., 2016), prPred (Wang et al., 2021b), and
prPred-DRLF (Wang et al., 2022). The NBSPred (Kushwaha
et al., 2016) method is a high-throughput pipeline based on
support vector machine (SVM), which is used to identify
NBSLRR and NBSLRR-like proteins from non-NBSLRR proteins
from genomic, transcriptomic and protein sequences, and was
tested and validated employing input sequences from three
dicots and two monocot plants. Similarly, the DRPPP (Pal
et al., 2016) method is an SVM-based predictive approach
to predict disease resistance proteins in plants. The method
applied 16 feature methods to obtain 10,270 features and
performed ten-fold cross-validation to train optimized radial
basis function SVM parameters, achieving an overall accuracy
of 91.11% on the test dataset. Recently, two machine learning-
based methods, prPred (Wang et al., 2021b) and prPred-
DRLF (Wang et al., 2022), were proposed by Wang et al.
to predict Plant R proteins. prPred (Wang et al., 2021b)
used two feature extraction methods, k-spaced amino acid
pairs (CKSAAPs) and k-spaced amino acid group pairs
(CKSAAGPs), to obtain Plant R protein sequence feature
information, and then used a two-step feature selection strategy
to detect irrelevant and redundant features. The prediction
accuracy of the prPred model was 93.5%. The prPred-
DRLF method applied bi-directional long short-term memory
(BiLSTM) and unified representation (UniRep) embedding
to represent Plant R protein sequence features and used a
light gradient boosting machine (LGBM) classifier to identify
plant R proteins, achieving a prediction accuracy of 95.6% in
independent tests.

Although considerable progress has been made in existing
machine learning methods for predicting Plant R proteins, some
significant challenges remain. For example, most prediction
methods only target the sequence features of Plant R proteins,
ignoring the protein structure and the physicochemical
properties of the bases. In contrast, protein residue pairwise

energy content matrices (RECM) have been used to predict
intrinsically non-structural proteins due to their ability to
capture energy information between residue pairs (Jones and
Cozzetto, 2015; Mészáros et al., 2018). Mishra et al. (2019) used
the characteristics of protein residue pair energy content to
predict DNA and RNA binding proteins, and Fu et al. (2020)
used the characteristics of protein residue pair energy content to
predict cell-penetrating peptides.

In recent years, the Stacking framework has been widely
used in biological sequence prediction, including protein, non-
coding RNA and RNA-protein interaction prediction, etc.
Mishra et al. (2019) proposed a method for predicting DNA-
binding proteins by combining evolutionary information and
a stacking framework; Yi et al. (2020) proposed a method to
predict ncRNA-protein interactions by fusing multiple sources
of information and the stacking framework; Fu et al. (2020)
used the stacking framework to construct a prediction model
for cell-penetrating peptides and their uptake efficiency; Basith
et al. (2022) applied 11 different encodings to represent three
different features and input them into the stacking model to
predict prokaryotic lysine acetylation sites; Wang et al. (2021a)
proposed a hybrid framework based on a stacking strategy to
predict non-coding RNAs.

In this manuscript, we propose a machine learning-
based predictor, called StackRPred, to further improve Plant
R protein prediction accuracy. The main contributions of
StackRPred are as follows.

(i) We employ RECM to encode Plant R proteins and
combine the discrete wavelet transform (DWT) (Shensa, 1992)
and pseudo position-specific score matrix (PsePSSM) (Chou and
Shen, 2007) to obtain Plant R protein feature representations.
(ii) We used a stacking-based machine learning model to
efficiently predict Plant R proteins. The model consists of two
layers; the first layer (base layer) uses these features to train an
ensemble of predictors; the second layer (meta-layer) combines
the outputs of the predictors from the base layer. (iii) The
prediction results show that StackRPred outperforms state-of-
the-art methods for Plant R protein prediction. The superior
performance of StackRPred could motivate researchers to explore
Plant R proteins even further.

