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Ramie is one of the most significant fiber crops and contributes to good quality fiber.
Drought stress (DS) is one of the most devastating abiotic factors which is accountable
for a substantial loss in crop growth and production and disturbing sustainable crop
production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has
evolved a series of defense responses to cope with DS. There are numerous genes
regulating the drought tolerance (DT) mechanism in ramie. The morphological and
physiological mechanism of DT is well-studied; however, modified methods would be
more effective. The use of novel genome editing tools like clustered regularly interspaced
short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to
modify their function. The transgenic approaches are used to develop several drought-
tolerant varieties in ramie, and further identification of tolerant genes is needed for
an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors
(TFs) and speed breeding are highly studied techniques, and these would lead to the
development of drought-resilient ramie cultivars. The use of hormones in enhancing
crop growth and development under water scarcity circumstances is critical; however,
using different concentrations and testing genotypes in changing environments would
be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS,
investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical
review summarized the recent advancements on DT in ramie using novel molecular
techniques. This information would help ramie breeders to conduct research studies
and develop drought tolerant ramie cultivars.

Keywords: ramie, drought, yield, genes, marker-assisted-selection, CRISPR/Cas9

Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 911610

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.911610
http://creativecommons.org/licenses/by/4.0/
mailto:ibfcjyc@vip.sina.com
https://doi.org/10.3389/fpls.2022.911610
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.911610&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/articles/10.3389/fpls.2022.911610/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-911610 June 24, 2022 Time: 16:22 # 2

Rasheed et al. Improvement of Drought Tolerance in Ramie Crop

INTRODUCTION

Abiotic stresses are causing a huge decline in crop growth and
production worldwide (Fahad and Bano, 2012; Fahad et al., 2013,
2017, 2019a, Fahad et al., 2021c,Bamagoos et al., 2021). Drought
stress (DS) is the worst environmental factor around the globe
and severely affects crop yield (Anjum et al., 2011; Alharby and
Fahad, 2020; Seleiman et al., 2021; Yahaya and Shimelis, 2022).
DS is an inevitable abiotic aspect in numerous ecological areas,
severely declining crop yield and quality without warning before
its onset (Seleiman et al., 2021; Bandurska, 2022). Low rainfall,
temperature, and light intensity contribute to drought incidents
(Zia et al., 2021). DS causes the oxidation of the cell by the
generation of reactive oxygen species (ROS) (An et al., 2015a).
ROS at a definite threshold in plant tissues degrade the biological
membrane system, and therefore, the cell ultrastructure is
impaired (Hassan et al., 2017; Chattha et al., 2021; Hassan
et al., 2021; Shah et al., 2021; Batool et al., 2022a; Jinhua et al.,
2022; Rehman et al., 2022). DS tolerance comprises molecular,
morphological, and physiological paths, including introducing
and silencing numerous genes and improving antioxidants action
(Aslam et al., 2022). Plants have evolved a variety of complex
networks against DS (An et al., 2015b, 2016).

Ramie is one of China’s most famous fiber crops with excellent
fiber quality as shown in Figure 1 (Rehman et al., 2020, 2021). As
it used for making products like packing material, filter clothes,
fishing nets, and soap bags (Figure 1). Ramie is an important
economic crop in China (An et al., 2015b, 2016; Wu et al., 2021a).
Ramie is mainly cultivated in China under outdated farming
methods. The production and success of ramie farming systems
are deteriorating slowly, and there is a critical need to improve
farming methods. Because of this reason, the need to identify
genetic factors behind drought tolerance (DT) is a critical need
at this time (Satya et al., 2019). There is an urgent need to
investigate different signaling cascades because of DS, keeping
in mind the current situation to identify the genetics of DT
mechanism in ramie (An et al., 2015b). Plants have developed
two types of response against DS, the short-term and long-term
response (Tardieu, 2022).

The long-term response includes abortion of grains,
completing life cycle, allocating nutrients, and delayed
leaf senescence mechanism (Chen et al., 2016). Stomatal
conductance, water potential differences, osmolyte content,
and maintenance of turgor pressure are related to short-term
responses (Zahedi et al., 2022). DS reduces water potential,
as a result, plants accumulate more solutes in the cytosol
and other cell compartments. Therefore, drought disturbs the
growth of the crops and their reproductive phase at the whole
plant level (Sharma and Sardana, 2022). DS induces numerous
fluctuations at morphological, biochemical, and physiological
stages, and it is categorized by a reduction in leaf water potential
and reduced cell expansion (Chen L. et al., 2021). DS causes
abnormal starch accumulation, which affects the viability of
pollen (Lamin-Samu et al., 2021), and rolling of leaf, shadowed
by wilting and decolorizing that eventually leads to the plant’s
death (Seleiman et al., 2021). Plant researchers witnessed that
water shortage in roots is due to the dryness of soils while in the

leaf cells it is due to tiny air moisture and higher temperatures
(Ozturk et al., 2021). DS also leads to reduced leaf area (Ozturk
et al., 2021), decreased mitosis, cell enlargement, and cell
growth. Main alterations in leaf anatomy and structure like
leaf size reduction and stomatal reduction are studied in many
crops (Ilyas et al., 2021). Noteworthy development has been
made to understand the plant’s reaction to DS at various levels
(Ahmad et al., 2021).

Any stressful situation causes differences in gene
functions, bringing variations in the arrangement of the
plant transcriptomes, metabolites, and proteome (Singh et al.,
2021). Molecular techniques like, CRISPR/Cas9 and speed
breeding can play a key role in development of tolerant
ramie cultivars and need further studies to expand their
use. CRISPR/Cas9 can cause targeted gene editing in ramie
and speed breeding is used to develop the cultivars in short
period of time. As genes and QTL play a vital role in signaling
development, transcription regulation, detoxification at the
cellular level, safeguarding of macromolecules, and a collection
of other cellular procedures, numerous genetic tools have
now been developed that are helpful in recognizing the
mechanisms linked with DT in crops (Bharadwaj et al.,
2021). Thus, while the development of drought-tolerant
ramie crops is practically important, only a few reports have
focused on its genetic improvement. A few studies have
reported on the physiological and molecular factors (Liu et al.,
2013b) controlling DT in ramie. Earlier studies recognized
24 transcription factors (TFs) that can be transcripts, but
only 12 are potentially involved in DT (Liu et al., 2013c).
The combined use of different breeding tools is critical in
improving ramie growth and yield under water deficit conditions
(Huang et al., 2012).