DATASETS AND METHODS

Framework of the Proposed Method
In this study, we present a sequence-based plant R protein
prediction model called StackRPred. The StackRPred prediction
model consists of two major parts, feature extraction and
classifier construction. (1) Feature extraction; we first calculate
the RECM matrix (see Section “Residue Pairwise Energy
Content Matrices”) of Plant R protein in the benchmark
dataset according to the physicochemical properties of the
Plant R protein sequence, and extract the PsePSSM and DWT
characteristics of each Plant R protein based on the RECM
matrix. Then, we use SVM-RFE + CBR (Yan and Zhang,
2015) method to reduce the dimensionality of the feature
information. (2) Classifier construction; We constructed a
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stacking model to build the classification model. Our proposed
Stacking model classifier consists of two layers: the first layer
(base layer) contains multiple classifiers; the second layer includes
one classifier called the meta-layer. The base layer consists
of eXtreme Gradient Boosting (XGBoost), SVM, K-Nearest
Neighbor (KNN), Gradient Boosting Decision Tree (GBDT),
Light Gradient Boosting Machine (LightGBM), and Random
Forest (RF); the meta-layer uses SVM as the meta-classifier. The
overall framework of the proposed method for predicting Plant R
protein is shown in Figure 1.

Datasets
The dataset used in this thesis was derived from the study by
Wang et al. (2021b). The specific data were obtained as follows:
R proteins of 35 plant species were obtained from the PRGdb
database (Osuna-Cruz et al., 2018) and the protein sequences
of these 35 plant species were downloaded from the NCBI
database to construct a positive sample dataset; then, proteins
with sequence similarity greater than 30% were excluded from
the non-R protein dataset using CD-HIT (Fu et al., 2012).
The obtained dataset contains 456 protein sequences with 152
positive and 304 negative samples. The data set is divided into
a training sample set and a test sample set with a ratio of
8:2, the number of training samples is 364, and the number of
independent test samples is 92. The training dataset consisted of
121 plant R protein sequences and 243 non-R protein sequences;
the independent test dataset consisted of 31 R protein sequences
and 61 non-R protein sequences.

Residue Pairwise Energy Content
Matrices
The energy of interaction between protein residues ensures
protein structural stability, and the energy contribution of
residue interactions can be approximated by an energy function
extracted from known structures (Hoque et al., 2016; Mishra
et al., 2016). Dosztanyi et al. (2005) performed the least square
fit of the contact energy derived from the primary sequences
of 674 proteins to the tertiary structures of 785 proteins and
constructed the RCEM matrix, a 20×20 dimensional matrix
with rows and columns representing the 20 standard amino
acids. Table 1 shows the RCEM table applied in this manuscript
(Dosztanyi et al., 2005).

Discrete Wavelet Transform Features
Discrete Wavelet Transform (DWT) (Shensa, 1992) is a
transform operation that can capture wavelet discrete sampling
of sequence base frequency and position information. The
transform operation is done by projecting the signal onto the
wavelet function. When applied to Plant R protein sequence
analysis, DWT can decompose the physicochemical properties
of the base sequence into a list of coefficients of different
resolutions and also remove noise information from the high-
pass curve. In this manuscript, the RECM matrix is calculated
for each given Plant R protein sequence. Then, each RECM
matrix is regarded as a two-dimensional signal, and the
whole of the two-dimensional signal is denoised by discrete
wavelet transform.

FIGURE 1 | Overview of the StackRPred procedure.
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TABLE 1 | The residue pairwise energy content matrices (RECM).