Different plant mineral nutrients like potassium (K) play a
crucial role in plants under DS (Agarwal et al., 2006). K is
actively involved in various pathways like enzyme activation,
stomatal movement, and osmoregulation (Wang et al., 2013). K
encourages root growth during water stress conditions because it
increases sucrose transport to the young roots for their average
gain. K also increases the uptake of ions as it is one of the
main constituents of phloem sap. Therefore, it mitigates the
adverse effects of DS by maintaining the water balance within
plants (Ahanger et al., 2014). Secondly, nitrogen (N) which
is a vital plant nutrient required in significant quantities by
plants, also improves DS tolérance (Liu et al., 2008). Studies
have shown that appropriate N supply in plants significantly
increased DT (Liu et al., 2008). Likewise, phosphorus (P)
also contributes to DT when available in proper quantity. It
maintains leaf water content, photosynthetic rate, and quantum
efficiency under DS (Tariq et al., 2017). Hence, adequate plant
nutrition can mitigate the adverse effects of DS. The adverse
consequences of drought on numerous other crops were studied
(Fahad et al., 2020, 2021f). Hence, it is critical need to develop
climate resilient crops. There is a little information available
on DT in ramie because of the lack of novel germplasm
and detailed research studies. The aim of this review is to
present a comprehensive overview of DS tolerance in ramie
at various levels using several techniques. These techniques
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FIGURE 1 | Economic importance of ramie in China. Ramie is used for making sewing thread, filter clothes, packing material, fishing net, and paper. Ramie is also
used for making pouch, brush holder, and soap bags. It provides labor work and has a significant contribution to gross domestic product (GDP).

could play a key role in DT in ramie. In this review we
have briefly discussed the conventional approaches, as well as
molecular approaches and their role in the improvement of DT
in ramie. This information would be of great significance in
directing future research studies for breeding drought-tolerant
ramie cultivars.

EFFECTS OF DROUGHT STRESS ON
RAMIE

DS has detrimental effects on crop growth and development. It
affects the germination of seeds, growth, photosynthesis, stomatal
conductance, plant–water relations, and yield (Saud et al., 2014,
2016, 2020; Figure 2). In the United States of America (USA),
about 66% of plant yield was reduced because of prolonged
DS (Comas et al., 2013). DS is one of the most devastating
factors in arid and semi-arid areas. DS affects all phases of

the plant directly or indirectly (Liu et al., 2022). DS reduced
the concentration of humidity in soil which is necessary for
seed germination. DS caused the late emergence of seedlings
in ramie (Huang et al., 2013). Loss of turgor pressure, gas
exchange, and oxidative damage are triggered by DS (Hussain
et al., 2018). Drought episodes induce necrosis (Figure 2)
due to overproduction of cells, reduced surface area of the
leaf, and damage to several enzymatic actions (Dong et al.,
2020). Drought-induced ROS causes oxidation, which may be
useful or harmful for plants depending on their concentration
(Challabathula et al., 2022). DS severely affected the uptake of
plant nutrients which are essential elements in plant growth and
development (Alam et al., 2021). Mineral composition, proteins,
and antioxidants are affected by DS (Kosar et al., 2021; Figure 2).
DS also causes genome-wide changes in DNA methylation and
altered gene expression (Ackah et al., 2022). It also disturbs
the enzymatic activity in the cell and affects many pathways
(Shawon et al., 2020). Longtao et al. (2016) investigated the
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FIGURE 2 | Effects of drought stress (DS) on various stages of plant growth and development. At morphological level, DS induces several changes in plant like,
chlorosis, necrosis, wilting, reduced leaf size, cell death, and yield reduction. At physiological and biochemical level, DS also causes oxidation by production of
reactive oxygen species (ROS), inactivation of enzymatic action, and reduced photosynthesis and protein contents. DS also brings certain alterations at molecular
level like, changes in DNA methylation and altered gene expression.

effect of DS on the physiology and yield of ramie cultivars,
and they noted that DS significantly decreased the biomass
production of cultivars. In another study, the effect of DS was
studied on ramie cultivars, and results showed that the amount
of malondialdehyde decreased as a result of DS (He et al., 2015).
Ramie cultivars showed a severe decline in stem growth and fiber
production under extreme DS (An et al., 2015a). Chlorophyll
content of ramie also decreased under DS (Liu et al., 2013c).
Likewise, Huang et al. (2012) investigated the effect of different
drought episodes on chlorophyll content and showed that DS
causes a decline in chlorophyll content. Response of different
ramie cultivars showed that DS reduced the fiber length and
quality in ramie (Liu et al., 2005; Table 1). Nutrients play an
important part in crop growth and development. Disturbance
in nutrient pathways led to severe decline in yield of ramie.
It is obvious from earlier studies that DS affects the nutrient
uptake in ramie cultivars. DS decreased the uptake of different
plant nutrients and caused a decline in the crop’s yield (Liu
et al., 2000). Due to the economic significance of ramie, it is
now critical to mitigate the harmful effects of DS in order to
stabilize the yield and quality. The impact of DS on ramie may

vary with time and intensity of stress. To better understand the
consequences of DS, it is essential to evaluate different ramie
genotypes under other drought conditions and assess the effects
at various growth stages of ramie. These studies will provide a
better way to understand the consequences of DS and enable the
development of a better mechanism for reducing the negative
effects (Liu et al., 2005).

DROUGHT TOLERANCE MECHANISM IN
RAMIE

Drought tolerance is a complex polygenic trait which involves
a number of mechanisms and genes controlling this trait. Most
of the genes have minor effects for DT. The complex nature
of DT makes it difficult to improve the cultivars without
a complete understanding of gene networks (Thanmalagan
et al., 2022). Plants adopt several mechanisms to cope with
DS (Fang and Xiong, 2015; Muiruri et al., 2021; Panda
et al., 2021). These mechanisms include DT, avoidance, escape,
and recovery after drought (Figure 3). Drought avoidance
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TABLE 1 | Effects of DS on growth, yield and physiological traits of ramie crop.

Effects References

Drought stress reduced the biomass production, plant height, growth rate, yield
and activities of NR, and the activity of sucrose synthase

Longtao et al., 2016

Reduced activity of malondialdehyde He et al., 2015

DS reduced the photosynthesis, relative water content (RWC), and increased
activities of POD and proline contents

An et al., 2015b

Decrease in chlorophyll a and carotenoid contents Liu et al., 2013a

10.15% reduction in chlorophyll and protein contents Huang et al., 2012

Reduced plant height and antioxidants activity Chen et al., 2012

Reduced fiber length, erectness, and leaf surface area Liu et al., 2005

Reduced nutrients concentration, photosynthetic activity, and nitratase activity
in leaves

Liu et al., 2000

mechanisms include maintaining higher water content in tissue
and normal functioning of physiological processes despite low
water content in soil (Luo, 2010; Varshney et al., 2021). The
plant closes its stomata, limits vegetative growth, increases water
and nutrient uptake and waxy accumulation. In the drought
escape mechanism, the plant completes its life cycle before one
set of droughts. In DT, plants maintain turgor pressure and
activate several genes and enzymes (Figure 3) which protect
plants from detrimental effects of DS (Coussement et al., 2021).
The ability to recover after severe DS is called drought recovery
(Fang and Xiong, 2015; Giordano et al., 2021; Sun et al., 2021).
Hence, DT is a complex polygenic trait, and it is essential
to understand the factors behind it (Tripathi et al., 2022).
Different genes are activated under DS and control different
pathways to protect plants from detrimental effects. Different
genes have been identified which confer DT and improve
plant growth and development (Huang et al., 2016b). Several
DT indicators like osmotic adjustment, leaf water potential,
and proline content play a key role in DT (Fang and Xiong,
2015). Likewise, antioxidants and osmoprotectants are essential
factors in developing drought-tolerant genotypes (Luo, 2010).
In some studies, leaf morphology is also used as an indicator
for developing drought-tolerant cultivars (Bogale et al., 2011).
Earlier studies confirmed that genotypes with rolled leaves could
reduce water loss under severe DS (Xiang et al., 2012). Reducing
the transpiration rate is very critical for plants under DS. Under
DS, the leaf starts wilting and, therefore, suppresses growth
and development (Fanizza and Ricciardi, 2015). Plants adopt a
thick waxy cuticle layer to cope with DS (Ullah et al., 2017).
Leaves develop a smaller number of stomata, vascular tissues, and
thick palisades (Iqbal et al., 2013). Recent studies have shown
that overexpression of MtCAS31 increased DT in Arabidopsis by
dropping stomatal thickness (Xie et al., 2012). Some drought
tolerant ramie cultivars (Zhongzhu No2, Zhongzhu 1) showed
better growth under DS conditions (Liu et al., 2013a; Longtao
et al., 2016). These cultivars can be used to transfer drought
tolerant genes in sensitive cultivars. Further studies are required
to investigate the in-depth analysis of plant response to DS.
Plant response to DS at a molecular level needs further study to
identify the number of genes controlling DT in ramie and their
complex pathways.

AGRONOMIC APPROACHES TO
ENHANCE DROUGHT TOLERANCE IN
RAMIE

Application of crop management practices can potentially
alleviate the harmful effects of abiotic stresses particularly
DS (Fahad et al., 2015d, 2019b, 2021a,b; Wu et al., 2020).
These agronomic approaches include, the use of certain plant
hormones, and macro and micronutrients (Fahad et al., 2021d,e).
These practices are widely used to maintain the growth and yield
of crops under the changing environmental conditions (Yang
et al., 2017; Zafar-Ul-Hye et al., 2020a,b, 2021).

USE OF PLANT GROWTH HORMONES
AND PLANT NUTRIENTS TO ENHANCE
DROUGHT TOLERANCE IN RAMIE

The hormones play a crucial role in triggering defense responses
in plants against several environmental factors (Fahad et al.,
2015a,b, 2016a,b; Wu et al., 2019). These hormones mitigate
the adverse effects of abiotic stresses and maintain crop growth
and production (Fahad et al., 2015c, 2016c,d, 2018). Abscisic
acid (ABA) is the primary hormone that enhances DT in crops
by inducing several morphological and physiological changes.
These changes include stomatal regulation, root development,
and initiation of ABA-dependent pathways development. Besides
this, salicylic acid (SA), auxin, and cytokinin’s (CK) also play a
vital role in mitigating DS (Figure 4). CK enhanced the capacity
of plants to tolerate water deficit conditions by improving the
process of carbon assimilation and N metabolism (Reguera
et al., 2013). Likewise, SA regulates the plant antioxidant
defense system, stomatal movement, and photosynthetic rate
under DS (Nazar et al., 2015). These hormones often crosstalk
with each other to increase the DS tolerance in crops (Ullah
et al., 2018). Meanwhile, different types of antioxidant enzymes
like, superoxide dismutase (SOD), catalasa (CAT), ascorbate
peroxidate (APX), and glutathione peroxidase (GPX) reduce the
level of superoxide and hydrogen per oxide in cell (Figure 4).
These are the most important enzymes used against oxidative
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FIGURE 3 | Drought tolerance mechanism in ramie. The drought tolerance mechanism involves four steps, DA, DE, DT, and DR. Drought avoidance involves,
stomatal closure, waxy layer, maintaining water contents in tissues, and enhance water uptake. Drought escape involves the early completion of life cycle before
initiation of drought episodes. Likewise, drought tolerance involves, osmotic adjustment, and genes and enzymes activation. Last step is drought recovery which
involves the improvement of growth due to allocation of nutrients and complete life cycle.

FIGURE 4 | Role of different factors to enhance drought tolerance in ramie. Ramie response to drought stress (DS) by various ways like, activation of different genes
which provide resistance to stress. Different antioxidants like SOD, GPX, APX, and CAT are used to counter the adverse effects of DS. Hormones like, GA, CK, and
IAA are being used for mitigating the effects of DS.