A C D E F G H I K L M N P Q R S T V W Y

A −1.65 −2.83 1.16 1.8 −3.73 −0.41 1.9 −3.69 0.49 −3.01 −2.08 0.66 1.54 1.2 0.98 −0.08 0.46 −2.31 0.32 −4.62

C −2.83 −39.58 −0.82 −0.53 −3.07 −2.96 −4.98 0.34 −1.38 −2.15 1.43 −4.18 −2.13 −2.91 −0.41 −2.33 −1.84 −0.16 4.26 −4.46

D 1.16 −0.82 0.84 1.97 −0.92 0.88 −1.07 0.68 −1.93 0.23 0.61 0.32 3.31 2.67 −2.02 0.91 −0.65 0.94 −0.71 0.90

E 1.8 −0.53 1.97 1.45 0.94 1.31 0.61 1.3 −2.51 1.14 2.53 0.2 1.44 0.1 −3.13 0.81 1.54 0.12 −1.07 1.29

F −3.73 −3.07 −0.92 0.94 −11.25 0.35 −3.57 −5.88 −0.82 −8.59 −5.34 0.73 0.32 0.77 −0.4 −2.22 0.11 −7.05 −7.09 −8.80

G −0.41 −2.96 0.88 1.31 0.35 −0.2 1.09 −0.65 −0.16 −0.55 −0.52 −0.32 2.25 1.11 0.84 0.71 0.59 −0.38 1.69 −1.90

H 1.9 −4.98 −1.07 0.61 −3.57 1.09 1.97 −0.71 2.89 −0.86 −0.75 1.84 0.35 2.64 2.05 0.82 −0.01 0.27 −7.58 −3.20

I −3.69 0.34 0.68 1.3 −5.88 −0.65 −0.71 −6.74 −0.01 −9.01 −3.62 −0.07 0.12 −0.18 0.19 −0.15 0.63 −6.54 −3.78 −5.26

K 0.49 −1.38 −1.93 −2.51 −0.82 −0.16 2.89 −0.01 1.24 0.49 1.61 1.12 0.51 0.43 2.34 0.19 −1.11 0.19 0.02 −1.19

L −3.01 −2.15 0.23 1.14 −8.59 −0.55 −0.86 −9.01 0.49 −6.37 −2.88 0.97 1.81 −0.58 −0.6 −0.41 0.72 −5.43 −8.31 −4.90

M −2.08 1.43 0.61 2.53 −5.34 −0.52 −0.75 −3.62 1.61 −2.88 −6.49 0.21 0.75 1.9 2.09 1.39 0.63 −2.59 −6.88 −9.73

N 0.66 −4.18 0.32 0.2 0.73 −0.32 1.84 −0.07 1.12 0.97 0.21 0.61 1.15 1.28 1.08 0.29 0.46 0.93 −0.74 0.93

P 1.54 −2.13 3.31 1.44 0.32 2.25 0.35 0.12 0.51 1.81 0.75 1.15 −0.42 2.97 1.06 1.12 1.65 0.38 −2.06 −2.09

Q 1.2 −2.91 2.67 0.1 0.77 1.11 2.64 −0.18 0.43 −0.58 1.9 1.28 2.97 −1.54 0.91 0.85 −0.07 −1.91 −0.76 0.01

R 0.98 −0.41 −2.02 −3.13 −0.4 0.84 2.05 0.19 2.34 −0.6 2.09 1.08 1.06 0.91 0.21 0.95 0.98 0.08 −5.89 0.36

S −0.08 −2.33 0.91 0.81 −2.22 0.71 0.82 −0.15 0.19 −0.41 1.39 0.29 1.12 0.85 0.95 −0.48 −0.06 0.13 −3.03 −0.82

T 0.46 −1.84 −0.65 1.54 0.11 0.59 −0.01 0.63 −1.11 0.72 0.63 0.46 1.65 −0.07 0.98 −0.06 −0.96 1.14 −0.65 −0.37

V −2.31 −0.16 0.94 0.12 −7.05 −0.38 0.27 −6.54 0.19 −5.43 −2.59 0.93 0.38 −1.91 0.08 0.13 1.14 −4.82 −2.13 −3.59

W 0.32 4.26 −0.71 −1.07 −7.09 1.69 −7.58 −3.78 0.02 −8.31 −6.88 −0.74 −2.06 −0.76 −5.89 −3.03 −0.65 −2.13 −1.73 −12.39

Y −4.62 −4.46 0.9 1.29 −8.8 −1.9 −3.2 −5.26 −1.19 −4.9 −9.73 0.93 −2.09 0.01 0.36 −0.82 −0.37 −3.59 −12.39 −2.68

Wavelet transform (WT) is defined as the projection of the
signal f(t) onto the wavelet function:

T(a, b) =
1
√
a

∫ t

a
f (t)9(

t − b
a
)dt (1)

Where a(a > 0) is a scale factor and b is a translation factor,
and both belong to the real set r(n). 9( t−ba ) is the analyzing
wavelet function, and T(a, b) is the wavelet transform coefficient
of the signal at the specific position (t = b) and the specific
wavelet period (the equation of the scale factor a). Discrete
wavelet transform (DWT) can decompose lncRNA sequences
into coefficients of different dilations and then remove noise
components. Nanni et al. (2012, 2014) proposed an efficient
algorithm for performing DWT by assuming that the discrete
signal f(t) is x [n], and is defined as follows:

yj,low[n] =
N∑
k=1

x[k]g[2n− k] (2)

yj,high[n] =
N∑
k=1

x[k]h[2n− k] (3)

Where N is the length of the discrete signal. ylow[n] is
the approximation coefficient of the signal (low frequency
component). yhigh[n] is the detailed coefficient (high frequency
component). g is a low pass filter and h is a high pass filter.
As the level of decomposition increases, more detailed signal
characteristics can be observed.

Figure 2 is an example of a 4-level discrete wavelet transform.
At each level, the data can be divided into a high frequency
band containing more noise information and a low frequency

band including more useful signals, and should be transformed
in the next stage.

At each level of the DWT, the high and low band signals are
separated. Inspired by the work of Nanni et al. (2012, 2014), we

FIGURE 2 | An example of a discrete wavelet transform process.
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calculate the maximum, minimum, mean, and standard deviation
values for each band. Four characteristics can be obtained for the
high frequency and the low frequency, respectively, and a total of
eight features are obtained. In addition, since the high-frequency
component noise is large, the low-frequency component is
more important. We also extract the first five discrete cosine
coefficients from the approximation coefficients, and the first
five elements are more important information indicating the
sequence in the compressed low-band. Therefore, we can get
4 + 4 + 5 features from each level of DWT, and there are 52
features of 5 levels throughout the conversion process.

In the RECM matrix, we can extract 52 features for
each attribute using the 5-level DWT method. Thus, we can
obtain 1040 features.

PsePSSM Features
Chou and Shen (2007b) proposed the Pseudo Position-Specific
Score Matrix (PsePSSM) feature extraction method widely used
for protein sequence feature extraction. Similarly, we established
a new feature extraction method based on RECM matrix–
PseRECM, which can be used for feature extraction of Plant R
protein sequences. PseRECM is defined as follows.

PRλPseRCEM

= (P′1, P
′

2, ..., P
′

20,G
1
1,G

1
2, ...,G

1
20, ...,G

λ
1 ,G

λ
2 , ...,G

λ
20) (4)

Where

Pj =
∑L

i=1 pi,j
L

, 1 ≤ i ≤ L, j = 1, 2, ...20 (5)

Here pi,j represents the values of the i-th row and the j-th
column in the RECM matrix.

Gλj =
∑L−λ

i=1 (pi,j − pi+λ,j)
∗(pi,j − pi+λ,j)

L− λ
(6)

Where Gλj is the average correlation of amino acid residues
with a separation distance λ (λ < L) in the sequence,
j = 1, 2,. . . , 20.

Feature Optimization Algorithm
After extracting feature information for the full Plant R
protein dataset, to eliminate noise and redundant features from
the original feature space and reduce overfitting to improve
performance, we employ the SVM-RFE + CBR (Yan and
Zhang, 2015) algorithm to select the best feature subset. the
SVM-RFE + CBR (Yan and Zhang, 2015) algorithm has been
successfully applied to many systems biology problems (Fu et al.,
2018, 2019a,b; Chen et al., 2021). We first use SVM-RFE + CBR
to rank all feature vectors and select a set of top-ranked feature
vectors, and then, reorganize the selected feature vectors into
new and ordered feature vectors. The 112-dimensional feature
input model is obtained for training after applying the SVM-
RFE+ CBR algorithm.

The SVM-RFE algorithm is an Embedded method based on
the maximum interval principle of SVM, proposed by Guyon
et al. in the classification of cancer, and has been successfully

applied to many systems biology problems (Yin et al., 2016;
Chowdhury et al., 2017). The SVM-RFE algorithm trains samples
through the model and ranks the score of each feature, removes
the feature with the lowest score, then trains the model again with
the remaining features for the next iteration, and finally selects
the number of features needed. To reduce the potential bias
between non-linearity and linearity of the SVM-RFE algorithm,
Yan et al. incorporated the Correlation Bias Reduction (CBR)
strategy and proposed the SVM-RFE + CBR algorithm. To
incorporate the CBR strategy into the feature elimination process,
half of the remaining features are removed in each iteration of
SVM-RFE at the beginning of the algorithm. When the number
of remaining features is less than an elimination threshold, they
are removed in the next iterations for better accuracy.

The SVM-RFE + CBR algorithm requires the following main
parameters: kerType, rfeC, rfeG, useCBR, Rth. The values and
descriptions of these parameters in this paper are shown in
Table 2.

Classification Models
The stacking method achieves model stacking by combining the
output results of multiple models (called base models) as feature
input to the next layer of models. Specifically, the model output
of the first layer of the stacking model is used as the input of
the second layer of the model, the output of the second layer of
the model is used as the input of the third layer of the model,
and so on, with the output of the last layer of the model as the
final result. In this manuscript, a stacking model is constructed
as a classification prediction model for Plant R proteins. The
StackRPred model consists of two layers: the first layer (base
layer) contains multiple classifiers. The classifier in the base layer
is called the base classifier; the second layer includes one classifier
called the meta layer. The output of the base classifier is used as
input data for the meta-classifier in the overlay model, so that
the meta-classifier can be found and corrected for deviations
in the base classifier and learn inductively from the results of
the base classifier, thus improving the generalization accuracy
of the integrated classifier. Choosing suitable base classifiers
and meta-classifiers is the key to improving the generalization
ability of the StackRPred model. In this study, through several
experimental tests, we selected six classification algorithms as
the base classifier for the first layer, namely KNN, GBDT, SVM,
XGBoost, LightGBM, and RF, and chose SVM as the meta-
classifier.