Frontiers in Plant Science | www.frontiersin.org 6 June 2022 | Volume 13 | Article 911610

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-911610 June 24, 2022 Time: 16:22 # 7

Rasheed et al. Improvement of Drought Tolerance in Ramie Crop

stress and occur ubiquitously in all types of plant cells (Laxa et al.,
2019). Osmolytes have been used to mitigate the adverse effects
of DS in many crops. Osmolytes are small and highly soluble
organic compounds which maintain osmotic balance under
drought conditions. Plants overexpress osmolyte biosynthesis
genes which enhances DT (Nahar et al., 2016). These osmolytes
play a role in stabilizing proteins, scavenging of ROS, and
balancing cellular redox under DS (Hasanuzzaman et al., 2019).
The ramie genotypes were evaluated under the DS conditions.
The treatments included severe DS, severe DS and GA3 spray,
regular water, and GA3 spray, and normal water as a control.
Results showed that proline contents and soluble sugar contents
were increased in the ramie group exposed to DS and GA3
treatment. These outcomes recommended that exogenous GA3
can improve the DT in ramie (Liu et al., 2013a). Likewise,
the effect of SA was studied on drought-affected ramie cultivar
Zhongzhu No2. Exogenous SA was sprayed, and four treatments
were applied. Results showed that sugar and protein contents
were increased after the application of SA in DS conditions. The
activities of three key enzymes responsible for fiber development
were decreased as compared to the control on the 30th day
of treatment. The exogenous application of SA recovered plant
height and yield, but aerial biomass was reduced. Consequently,
these results showed SA improved the actions of enzymes and
alleviated the consequences of DS in ramie. This provides a
theoretical foundation for DT in ramie (Longtao et al., 2016).
Betaine plays a vital role in mitigating the harmful effects of
DS in ramie. Huazhu No. 5 was grown to study the impact
of exogenous betaine spray on the growth and yield of ramie
grown under DS. The results suggested that spraying betaine
could improve DT by lowering the relative conductivity ratio
of ramie and increasing the activity of peroxidase (POD) at the
growth stage. Betaine improved the fresh stem weight and bast
weight compared to the control. These findings provided a solid
theoretical basis for developing drought-tolerant ramie cultivars
(He et al., 2015).

USE OF NITROGEN TO IMPROVE
DROUGHT TOLERANCE IN RAMIE

DS adversely affects the growth and development of ramie
(Huang et al., 2012), which is one of the most significant fiber
crops of China. Under dry conditions, crop growth is restricted
due to decreased water availability (Asghar and Bashir, 2020).
Different mineral nutrients also play a crucial role in improving
DS tolerance in plants (Waraich et al., 2012). To reduce the
lethal effects of stress, N fertilizer has been used to improve plant
growth (Wajid et al., 2017). N deficiency in plants causes a decline
in biomass production (Gong et al., 2019). Efficient N application
can be used under DS (Shangguan et al., 2000; Saud et al., 2017;
Mahpara et al., 2019). Earlier studies showed that shoot biomass
is more affected by DS, and root biomass is less affected (Song
et al., 2010). The availability of good soil N makes plants more
drought-hardy than soil with a N deficiency (Halvorson and
Reule, 1994). Increased N application improved crop growth
and development. N minimizes the risk of plasma membrane

damage and also maintains osmotic adjustment. It also leads to
the increase in uptake of several plant nutrients like calcium (Ca)
and K (Ahanger et al., 2017). N application reduced the content
of malondialdehyde, and alleviates DS in crops (Saneoka et al.,
2004). It recovers the injuries caused by DS and enhances the
cell division rate, leading to an increase in leaf area (Wu et al.,
2008). DS dramatically influences photosynthesis in crops, which
is recovered by sufficient N application (Hammad et al., 2017;
Hammad et al., 2020a,b). Hence, DT can be improved by the
proper application of N. Therefore, it is critical need of time to
evaluate the ramie genotypes under DS conditions and study the
role of N application in mediation of growth and development.

USE OF PHOSPHORUS TO IMPROVE
DROUGHT TOLERANCE IN RAMIE

Under DS conditions, plants cope with DS and maintain their
growth and development by increasing photosynthesis rate and
stomatal conductivity (Waraich et al., 2011a). Previously, many
studies reported that P is an important plant nutrient (Zia
et al., 2017; Wahid et al., 2020), and the use of a P dose
under DS conditions significantly improved crop growth and
development by enhancing their water usage efficiency (Waraich
et al., 2011b; Hansel et al., 2017). The accessibility of optimum
P in crops promotes growth by improving root growth and
stomatal activity (Naeem and Khan, 2009). It optimizes the leaf
area (Singh et al., 2013), enhances plasma membrane stability and
water use efficiency (WUE) (Gislén et al., 2003; Faustino et al.,
2013). Studies have shown that plants have higher P levels under
drought conditions than plants grown under normal conditions,
which indicate its role in DT in plants (Hansel et al., 2017).
N mobility is also increased by P application under DS (Zhou
et al., 2015). P application also improves several morphological
and physiological traits like plant height, leaf area, and WUE
(Singh et al., 2006). Previous studies have shown that the deep
application method of P works effectively to mitigate the adverse
effects of DS (Kang et al., 2014). This evidence strongly suggests
the potential role of P to minimize the negative impact of DS
in crops. Therefore, it is critical need of time to evaluate the
ramie genotypes under DS conditions and study the role of P
application in mediation of growth and development.

USE OF POTASSIUM TO IMPROVE
DROUGHT TOLERANCE IN RAMIE

Potassium is an essential plant nutrient and holds the key for
numerous physiological mechanisms like photosynthesis, protein
synthesis, and osmoregulation (Zörb et al., 2014; Zahoor et al.,
2017a; Zhu et al., 2020). Studies have shown a good relationship
between water and soil K. Hence, plants absorb K to improve
their WUE (Zhu et al., 2020), and increase the tolerance level to
withstand water deficit conditions. A K dose changes the carbon
dioxide input process by maintaining the stomatal function,
which mitigates the photo-assimilation restricted by DS (Farooq
et al., 2009). K also controls the enzymes involved in carbohydrate
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metabolism to increase sucrose translocation. These processes are
related to plant growth and development (Zahoor et al., 2017b).
Likewise, adding K doses in drought-affected soil can be helpful
for high-yield crops (Ahanger et al., 2014). K increased the sugar
and proline content under water deficit conditions. On the other
hand, activity of different enzymes involved in DT is enhanced
by supplementation of K and its increased concentration in the
cytoplasm (Kant et al., 2002). K enhanced membrane fluidity by
maintaining the balance of unsaturated to saturated fatty acids
in the membrane (Wilkinson et al., 2001). Studies have shown
that the K dose also increased the quantity of several essential
solutes like sugar, amino acids, and proline under water deficit
conditions, which strongly contributed to osmotic adjustments in
the plant (Ahanger et al., 2014). K application showed promising
results under DS conditions. These results suggested that K can
also be used to improve DT in ramie to maintain its growth
and development.