K-nearest neighbor (Altman, 1992) is a non-parametric
statistical method for classification and regression. The core idea
of KNN: If most of the K nearest neighbors of a sample in the

TABLE 2 | Parameters description in SVM-RFE + CBR method.

Parameter Value Describe

kerType 2 Kernel type, see libsvm. linear: 0; rbf:2

rfeC 16 Parameter C in SVM training

rfeG 0.0078 Parameter g in SVM training

useCBR True Whether or not use CBR

Rth 0.9 Corrcoef threshold for highly corr features
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FIGURE 3 | ROC curves for five-fold cross-validation of our proposed model.

feature space belong to a certain category, the sample also belongs
to this category and has the characteristics of the samples in this
category. This method only determines the category of the sample
is classified according to the category of the nearest one or several
samples in determining the classification decision.

Support vector machine (Vapnik, 1999) is a generalized
linear classifier that classifies data by supervised learning, and
its decision boundary is the maximum-margin hyperplane for
solving learning samples. In this study, we employ grid search
to optimize the RBF kernel parameter γ and the cost parameter
C, and choose the radial basis function (RBF) as the SVM
kernel function.

Gradient boosting decision tree (Friedman, 2001) is an
iterative decision tree algorithm that consists of multiple decision
trees, with the conclusions of all the trees accumulating to make
the final decision. It was considered to be a more generalizable
algorithm when it was first proposed, along with SVM.

Random forest (Svetnik et al., 2003) is a classifier that contains
multiple decision trees and whose output classes are determined
by the plurality of the classes output by the individual trees. RF
randomly combines multiple decision trees into a forest, and
determines the final class of the test sample based on the voting
results of each decision tree during classification.

eXtreme gradient boosting (Chen and Guestrin, 2016) is an
algorithm that integrates and boosts multiple weak classifiers
into a strong classifier. Compared to gradient boosting classifier
(GBC), XGBoost performs more regularized model formalism to
control model overfitting, thus improving performance.

LightGBM is a gradient-lifting tree framework proposed by
Ke et al. (2017). LightGBM is a framework for implementing
the GBDT algorithm, which supports efficient parallel training
and has the advantages of faster training speed, lower memory
consumption, better accuracy, and distributed support for fast
processing large amounts of data.

The following describes the settings of the parameters in the
six classifiers.
XGBoost/RF: The number of trees in the model is fine-tuned
using the grid search method, i.e., the value of the "n_estimators"
variable and the rest of the parameters are default parameters.

100 ≤ n_estimators ≤ 1000 with step 4n_estimators = 25

SVM: We choose the radial basis function as the kernel function
of the SVM and use the grid search to optimize the parameters
C and γ. Therefore, we optimized these parameters using the
following range:{

2−5
≤ C ≤ 215with step 4C = 2

2−15
≤ γ ≤ 215with step 4γ = 2−1

LightGBM: Fine-tune the three key parameters “n_estimators,”
“max_depth,” and “learning_rate” in the model using the grid
search method:

100 ≤ n_estimators ≤ 1000 with step n_estimators = 25
1 ≤ max_depth ≤ 25 with step 4max_depth = 1

0.1 ≤ learning_rate ≤ 0.8 with step 4learning_rate = 0.01

KNN/GBDT: All parameters are default values.

EXPERIMENTS AND RESULTS

Evaluation Criteria
To evaluate the performance of the proposed plant R protein
prediction model, four metrics were introduced in this study to
evaluate the performance of the model prediction. These four
evaluation metrics are: Precision, Recall, Accuracy (ACC), and
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TABLE 3 | Performance comparison with other state-of-the-art prediction
methods on independent datasets.

Models Accuracy Precision Recall F1-score AUC

prPred 0.935 1.000 0.806 0.893 0.948

prPred-DRLF1 0.956 0.967 0.905 0.933 0.997

prPred-DRLF2 0.923 0.943 0.838 0.884 0.989

StackRPred 0.967 0.980 0.968 0.980 0.997

F1-score, which are formulated as follows.

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1 − score = 2×
Recall× Pr ecision
Recall+ Pr ecision

(9)

ACC =
TP + TN

TP + FP + TN + FN
(10)

Where TP, TN, FP, and FN denote the number of
true positives, true negatives, false positives, and false
negatives, respectively.

In addition, receiver operating characteristics (ROC) were
plotted on the basis of specificity and sensitivity, and the area
under the ROC curve (AUC) was calculated on the basis of
the trapezoidal approximation. The AUC provides a measure
of classifier performance; large values of AUC correspond to
improved classifier performance.

Measuring Algorithm Performance
Through Five-Fold Cross-Validation
K-fold cross-validation is one of the most common ways to
measure the performance of a computational model. In this
manuscript, we apply five-fold cross-validation to the training
set and calculate the evaluation metrics of Accuracy, Sensitivity,
Precision, Specificity and AUC. The average experimental results
for the five-fold cross-validation of these evaluation metrics are as
follows: Accuracy (0.975), Precision (0.984), Recall (0.942), and
AUC (0.995). prPred-DRLF model uses the three optimizations
of LGBM, RF, and MRMD3.0 (Zou et al., 2016; He et al., 2020).
The best accuracies corresponding to these three optimization
algorithms for the prPred-DRLF model are 0.97, 0.964, and 0.964,
respectively, all of which are lower than the accuracy achieved by
our method (0.975).

Therefore, a comparison of the experimental results shows
that our proposed model is superior to the prPred-DRLF model.
It is worth mentioning that the prPred-DRLF model extracts far
more feature dimensions than our method, indicating that our
method uses fewer feature dimensions and is able to capture
more effective feature information. For a better presentation of
the results, we plotted the average ROC curve for the five-fold
cross-validation, as shown in Figure 3.

Measuring Algorithm Performance
Through Independent Test Validation
To further compare the performance of our proposed method
with other methods in independent tests, we compared it with
the prPred and prPred-DRLF groups of methods, respectively,
and chose the best experimental results given in their papers for
these two models. The experiments were compared under the
same dataset and the results are shown in Table 3. The prPred
model has an accuracy value of 0.935 and a Precision value of

FIGURE 4 | ROC curves for independent test validation of our proposed model.
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1 which is the largest among all the models. A total of three
features were extracted from the prPred-DRLF model, namely
TAPE-BERT, BiLSTM, and UniRep. prPred-DRLF1 in Table 3
represents the result of the prPred-DRLF model choosing the
combination of BiLSTM + UniRep, which is the best accuracy
given by the prPred-DRLF model. prPred-DRLF2 indicates the
result of the prPred-DRLF model choosing all three combinations
(TAPE-BERT, BiLSTM, and UniRep), which in contrast does not
perform as well as prPred-DRLF1.

As can be seen in Table 3, the Accuracy, Precision, Recall, F1-
score, and AUC of our proposed method StackRPred were 0.967,
0.980, 0.968, 0.980, and 0.997, respectively, of which, except for
Precision, all were maximum values, indicating the superiority
of our method in predicting plant R proteins. Also, to make the
results of our method more visual, we plotted the ROC curves, as
shown in Figure 4.

CONCLUSION

The discovery and study of plant R proteins is of great importance
to agricultural production. In this study, we propose a novel plant
R-protein predictor, StackRPred, which introduces DWT and
PsePSSM methods to extract plant R-protein feature information
based on the base pair energy content, and then applies SVM-
RFE + CBR techniques to optimally select the obtained feature
information to obtain 112-dimensional feature information;
finally, the 112-dimensional feature information was fed into the
constructed stacking model for training to build the prediction
model. The stacking model was divided into two layers, with the
first layer containing six classifiers, namely KNN, GBDT, SVM,
XGBoost, LightGBM and RF, and the SVM was selected as the
classifier in the second layer. Precision, Recall, Accuracy (ACC),
F1-score, and AUC were used to evaluate the performance of
the model, and a five-fold cross-validation and independent

test validation were performed, respectively. The experimental
results show that the proposed StackRPred model outperforms
other state-of-the-art algorithms. The StackRPred model is useful
for further exploration of plant R proteins and is expected to
be extended to other protein or peptide research areas. In the
future, we will focus more on the interpretability of plant R
protein prediction models. Model interpretability is one of the
key directions of current bioinformatics research (Cai et al.,
2021a,b). The exploration of model interpretability is beneficial
to further functional studies on plant R proteins.
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