USE OF MICRO NUTRIENTS TO
ENHANCE DROUGHT TOLERANCE IN
RAMIE

Micronutrients also play a crucial role in improving crop DT
(Hassan et al., 2020). Application of micronutrients under DS
enhanced the activities of several antioxidants like SOD, CAT,
and GPX (Rahimizadeh et al., 2007). Sajedi et al. (2011) studied
the effects of zinc (Zn), copper (Cu), and boron (B) on plant
grown under DS. Results showed that with an increase in
DS, the micronutrients improved the activity of antioxidants
and the yield of plants (Sajedi et al., 2011). Zn, a critical
micro nutrient, plays a crucial role in promoting plant growth
and development. It increased proline content and maintains
antioxidant membrane permeability and activity under DS
(Babaeian et al., 2010).

Studies have shown that Zn application under DS increases
leaf area, chlorophyll content, and stomatal conductance (Karim
et al., 2012). Likewise, Zn application mitigated the adverse effects
of DS and increased yield in the plant (Sultana et al., 2016).
Boron plays a critical role in improving DT in crops. At a rate
of 4 mg L−1, B was applied to study the growth of plants under
DS. B improved the plant water status, chlorophyll content,
and antioxidant activity. These findings revealed the promising
role of B in improving DS tolerance in crops (Naeem et al.,
2018). Bhatia et al. (2005) found that nickel (Ni) maintained
the osmotic adjustment of crops under DS. Cobalt (Co) is a
crucial plant nutrient that increases leaf tolerance to dehydration
and decreases the wilting of leaves under DS. A total of
12 ppm of Co application under drought pressure increased
several growth parameters and enhanced yield. The role of
Co shows that crop growth and production can be increased
under water deficit conditions (Gad et al., 2018). Likewise,
selenium (Se) is being used to reduce the adverse effects of DS
in many crops. Studies showed that Se application increased
the concentration of osmoprotectants and antioxidants activities
under DS (Rady et al., 2020). These results showed the potent
role of micronutrients in plant growth and development under

DS. Calcium and manganese (Mn) also played a significant
role in DT in crops (Ghorbani et al., 2019; Hosseini et al.,
2019). However, further studies are required to fully understand
nutrients interaction in plants and their possible role under DS. It
might be better to study the combined effects of different macro
and micro nutrients to mitigate the adverse consequences of DS.
Many factors should be considered while analyzing the role of
nutrients under drought pressure, like growth stage, crop type,
and fertilizer rate (Rasheed et al., 2020b). Being a significant fiber
crop in China, ramie can be grown under severe DS to increase
its growth and yield.

MOLECULAR TECHNIQUES TO
ENHANCE DROUGHT TOLERANCE IN
RAMIE

The development of ramie cultivars which are tolerant to
environmental stresses is a critical need at this time (Wu et al.,
2021b). Developing crop genotypes with improved agronomic
traits that offer resistance to abiotic stresses has long been
an international concern (Romero-Galindo et al., 2022). The
first step is to adopt reasonable practices under changing
environmental conditions. To sustain crop production under DS
is a big challenge. Plants have numerous defense mechanisms
to withstand DS at the morphological and molecular level
(Agarwal et al., 2006). Breeders are now trying to develop
genetic traits which improve DS tolerance while maintaining
yield under crucial situations (El-Mouhamady et al., 2022).
Genetic engineering (GE) and other molecular techniques can
significantly enhance DT in ramie and other crops. In earlier
times, conventional breeding methods encouraged plant growth
under water stressed environments. These methods are very
time-consuming and costly, and therefore the development of
molecular markers played a crucial role in detecting the genetic
variability in crops (Chen et al., 2022). Many QTLs have been
detected in many crops, but their reliability and accuracy are
often problematic (Xu et al., 2022). By keeping this in mind,
the genetic modification method has proven very useful in
developing drought-tolerant cultivars (An et al., 2015b). Novel
techniques that can increase the plant response to DS have been
successfully authenticated. Gene editing techniques are being
used to bring novel variations of desired traits in the genome
(Georges and Ray, 2017). There use of latest molecular techniques
would open new windows of hope to improve ramie under DS
conditions. The application of molecular techniques would bring
significant results and offer a opportunity to identify the potent
genes accountable for certain molecular pathways under DS.

COMPLETE GENOME SEQUENCING TO
IDENTIFY THE CANDIDATE GENES FOR
DROUGHT TOLERANCE

Next-generation sequencing (NGS) has been expanded during
the last 10 years and provided a cost-effective and reliable
way of single-nucleotide polymorphism (SNP) screening and
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development of high-density genetic maps (Verma et al., 2015;
Branham et al., 2017). The progress in genome sequencing has
gained wide attention in molecular fields (Chen et al., 2013).
The genomic data can be studied, and individual candidate
genes can be selected for a particular function. This approach is
very efficient in underlying the mechanism of different factors
in a plant like DS. Whole-genome sequencing can help to
engineer crops for identification of genes for several functions.
NGS has made sequencing very easy and affordable. A lot
of studies have focused on genome sequencing of fiber crops
like cotton (Li et al., 2015) and ramie (Liu et al., 2018). The
complete genome sequencing of ramie would help to develop
drought-tolerant ramie cultivars. Liu et al. (2018) determined
the genome sequence of ramie to explore the molecular basis
for different traits, however, no study on DT has been found.
Hence, a complete genome sequencing is required to identify
the genetic factors regulating DT in ramie. Further studies
are required which should focus on the identification and
characterization of important genes regulating DT in ramie.
Identification and cloning of genes would speed up the molecular
breeding programs. The above studies set a new foundation for
future use of this technique in ramie (Liu et al., 2018).

QUANTITATIVE TRAIT LOCI MAPPING
FOR DROUGHT TOLERANCE IN RAMIE

Identifying QTL for DT is a potent way of developing drought-
tolerant ramie cultivars (Liu et al., 2017). DS is a polygenic trait,
and hundreds of genes control various responses to DS (Li et al.,
2019). Identifying QTL leads to marker-assisted selection (MAS)
to speed up breeding programs (Rai and Rai, 2020). Hundreds
of QTL in ramie have been identified for various abiotic stresses
and other important agronomic traits; however, no QTL has
been cloned against DS tolerance (Li et al., 2019). In ramie,
breeders have mapped the QTL for fiber yield, physiological traits,
and other traits (Huang et al., 2021). Ramie is not a highly
studied crop; therefore, evaluating ramie under DS and use of
high-density markers would identify potent QTL for developing
drought-tolerant cultivars (Liu et al., 2017). Therefore, it is
important to expose the ramie genotypes to certain levels of DS
and identify the putative QTL for DT which can be used to
accelerate the MAS to develop tolerant cultivars. The evaluation
of ramie populations in hydroponic conditions could be an
effective way of screening against DS tolerance.

USE OF SPEED BREEDING TECHNIQUE
FOR DEVELOPMENT OF
DROUGHT-RESILIENT CULTIVARS

Speed breeding technique has gained world attraction. The
University of Queensland scientists successfully grew wheat crop
plants in space using artificial intelligence (AI). Recently, a
scientist, Watson et al. (2018), developed a protocol for crops
under the speed breeding system. This is one of the most
potent ways of crop development to reduce time and cost

(Watson et al., 2018). Plants were exposed to light for 22 h
using several light resources. This procedure ensures an extended
day length for crops and maximum light duration to speed up
photosynthesis, leading to the quick development of flowers and
seeds (Ghosh et al., 2018).

The speed breeding technique is being used to bring about a
revolution in the agricultural sector and can be used to identify
the genes, mapping population, and crossing of genotypes
(Hickey et al., 2019). Speed breeding can be used to get four
generations of any crop compared to conventional breeding
(Watson et al., 2018). Speed breeding provides a quick, efficient,
and reliable method of crop improvement in many sectors from
phenomics to genomics. The integrated use of NGS and speed
breeding can be helpful in the quick identification of novel
genes, and development of drought tolerant crops (Razzaq et al.,
2019). Therefore, speed breeding will (Figure 5) offer an exciting
method for drought improvement in crops by mixing it with the
next-generation OMICS techniques (transcriptomics, proteomics
and metabolomics) to quicken crop breeding agendas (Razzaq
et al., 2019). The above findings showed that speed breeding
could also be used to develop drought-tolerant cultivars in ramie
(Figure 5). Currently, no study has been reported on speed
breeding in ramie; however, this technique offers good potential
for breeding drought-resilient ramie crops.

ENGINEERING DROUGHT TOLERANCE
IN RAMIE USING CRISPR/CAS9

The CRISPR/Cas9 system is used on a large scale to develop
immunity in crops against foreign invaders (Marraffini and
Sontheimer, 2010). The CRISPR/Cas9 system is based on two
components, single guided RNA (sgRNA), and Cas9 protein.
sgRNA recognizes the target, and Cas9 protein cuts the targeted
gene within the genome (Hsu et al., 2014). The binding of
sgRNA and Cas9 to the region and cutting of the gene depends
on the protospacer adjacent motif (PAM) sequence present in
the downstream area of the targeted end. Hence, the use of
different components makes it an easy and simple way of genome
editing and expands its range behind biological boundaries. The
improvement of targeted traits using CRISPR/Cas9 is highly
successful, but particular PAM types limit its use to potential sites.

For this reason, multiple Cas9 variants have been developed
with different PAM functions to edit the gene behind the
biological areas (Wrighton, 2018). A recent example of using
these variants can be seen in rice (Hu et al., 2018). The horizon
of genome editing has been broadened by utilizing the type V
CRISPR/Cas12 system (Zetsche et al., 2015). Recently, the use
of dead Cas9 and Cas12 expanded the scope of CRISPR/Cas9
to develop mutant libraries, gene editing, and the generation
of epigenetic variations (Wang et al., 2021). Readers can find
multiple review articles presenting details of the structure and
use of CRISPR/Cas9 in multiple crops (Jaganathan et al., 2018;
Zhang et al., 2019).

Nowadays, CRISPR/Cas9 has been used on a large scale due to
its broad adoption in editing crop genomes (Wang et al., 2016).
This mechanism involves the sgRNA and Cas9 protein complex,
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FIGURE 5 | Use of several techniques to develop drought resilient ramie cultivars. Genetic engineering technique is used for gene transfer using Agrobacterium
vector. CRISPR/Cas9 and transcriptome techniques can be widely used for enhancement of drought tolerance in ramie. Speed breeding can also be used for
reduce the time period for development of tolerance ramie cultivars.

which cause double-stranded breaks (DSBs) in DNA strands.
These breaks are repaired by various mechanisms like homology
direct repair (HDR) and non-homologous end joining (NHEJ)
(Pawluk et al., 2018). CRISPR/Cas9 is now being used to achieve
multiple stress resistance in crops to ensure global food security
(Jain, 2015). These novel molecular techniques have highlighted
the different factors which regulate plant response to drought
(Farooq et al., 2021). Under DS, ABA acts to close the stomate
and increased gene expression in order to prevent harmful effects
(Sreenivasulu et al., 2012). In crops like ramie, ABA-related genes
improved DT (An et al., 2015a). The bZIP is a significant TF
in controlling DT because it promotes antioxidant mechanisms
in crops and activates genes in ABA-related pathways (Huang
et al., 2016a). With time, genome editing techniques are gaining
more and more attention and providing new opportunities
to improve desired traits of economic importance. With the
development of gene editing tools, transcription activator-like
effector nucleases (TALENs) and meganucleases (MNs), plant
breeders can now target any gene of interest to bring about
targeted variations. These techniques have several drawbacks
like they need a complex phase that includes editing of protein.
Compared to these techniques, CRISPR/Cas9 offers a simple and
effective gene editing procedure. The Cas9 and several sgRNA
target several sites in genomes (Feng et al., 2013). With the
passage of time, the identification of several Cas9 enzymes from
bacteria have enhanced the accuracy and effectiveness of genome
editing (Ma et al., 2015). In ramie, no study has been reported on
CRISPR/Cas9 gene editing; however, we believe that the future

use of this technique will bring fruitful results in the development
of drought-tolerant cultivars. Ramie is a significant fiber crop and
use of CRISPR/Cas9 will be useful in developing drought tolerant
cultivars. Different types of ramie cultivars including cultivated
and wild relatives can be targeted by CRISPR/Cas9 to bring novel
variations for DT. Ramie offers the wide use of CRISPR/Cas9
because of its great economic importance and potential threats
by DS. Hence, CRISPR/Cas9 applications would open new doors
for future research studies.

GENETIC ENGINEERING FOR DROUGHT
STRESS TOLERANCE IN RAMIE

Agricultural food production has been increased to a significant
level; however, growing food demand for future populations
is still a big challenge (Milestad, 2022; Panda et al., 2022;
Wang et al., 2022). Several abiotic stresses affect crop
growth and production and increase food security risks
(Habibpourmehraban, 2022). Drought is one of the severe
abiotic stresses which has a huge impact on the global food
supply chain (Malik et al., 2021; De Freitas et al., 2022;
Muhammad et al., 2022). DT is an important trait that plants
need to survive under DS (Yadav et al., 2021; Batool et al.,
2022b; Sakoda et al., 2022). The use of proper breeding methods
makes it easy for breeders to maintain crop production under
DS (Fahad et al., 2021b). Nowadays, traditional breeding has
been replaced by molecular breeding to save time and cost.
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Although transgenic approaches have been successfully applied
in many crops, the first successful application of GE in ramie
was reported in 2014. The stress-responsive gene SNACI was first
transferred into ramie using the Agrobacterium transformation
method. The Agrobacterium tumefaciens strain, LBA4404 was
used for successful transformation of genes (Figure 5). The gene
overexpressed and increased DT in ramie plants. The results were
collected using the data of the wild-type and engineered plants.
Furthermore, the SNACI gene also improved DT at the rapid
growth stage. Transgenic plants showed higher water content
and photosynthetic rates than wild types. These results proved
that GE techniques can improve DT in ramie (An et al., 2015b).

ROLE OF TRANSCRIPTION FACTORS IN
DROUGHT STRESS TOLERANCE IN
PLANTS

The TFs are often defined as the proteins resulting from
transcription of DNA into RNA during the transcription process
(Wani et al., 2021; Wu et al., 2022). TFs comprise a broad
range of proteins, and they are responsible for the inhibition and
regulation of genes for a particular function. They are described
by the existence of DNA-binding domains that allow them to
attach to a specific type of DNA called a promoter. These TFs
can initiate transcription by connecting with a sequence of DNA
promoters near the site of transcription. Table 2 shows different
TFs for DT in various crops. The TFs, OsMFTI, TaSNAC4-
3A, and ZmNAC49 conferred DT in rice (Oryza sativa), wheat
(Triticum aestivum), and maize (Zea mays) (Chen et al., 2021;
Mei et al., 2021; Xiang et al., 2021). TFs are isolated from plants
using various methods. Recently, the use of the whole genome
sequencing technique has generated a large number of sequences
and many databases are produced and maintained regarding
TFs. The prominent example of these databases includes the
TF library (Mitsuda et al., 2010) and PKU Yale (Gong et al.,
2004). The clones of TFs in cloning vectors are also maintained
by these libraries to facilitate researchers in crosschecking their
TFs and selecting them for their specific role in stress tolérance
in plants (Wehner et al., 2011). A high-quality web-scale tool
like PlantTF-cat is often utilized to identify and categorize the
particular TF (Dai et al., 2013). Gene regulation at a fixed
time, cell, and TF abundance is a basic necessity for the
sustainable development of cells. The gene expression process
mainly involves the resequencing of DNA and energy usage.

The expression of stress-related genes in the cell requires a
continuous flow of energy for transcription and unfolding DNA
strands. The induction and suppression of downstream genes is
initiated by TF when necessary. This TF plays a beneficial role in
plant stress responses, as evidenced by many published reports.
For instance, in the WRKY TF gene, the promoter region has a W
box to which the gene binds to its promoter during insect attack
and provides resistance to plants (Birkenbihl et al., 2012). The
abiotic stress resistance triggered the ABA accumulation, which
initiated the miRNA159 accumulation. This process degrades
the MYB33 and implicates stress susceptibility (Reyes and Chua,
2007). The biotic stress signals aid the transportation of bZIP28

from the endoplasm to Golgi, stimulating the genes expressed in
the nucleus (Liu and Howell, 2010). After the stress withdrawal,
plants need to stop the activity of TFs to avoid the overuse of
energy (Sadhukhan et al., 2014). In the subsequent review, we
have described the significant TFs found in ramie, with their gene
regulatory system, which played a part in DT.

IDENTIFICATION OF
DROUGHT-RESPONSIVE
TRANSCRIPTION FACTORS IN RAMIE

Plants have developed a complex network to deal with severe
environmental stresses (Rasheed et al., 2020a,b,c,d, 2021a,b,c,d;
Fahad et al., 2021a,b). Different genes are involved in regulating
DT in crops (Rasheed et al., 2020c, 2021a). Five leading gene
families have gained widespread attention because of their crucial
role in DT (Gahlaut et al., 2016). However, in the case of ramie,
we have briefly discussed the role of different TFs involved in
DT. TFs perform a reversible phosphorylation role and make
a complex network. Various TFs were identified in ramie in a
previous study based on the data collected under control and
DS. Tags were generated from libraries and aligned with ramie
TFs to study their role, and 22,826 genes were compared by
using these tags. Comparison of the expression level of genes
among the DS and control ramie on the basis of variation in
tags frequencies in libraries showed that there are about 1516
DT genes, and 24 of them are TFs. The Unigene19721 encoding
DELLA protein was found up-regulated under water stress, and it
is a negative regulator of GAs and involved in growth inhibition
of ramie under DS. The change in expression of these TFs was
further validated under DS conditions. TFs were chosen from
well-watered and drought-stressed ramie, and their expression
level was further confirmed by real-time quantitative polymerase
chain reaction (PCR). Results concluded that out of the 24 TFs,
12 were involved in response to DS (Liu et al., 2013c).

Drought regulatory mechanism is still unknown in ramie.
Polyethylene glycol (PEG) treatment is the most common and
widely adopted way to impose DS in plants. An et al. (2015a)
made a cDNA library collection and studied the transcriptome
analysis of ramie cultivars subjected to DS imposed by PEG
treatment. The study involved illumining paired-end sequencing,
which produced over 170 millions sequence reads. Roots and
leaves were subjected to PEG treatment for 24 and 72 h (L1, L2,

TABLE 2 | Different TFs for drought tolerance in economically essential crops.

Crop Genes References

Rice OsMFT1 Chen et al., 2021

Wheat TaSNAC4-3A Mei et al., 2021

Maize ZmNAC49 Xiang et al., 2021

Cotton GhWOX4 Sajjad et al., 2021

Sugarcane AtBBX29 Mbambalala et al., 2021

Arabidopsis CaNAC46 Ma et al., 2021

Soybean GmMYB14 Chen et al., 2021

Barley HvMYB1 Alexander et al., 2019
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L3, and L4). Results showed that 16,798 genes were expressed;
out of them, 8627 expressed in roots and 9281 were expressed
in leaves. A total of 25 TFs were involved in the DS response in
ramie. Further analysis of these TFs could provide the practical
basis for understanding the DS tolerance mechanism in ramie.
There are only a few TFs still known, and it is a significant
obstacle in understating the mechanism of DS tolerance in
ramie (Zheng et al., 2016). To uncover more DT genes and
TFs, a total of 179 genes with length reading frames from
bZIP and COL families were gained by searching against the
ramie TFs. Studying the expression pattern demonstrated that
these genes showed a higher expression pattern in stem xylem
and a lower expression pattern in other tissues. A total of 96
genes were involved in DT. They have concluded that these
TFs play a crucial role in stress tolerance in ramie. These
results will help unfold the stress-responsive mechanism in ramie
(Zheng et al., 2016).

In another study, qRT-PCR was used to study the function
of two gene families. Different analysis like phylogenetic
relationship, intron/exon, and expression patterns were studied
in tissues. The expression pattern was studied in response
to DS induced by PEG treatment. The BnPIN (Table 3)
gene was upregulated because of the DS treatment. These
studies provided new insights for further analysis of the
biological roles of ramie against environmental stresses (Bao
et al., 2019). Huang et al. (2016a) cloned a novel bZIP
gene known as BnbZIP3 from ramie plants based on their
Unigene6582 sequence in TFs using the CDNA amplification
technique and PCR (Figure 6). The study results suggested
that BnbZIP3 shared higher sequence identities to bZIP factors
from other ramie plants. The fusion of gene with ECFP was
done, and it showed the subcellular localization of protein.
Different transcripts of ramie were found in ramie plants. The
induction of DS increased the expression pattern of BnbZIP3.
The cis-acting elements of this gene are involved in multiple
stresses response mechanisms. Results showed that the same
gene inhibited Arabidopsis growth under normal circumstances
and increased dehydration under stress conditions. This gene
may be helpful in developing drought-tolerant ramie cultivars
(Huang et al., 2016a).

Another ramie bZIP gene (Table 3 and Figure 6), that
has a crucial role in stress response was cloned from ramie
plants. BnbZIP2 transcripts are found in many tissues in ramie
plants. The gene expression was induced by DS. Cis-acting
analysis of BnbZIP2 showed that this gene involved multiple
stress response mechanisms in ramie. Transgenic Arabidopsis
plants with overexpression of this gene, BnbZIP2 showed high
sensitivity to DS whereas high tolerance to salinity stress than
wild type at seed germination stage. This gene may act as a
positive regulator of DS tolerance in ramie (Huang et al., 2016b).
These studies analyzed the role of different TFs in ramie under
DS. Ramie is not a highly studied crop regarding its genetics and
wide-scale adaptation. Further studies focusing on identifying
and analyzing each TF gene will speed up the study of the genetic
mechanisms of ramie’s tolerance to DS. The development of
drought-tolerant ramie cultivars will boost the industrial use of
ramie crop (Bao et al., 2019).

FIGURE 6 | Role of different TFs in ramie crop under severe drought stress
(DS). TFs have a key role in drought tolerance. MYB, COL, bZIP, and BnPIN
showed enhance tolerance to DS. These TFs regulate gene expression and
enable plant to withstand with drought episodes.

TABLE 3 | List of different transcription factors/genes involved in drought stress
(DS) tolerance in ramie.

Families Name of gene Number of
genes

References

MYB, bZIP BnMYB01–BnMYB67 1 Zheng et al., 2016

bHLH Unigene4099 1 Liu et al., 2013c

NAC Comp56509 9 An et al., 2015a

BnPIN BnPIN3 1 Bao et al., 2019

bZIP BnbZIP3 1 Huang et al., 2016a

bZIP BnbZIP2 1 Huang et al., 2016b

CONCLUSION AND FUTURE
RECOMMENDATIONS

Crop growth and production have been highly affected by
severe environmental constraints; one of them is DS which
causes a significant loss in yield and quality of agriculturally
important crops. The simultaneous incidence of drought induced
osmotic and oxidative stress occurs on a common basis. Plants
balance these dangers by accumulating compatible solutes
in cells and detoxifying ROS, and modifying the actions of
antioxidant enzymes. Plants have evolved various morphological,
biochemical, and molecular mechanisms to cope with DS
episodes. Complete knowledge of DT at the molecular level
would help scientists identify and clone the regulatory elements
used in molecular breeding. CRISPR/Cas9 mediated genome
editing of ramie is a novel and powerful way to edit and
manipulate any gene across biological boundaries. The speed
breeding, transgenic breeding, and identification of TFs are
highly effective and reliable techniques to develop drought
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tolerant ramie cultivars. More investigation into the role
of plant growth-promoting hormones is necessary to help
understand plant strategies against stress. A more inclusive
image of the upregulated genes in response to DS can
be recognized, categorized, and genetic alterations can be
promising for crop development schemes. As discussed in
this review, different plant mineral nutrients like NPK and
micronutrients like Ni, Zn, Co, B, and Se can improve the
growth and development of plants, both under usual and stressed
situations, by preventing the oxidation of polyunsaturated
fatty acids (PUFAs), thus preventing membrane leakage and
unnecessary development of free radicals. Due to increased
plant nutrition under DS, the resistance level would increase,
and the plant can maintain its growth and yield. There are
few studies published which deal with the mechanisms and
improvement of DT in ramie. There are many questions
which are not answered. Complete genetic control of DT
is not understood and needs further study. Hence, it is
concluded that the use of certain molecular, as well as
conventional approaches, are mandatory to improve the growth
and yield of ramie under DS. Therefore, it would be better
to test the genotypes against certain levels of DS under
controlled conditions.
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